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Abstract

We investigate error between any discrete solution of the implicit Marker and Cell (MAC) nu-
merical scheme for compressible Navier-Stokes equations in low Mach number regime and an exact
strong solution of the incompressible Navier-Stokes equations. The main tool is the relative energy
method suggested on the continuous level in [7], whose discrete numerical version has been developed
in [19]. We get unconditional error estimate in terms of explicitly determined positive powers of the
space-time disretization parameters and Mach number in the case of well prepared initial data, and
the boundedness of the error if the initial data are ill prepared. The multiplicative constant in the
error estimate depends on the suitable norm of the strong solution but is independent on the numeri-
cal solution itself (and of course, on the disretization parameters and the Mach number). This is the
first proof ever that the MAC scheme is unconditionally and uniformly asymptotically stable at the
low Mach number regime.

Key words: Navier-Stokes system, finite difference numerical method, finite volume numerical
method, Marker and Cell scheme, error estimate

AMS classification 35Q30, 65N12, 65N30, 76N10, 76N15, 76M10, 76M12

1 Introduction
In [20], we have derived unconditional error estimates for the Marker and Cell (MAC) numerical scheme
for the compressible Navier-Stokes equations. The goal of this paper is to investigate the low Mach
number asymptotic for this discretization. The aim is to estimate the error of the MAC discrete numerical
solution on a mesh of size h and time step δt in the MAC discrete function space with respect to a
convenient projection to the discrete numerical space of the unique strong solution of the incompressible
Navier-Stokes equations in terms of the (positive) powers of h, δt and Mach number ε. The multiplicative
constant in this estimate must be independent of the numerical solution (and of course of h, δt and ε);
it may however depend on the norm of the strong solution (Π,V) of the target problem in a convenient
functional space of sufficiently regular functions. In particular, we shall not require any additional
information on the numerical solution than the information provided by the algebraic numerical scheme
itself.

Such type of estimates are referred as (unconditional) error estimates in the numerical analysis
of PDEs. The numerical schemes possessing this type of error estimates are referred as (uniformly)
asymptotic preserving. In spite of the importance of this property for applications, the mathematical
literature on this subject is in a short supply, mostly due to the complexity of the problem: the rigorous
asymptotic preserving error estimates are known solely on the level of the numerical schemes, and, in this
case the error estimate depends on the space-time discretization. This philosophy is pursued for example
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in papers [1], [4], [16], [25], [33], [34], [35], [36]. This type of estimates does not provide any information on
the convergence of the scheme, and this is a serious drawback. To the best of our knowledge, we present
here the first unconditional and uniform result providing quantitatively an uniform convergence rate in
terms of space-time discretization (h, δt) and Mach number ε for the MAC scheme (compare with [8]
establishing asymptotic preserving estimates for an academic FEM/DG scheme). Its importance and
interest is underlined by the fact that the Marker and Cell scheme in its explicit or semi-implicit form
constitutes the basis for many industrially ran codes in fluid mechanics.

The relative energy method introduced on the continuous level in [11], [7], [9] and its numerical
counterpart developed in Gallouët et al. [19] seem to provide the convenient strategy to achieve this
goal.

We consider the compressible Navier-Stokes equations in the low Mach number regime in a space-
time cylinder QT = (0, T ) × Ω, where T > 0 is arbitrarily large and Ω ⊂ R3 is a bounded Lipschitz
domain:

∂t%+ divx(%u) = 0, (1.1) {i1}

∂t(%u) + divx(%u⊗ u) + 1
ε2∇xp(%) = µ∆u + (µ+ λ)∇xdivxu, (1.2) {i2}

In equations (1.1–1.2) % = %(t, x) ≥ 0 and u = u(t, x) ∈ R3, t ∈ [0, T ), x ∈ Ω are unknown density and
velocity fields, µ, λ are viscosity coefficients

µ > 0, λ+ 2
d
µ ≥ 0, (1.3) {i3}

p is a pressure characterizing the fluid via the constitutive relations

p ∈ C2(0,∞) ∩ C[0,∞), p(0) = 0, p′(%) > 0 for all % > 0, (1.4) {i4}

lim
%→∞

p′(%)
%γ−1 = p∞ > 0, inf

%∈(0,1)

p′(%)
%

= p0 > 0

where γ ≥ 1. The (small) number ε > 0 is the Mach number. We notice that assumptions (1.4) are
compatible with the isentropic pressure law p(%) = %γ provided 1 ≤ γ ≤ 2.

Equations (1.1–1.2) are completed with the no-slip boundary conditions

u|∂Ω = 0, (1.5) {i6}

and initial conditions
%(0, ·) = %0, u(0, ·) = u0, %0 > 0 in Ω. (1.6) {i7}

In parallel, we consider a strong solution of the incompressible Navier-Stokes equation

%
(
∂tV + V · ∇xV

)
+∇xΠ = µ∆V, divV = 0, (1.7) {ns1}

V|∂Ω = 0, % = const > 0 (1.8) {ns1+}

endowed with initial data
V(0) = V0, (1.9) {ns2}

The solution of the incompressible target problem (1.7–1.9) is supposed to belong to the regularity
class

Π ∈ YpT (Ω) ≡ {Π ∈ C([0, T ];C1(Ω)), ∂tΠ ∈ L1(0, T ;Lp(Ω))}, 2 ≤ p ≤ ∞, ; V ∈ XT (Ω), (1.10) {ns3}

XT (Ω) ≡ {V ∈ C1([0, T ]× Ω;R3), ∇2V ∈ C([0, T ]× Ω;R3), (∂2
t V, ∂t∇V) ∈ L2(0, T ;L6/5(Ω;R12)).
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2 The numerical scheme

2.1 MAC space and time discretization

2.1.1 Space discretization

We assume that the closure of the domain Ω is a union of closed rectangles (d = 2) or closed orthogonal
parallelepipeds (d = 3) with mutually disjoint interiors, and, without loss of generality, we assume that
the edges (or faces) of these rectangles (or parallelepipeds) are orthogonal to the canonical basis vectors,
denoted by (e(1), . . . , e(d)),

Definition 2.1 (MAC grid - definition notations and basic properties). A discretization of Ω with MAC
grid, denoted by D, is given by D = (T , E), where:

- The primal (or density or pressure) grid of domain Ω denoted by T consists of union of possibly
non uniform (closed) rectangles (d=2) or (closed) parallelpipeds (d = 3), the edges (or faces) of
these rectangles (or parallelepipeds) are orthogonal to the canonical basis vectors; a generic cell of
this grid is denoted by K ( a closed set), and its mass center xK . It is a conforming grid, meaning
that

Ω = ∪K∈MK, where int(K) ∩ int(L) = ∅ whenever (K,L) ∈M2, K 6= L, (2.1) {primalgrid}

and if K ∩ L 6= ∅ then K ∩ L is a common face or edge or vertex of K and L. A generic face (or
edge in the two-dimensional case) of such a cell is denoted by σ (a closed set), its interior in the
Rd−1 topology is denoted by intd−1(σ) and its mass center xσ. Symbol E(K) denotes the set of all
faces of K. We denote by nσ,K the unit normal vector to σ outward K. The set of all faces of the
mesh is denoted by E; we have E = Eint ∪ Eext, where Eint (resp. Eext) are the edges of E that lie
in the interior (resp. on the boundary) of the domain. The set of faces that are orthogonal to the
ith unit vector e(i) of the canonical basis of Rd is denoted by E(i), for i = 1, . . . , d. We then have
E(i) = E(i)

int ∪ E
(i)
ext, where E

(i)
int (resp. E(i)

ext) are the edges of E(i) that lie in the interior (resp. on the
boundary) of the domain. Finally, for i = 1, ..., d and K ∈ T , we denote E(i)(K) = E(K) ∩ E(i)

and E(i)
int(K) = E(K) ∩ E(i)

int, E
(i)
ext(K) = E(K) ∩ E(i)

ext.

- For each σ ∈ E, we write that σ = K|L if σ = K ∩ L and we write that σ =
−−→
K|L if, furthermore,

σ ∈ E(i) and (xL − xK) · e(i) > 0 for some i ∈ [|1, d|] = {1, . . . , d}. A primal cell K will be denoted
K = [

−→
σσ′] if σ, σ′ ∈ E i(K) for some i = 1, . . . , d are such that (xσ′ − xσ) · e(i) > 0. For a face

σ ∈ E, the distance dσ is defined by:

dσ =
{
d(xK ,xL) if σ = K|L ∈ Eint,

d(xK ,xσ) if σ ∈ Eext ∩ E(K)
(2.2) {dsigma}

where d(·, ·) denotes the Euclidean distance in Rd.
- A dual cell Dσ associated to a face σ ∈ E is defined as follows:

∗ if σ = K|L ∈ Eint then Dσ = Dσ,K ∪Dσ,L, where Dσ,K - a closed set (resp. Dσ,L - a closed
set) is the half-part of K (resp. L) adjacent to σ (see Fig. 1 for the two-dimensional case) ;
∗ if σ ∈ Eext is adjacent to the cell K, then Dσ = Dσ,K .

The dual grid {Dσ}σ∈E(i) of Ω (sometimes called the i-th velocity component grid) verifies for each
fixed i ∈ {1, . . . , d}

Ω = ∪σ∈E(i)Dσ, int(Dσ) ∩ int(Dσ′) = ∅, σ, σ′ ∈ E(i), σ 6= σ′. (2.3) {dualgrid}

- A dual face separating two neighboring dual cells Dσ and Dσ′ is denoted by ε = σ|σ′ or ε = Dσ|Dσ′

(a closed set). Symbol Ẽ(Dσ) denotes the set of the faces of Dσ; it is decomposed to the set of
external faces Ẽext(Dσ) = {ε ∈ Ẽ(Dσ)|ε ⊂ ∂Ω} and the set of internal faces Ẽint(Dσ) = {ε ∈
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Ẽ(Dσ)|intd−1ε ⊂ Ω}. Symbol Ẽ(i) denotes the set of the faces of the i-th dual grid (associated to the
i-th velocity component). It is decomposed into the internal and boundary edges: Ẽ(i) = Ẽ(i)

int ∪ Ẽ
(i)
ext,

where Ẽ(i)
int = {ε = σ|σ′ |σ, σ′ ∈ E i} and Ẽ(i)

ext = {ε = ∂Dσ ∩ ∂Ω |σ ∈ E(i), ∂Dσ ∩ ∂Ω 6= ∅}. Finally,
for ε ∈ Ẽ(i) we write ε =

−−→
σ|σ′ if (xσ′ − xσ) · e(i) > 0. We denote by nε,Dσ the unit normal vector

to ε ∈ Dσ outward Dσ.

We denote for further convenience nε and nσ a normal unit vector to face ε and σ, respectively.
We write ε ⊥ σ resp. σ⊥σ

′ iff nε · nσ = 0 resp. nσ · nσ′ = 0. Similarly we write ε ⊥ e(j)

resp. σ ⊥ e(j) iff nε and e(j) resp. nσ and e(j) are parallel. We also denote by ab the segment
{a + t(b− a)|t ∈ [0,1]}, where (a,b) ∈ R2d, and by xε resp. xσ∩ε the mass centers of the face ε
resp. of the set σ ∩ ε (provided it is not empty).

- In order to define bi-dual grid, we introduce the set Ẽ(i,j) = {ε ∈ Ẽ(i) | ε ⊥ e(j)} of dual faces of
the i-th component velocity grid that are orthogonal to e(j). A bi-dual cell Dε associated to a face
ε = σ|σ′ ∈ Ẽ is defined as follows:

∗ If ε =
−−→
σ|σ′ ∈ Ẽ(i,j) ∩ Ẽ(i)

int then Dε = ε×xσxσ′ (see Figure 2). (We notice that, if σ, σ′ ∈ E(i)

with K =
−−→
[σσ′] ∈ T and ε = σ|σ′ then Dε = K.)

∗ If ε ∈ Ẽ(i,j) ∩ Ẽ(i)
ext with ε ∈ Ẽ(Dσ) and i 6= j then Dε = ε× xσxσ∩ε.

In the list above we did not consider the sitution ε ∈ Ẽ(i,i) ∩ Ẽ(i)
ext with ε ∈ Ẽ(Dσ). In this case

ε = σ ⊂ ∂Ω, and we set for completeness Dε = ∅.
It is to be noticed that, for each fixed couple (i, j) ∈ {1, . . . , d}2

∪ε∈Ẽ(i,j) Dε = Ω, int(Dε) ∩ int(Dε′) = ∅, ε 6= ε′, ε, ε′ ∈ Ẽ(i,j). (2.4) {bidualgrid}

To any dual face ε ∈ Ẽ(i), we associate a distance dε

dε =


d(xσ,xσ′) if ε ∈ Ẽ

(i,j) ∩ Ẽ(i)
int,

d(xσ,xσ∩ε) if ε ∈ Ẽ
(i,j) ∩ Ẽ(i)

ext with ε ∈ Ẽ(Dσ) and i 6= j,
dσ if ε ∈ Ẽ(i,i) ∩ Ẽ(i)

ext with ε ∈ Ẽ(Dσ).
(2.5) {depsilon}

(We notice that the last line in the above definition is irrelevant and pure convention, since in that
case Dε = ∅.)

- We define the size of the mesh by

h = max{hK ,K ∈ T } (2.6) {stepsize}

where hK stands for the diameter of K. Moreover if K = [
−→
σσ′] where σ, σ′ ∈ E(i) ∩ E(K) for some

i = 1, . . . , d we will denote
h

(i)
K = |K|

|σ|
= |K|
|σ′|

. (2.7)

We measure the regularity of the mesh through the positive real number ηT defined by

ηT = max{ |σ|
|σ′|

, σ ∈ E(i), σ′ ∈ E(j), (i, j) ∈ {1, ..., d}2, i 6= j}. (2.8) {reg}

Finally, we denote by hσ the diameter of the face σ ∈ E.

Some geometric notions presented in Definition 2.1 are sketched on Figures 1 and 2 below.
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Definition 2.2 (Discrete spaces). Let D = (T , E) be a MAC grid in the sense of Definition 2.1. The
discrete density and pressure space LT is defined as the set of piecewise constant functions over each of
the grid cells K of T , and the discrete i− th velocity space H(i)

E as the set of piecewise constant functions
over each of the grid cells Dσ , σ ∈ E(i). As in the continuous case, the Dirichlet boundary conditions
(1.5) are (partly) incorporated in the definition of the velocity spaces, and, to this purpose, we introduce
H

(i)
E,0 ⊂ H

(i)
E , i = 1, . . . , d, defined as follows:

H
(i)
E,0 =

{
v ∈ H(i)

E , v(x) = 0 ∀x ∈ Dσ, σ ∈ Ẽ(i)
ext,

}
.

We then set HE,0 =
∏d
i=1H

(i)
E,0. Since we are dealing with piecewise constant functions, it is useful to

introduce the characteristic functions XK ,K ∈ T and XDσ , σ ∈ E of the density (or pressure) and velocity
cells. We can then write a function v ∈ HE,0 as v = (v1, . . . , vd) with vi =

∑
σ∈E(i)

int

vi,σXDσ , i ∈ [|1, d|] and

a function q ∈ LT as q =
∑
K∈T

qKXK . If there is no confusion possible we shall write vσ instead of vi,σ,

where σ ∈ E(i).

Dσ

K

L

σ = K|L σ′′×

×

×

xσ′

xσ xσ′′

ε2 ε3

σ′

ε1 = σ|σ′

∂Ω

dε3dε2

dε1

Figure 1: Notations for control volumes and dual cells

K L

σ
=
K
|L

Dσ

Dε

σ′

ε = σ|σ′

M N

Figure 2: Notations for bi-dual cells
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2.1.2 Time discretization

We consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), and, for the sake
of simplicity, a constant time step δt = tn − tn−1; hence tn = nδt for n ∈ {0, · · · , N}. We denote
respectively by {uni,σ ≡ unσ, σ ∈ E

(i)
int, i ∈ {1, · · · , d}, n ∈ {0, · · · , N}}, and {%nK ,K ∈ T , n ∈ {1, · · · , N})

the sets of discrete velocity and density unknowns. For σ ∈ E(i)
int, i ∈ {1, · · · , d} the value unσ is an

expected approximation of the mean value over (tn−1, tn) × Dσ of the i-th component of the velocity
of a weak solution, while for K ∈ T the value %nK is an expected approximation of the mean value
over (tn−1, tn)×K of the density of a weak solution. To the discrete unknowns, we associate piecewise
constant functions on time intervals and on primal or dual meshes, which are expected approximation
of weak solutions, For the velocities, these constant functions are of the form:

ui(t,x) =
N∑
n=1

∑
σ∈E(i)

int

unσ XDσ(x)X(tn−1,tn)(t), (2.9) {du}

where X(tn−1,tn) is the characteristic function of the interval (tn−1, tn). We denote by Xi,E,δt the set of
such piecewise constant functions on time intervals and dual cells, and we set XE,δt =

∏d
i=1Xi,E,δt. For

the density, the piecewise constant function is of the form:

%(t,x) =
∑
K∈T

%nK(x)XK(x)X(tn−1,tn)(t) (2.10) {drho}

and we denote by YT ,δt the space of such piecewise constant functions.
For a given u ∈ XE,δt associated to the set of discrete velocity unknowns {unσ, σ ∈ E

(i)
int, i ∈

{1, · · · , d}, n ∈ {1, · · · , N}}, and for n ∈ {1, · · · , N}, we denote by uni ∈ H
(i)
E,0 the piecewise constant

function defined by uni (x) = unσ ≡ uni,σ for x ∈ Dσ, σ ∈ E(i)
int, and set un = (un1 , . . . , und )t ∈ HE,0. In a

same way, given % ∈ YT ,δt associated to the discrete density unknowns {%nK ,K ∈ T , n ∈ {1, · · · , N}} we
denote by %n ∈ LT the piecewise constant function defined by %n(x) = %nK for x ∈ K, K ∈ T .

2.2 MAC discretization of differential operators

2.2.1 Upwind divergence and primal fluxes

The discrete "upwind" divergence is defined by

divup
T : LT ×HE,0 −→ LT

(%,u) 7−→ divup
T (%u) =

∑
K∈T

1
|K|

∑
σ∈E(K)

Fσ,K(%,u) XK , (2.11) {eq:divup}

where Fσ,K(%,u) stands for the mass flux across σ outward K, which, because of the Dirichlet boundary
conditions, vanishes on external faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, Fσ,K(%,u) = |σ| %up
σ uσ,K , (2.12) {eq:massflux}

where uσ,K is an approximation of the normal velocity to the face σ outward K, defined by:

uσ,K = uσ e(i) · nσ,K for σ ∈ E(i) ∩ E(K). (2.13) {eq:edge_velo}

Thanks to the boundary conditions, uσ,K vanishes for any external face σ. The density at the internal
face σ = K|L is obtained by an upwind technique:

%up
σ =

∣∣∣∣∣∣
%K if uσ,K ≥ 0,

%L otherwise.
(2.14) {eq:rho_upwind}
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Note that any solution (%n,un) ∈ LT ×HE,0 to (2.40a) satisfy %nK > 0, ∀K ∈ T provided %n−1
K > 0, ∀K ∈

T and in particular p(%n) makes sense. The positivity of the density %n in (2.40a) is not enforced in the
scheme but results from the above upwind choice, see Proposition 2.1.

Note also that, with this definition, we have the usual finite volume property of local conservation of
the flux through a primal face

Fσ,K(%,u) = −Fσ,L(%,u), where σ = K|L. (2.15) {dod1}

2.2.2 Discrete convective operator and dual fluxes

The discrete divergence of the convective term %u⊗ u is defined by

divup
E : LT ×HE,0 −→ HE,0

(%,u) 7−→ divup
E (%u⊗ u) = (div(1)

E (%uu1), ...,div(d)
E (%uud)),

(2.16)

where for any 1 ≤ i ≤ d, the ith component of the above operator reads:

div(i)
E : LT ×HE,0 −→ H

(i)
E,0

(%,u) 7−→ div(i)
E (%uui) =

∑
σ∈E(i)

int

1
|Dσ|

∑
ε∈Ẽ(Dσ)

Fε,σ(%,u) uε XDσ .
(2.17) {FLU}

Here for σ ∈ E(i)
int and ε ∈ E(Dσ) the quantity Fε,σ = Fε,σ(%,u) stands for a mass flux through the

dual faces of the mesh and are defined hereafter while uε stands for the centered approximation of ith

component of the velocity over the face ε: For internal dual face ε = Dσ|Dσ′ ∈ Ẽ
(i)
int,

uε ≡ ui,ε = ui,σ + ui,σ′

2 ≡ uσ + uσ′

2 . (2.18) {centeredchoice}

The dual fluxes Fε,σ are defined as follows:

Since we consider homogenous Dirichlet boundary condition, the flux through a dual face ε included
in the boundary is taken equal to zero. (For this reason Ẽ(Dσ) in the sum (2.17) can be replaced by
Ẽint(Dσ), and it is not necessary to define the value uε at the external dual faces ε.)

Otherwise, we have to distinguish two cases (see Figure 2.2.2):
- First case – The vector e(i) is normal to ε, so ε is included in a primal cell K, and we denote by σ′

the second face of K which, in addition to σ, is normal to e(i). We thus have ε = Dσ|Dσ′ . Then
the mass flux through ε is given by:

Fε,σ(%,u) = 1
2
[
Fσ,K(%,u) nε,Dσ · nσ,K + Fσ′,K(%,u) nε,Dσ · nσ′,K

]
. (2.19) {eq:flux_eK}

- Second case – The vector e(i) is tangent to ε, and ε is the union of the halves of two primal faces
τ and τ ′ such that τ ∈ E(K) and τ ′ ∈ E(L). The mass flux through ε is then given by:

Fε,σ(%,u) = 1
2
[
Fτ,K(%,u) + Fτ ′,L(%,u)

]
. (2.20) {eq:flux_eorth}

- Third case – The vector e(i) is tangent to ε, and ε is the halve of a primal face τ such that τ ∈ E(K).
In particular σ ∈ E(i)

ext. The mass flux through ε is then given by:

Fε,σ(%,u) = 1
2Fτ,K(%,u). (2.21)

7



K L

σ
=
K
|L

Dσ

ε

ε
⊂
K

τ τ ′

Figure 3: Notations for the dual fluxes of the first component of the velocity.

Note that, with this definition, we have the usual finite volume property of local conservativity of
the flux through a dual face, Dσ|Dσ′ ,

Fε,σ(%,u) = −Fε,σ′(%,u).

The density on a dual cell is given by:

for σ ∈ Eint, σ = K|L |Dσ| %Dσ
= |Dσ,K | %K + |Dσ,L| %L,

for σ ∈ Eext, σ ∈ E(K), %Dσ
= %K .

(2.22) {eq:rho_edge}

and we denote
for 1 ≤ i ≤ d, %̂(i) =

∑
σ∈E(i)

%DσXDσ . (2.23) {rohat}

The definition of the dual mass fluxes and the dual density ensures the validity of the mass balance
equation over the diamond cells:

∀1 ≤ i ≤ d, ∀σ ∈ E(i),
1
δt

(%nDσ − %
n−1
Dσ

) + 1
|Dσ|

∑
ε∈Ẽ(Dσ)

Fnε,σ = 0. (2.24) {eq:mass_D_imp}

This equation is necessary later for the derivation of the discrete energy balance.

2.2.3 Discrete divergence and gradient

The discrete divergence operator divT is defined by:

divT : HE −→ LT

u 7−→ divT u =
∑
K∈T

1
|K|

∑
σ∈E(K)

|σ|uσ,K XK , (2.25) {eq:div}

where uσ,K is defined in (2.13).
The discrete divergence of u = (u1, . . . , ud) ∈ HE,0 may also be written as

divT u =
d∑
i=1

∑
K∈T

(ðiui)KXK , (2.26)

where the discrete derivative (ðiui)K of ui on K is defined by

(ðiui)K = |σ|
|K|

(uσ′ − uσ) with K = [
−→
σσ′], σ, σ′ ∈ E(i). (2.27) {discrete-derivative-i-ui}

The gradient in the discrete momentum balance equation is defined as follows:

∇E : LT −→ HE,0
p 7−→∇Ep
∇Ep(x) = (ð1p(x), . . . ,ðdp(x))t,

(2.28) {eq:grad}
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where ðip ∈ H(i)
E,0 is the discrete derivative of p in the i-th direction, defined by:

ðip =
∑

σ=
−−→
K|L∈E(i)

int

|σ|
|Dσ|

(pL − pK)χDσ , i = 1, . . . , d. (2.29) {discderive}

Note that in fact, the discrete gradient of a function of LT should only defined on the internal faces, and
does not need to be defined on the external faces; we set it here in HE,0 (that is zero on the external
faces) for the sake of simplicity.

The gradient in the discrete momentum balance equation is built as the dual operator of the discrete
divergence. Indeed, we have the following lemma:

Lemma 2.1. [Discrete div−∇ duality]
Let q ∈ LT and v ∈ HE,0 then we have:∫

Ω
q divT v dx+

∫
Ω
∇Eq · v dx = 0. (2.30) {Ndiscret}

2.2.4 Discrete Laplace operator

For i = 1 . . . , d, we classically define the discrete Laplace operator on the i-th velocity grid by:

−∆(i)
E : H

(i)
E,0 −→ H

(i)
E,0

ui 7−→ −∆(i)
E ui

−∆(i)
E ui =

∑
σ∈E(i)

int

[ 1
|Dσ|

∑
ε∈Ẽ(Dσ)

φε,σ(ui)
]
χDσ , (2.31) {eq:lapi}

where Ẽ(Dσ), dε is defined in Definition 2.1, and

φε,σ(ui) =



|ε|
dε

(ui,σ − ui,σ′) if ε = σ|σ′ ∈ Ẽ(i)
int,

|ε|
dε
ui,σ if ε ∈ Ẽ(i)

ext ∩ Ẽ(Dσ).

(2.32)

Note that we have the usual finite volume property of local conservativity of the flux through an interface
ε = σ |σ′:

φε,σ(ui) = −φε,σ′(ui), ∀ε = σ|σ′ ∈ Ẽ(i)
int. (2.33) {conservdiff}

Then the discrete Laplace operator of the full velocity vector is defined by

−∆E : HE,0 −→ HE,0
u 7→ −∆Eu = (−∆(1)

E u1, . . . ,−∆(d)
E ud)t.

(2.34)

Let us now recall the definition of the discrete H1
0 inner product [5]; it is obtained by multiplying the

discrete Laplace operator scalarly by a test function v ∈ HE,0 and integrating over the computational
domain. A simple reordering of the sums (which may be seen as a discrete integration by parts) yields,
thanks to the conservativity of the diffusion flux (2.33):

∀(u,v) ∈ HE,02,

∫
Ω
−∆Eu · v dx = [u,v]1,E,0 =

d∑
i=1

[ui, vi]1,E(i),0,

with [ui, vi]1,E(i),0 =
∑
ε∈Ẽ(i)

int
ε=σ|σ′

|ε|
dε

(ui,σ − ui,σ′) (vi,σ − vi,σ′) +
∑
ε∈Ẽ(i)

ext
ε∈Ẽ(Dσ)

|ε|
dε

ui,σ vi,σ
(2.35) {ps}

9



The bilinear forms

∣∣∣∣∣∣ H
(i)
E,0 ×H

(i)
E,0 → R

(u, v) 7→ [ui, vi]1,E(i),0
and

∣∣∣∣∣ HE,0 ×HE,0 → R
(u,v) 7→ [u,v]1,E,0

are inner products on H
(i)
E,0

and HE,0 respectively, which induce the following discrete H1
0 norms:

‖ui‖21,E(i),0 = [ui, ui]1,E(i),0 =
∑
ε∈Ẽ(i)

int

ε=
−−→
σ|σ′

|ε|
dε

(ui,σ − ui,σ′)2 +
∑
ε∈Ẽ(i)

ext
ε∈Ẽ(Dσ)

|ε|
dε

u2
i,σ for (2.36a) {normi}

‖u‖21,E,0 = [u,u]1,E,0 =
d∑
i=1
‖ui‖21,E(i),0. (2.36b) {normfull}

Dε

uσ uσ′ε

(ð1u1)Dε = uσ′ − uσ
dε

Dε

uσ

uσ′

ε

(ð2u1)Dε = uσ′ − uσ
dε

Dε uσ

ε

(ð2u1)Dε = −uσ
dε

Dε

uσ

ε

(ð2u1)Dε = uσ
dε

Figure 4: Notations for the definition of the partial space derivatives of the first component of the
velocity, in two space dimensions.

We introduce the discrete gradient of velocity component ui as follows:

∇E(i)ui = (ð1ui, . . . ,ðdui) with ðjui =
∑

ε∈Ẽ(i,j)

(ðjui)Dε XDε (2.37) {partialdiscrete}

where

(ðjui)Dε =


ui,σ′ − ui,σ

dε
if ε =

−−→
σ|σ′ ∈ Ẽ(i,j) ∩ Ẽ(i)

int,

−ui,σ
dε

e(j) · nε,Dσ if ε ∈ Ẽ(i,j) ∩ Ẽ(i)
ext ∩ Ẽ(Dσ)

(2.38) {Ddiscrete}

(see Figure 4). Recall that all notations used above are introduced in Definition 2.1. Note, that this
definition is compatible with the definition of the discrete derivative (ðiui)K given by (2.27). Finally
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notice that the second line in (2.38) is equal to zero whenever i = j (since u ∈ HE,0). With this definition,
it is easily seen that ∫

Ω
∇E(i)u · ∇E(i)v dx = [u, v]1,E(i),0, ∀u, v ∈ H

(i)
E,0,∀i = 1, . . . , d. (2.39) {gradient-and-innerproduct}

where [u, v]1,E(i),0 is the discrete H1
0 inner product defined by (2.35). Now we define the discrete gradient

of the velocity field u,
∇Eu = (∇E(1)u1, . . . ,∇E(d)ud)

and verify easily that ∫
Ω
∇Eu : ∇Ev dx = [u,v]1,E,0.

We will need discrete Sobolev inequalites for the discrete approximations. The following Theorem is
proved in [5, Lemma 9.5].

Lemma 2.2. [Discrete Sobolev inequalities]
Let Ω be a bounded domain of Rd, d = 2 or d = 3, compatible with the MAC grid and let D = (T , E)
be a MAC grid of Ω. Let 1 ≤ q < +∞ if d = 2 and q = 6 if d = 3, i = 1, . . . , d. Then there exists
c = c(q, |Ω|, ηT ) (independent of h) depending on ηT in a nondecreasing way such that, for all u ∈ H(i)

E,0,

‖u‖Lq(Ω) ≤ c‖u‖1,E(i),0.

2.3 The numerical scheme

Given %0 ∈ LT , %0 > 0 and u0 ∈ HE,0, we consider an implicit-in-time scheme for unknown %n ∈ LT ,
un ∈ HE,0, 1 ≤ n ≤ N , which reads

1
δt

(%n − %n−1) + divup
T (%nun) = 0, (2.40a) {dcont}

1
δt

(%̂n(i)
uni − %̂n−1

(i)
un−1
i ) + div(i)

E (%nununi )− µ∆(i)
E u

n
i

− (µ+ λ)ði divT un + 1
ε2ðip(%

n) = 0, i = 1, . . . , d. (2.40b) {dmom}

Equation (2.40a) is a finite volume discretization of the mass balance (1.1) over the primal mesh. Equa-
tion (2.40b) is the discretization of the momentum balance equation (1.2) on the dual cells associated
to the faces of the mesh. The discrete spaces LT , HE,0 are defined in Section 2.1.1. We recall that the
quantities %̂n(i) are defined in (2.23), while the discrete differential operators appearing (2.40) are defined
in Sections 2.2.1–2.2.4.

Of course, the quantities (%,u) ∈ YM,δt×XE,δt (see Sections 2.1.1-2.1.2) depend tacitly on h, δt and
ε, meaning that (%,u) ≡ (%h,δt,ε,uh,δt,ε). However, in order to avoid a cumbersome notation, we shall
omit the subscripts h, δt, ε in most formulas. We shall keep some of them only when a confusion could
arise.

It is well known that the (2.40) admits at least one solution. Indeed, the following existence theorem
is proved in [20, Appendix A].

Proposition 2.1. Let (%0,u0) ∈ LT ×HE,0 such that %0 > 0 (meaning that %0
K > 0 for any K ∈ T ).

There exists a solution (u, %) ∈ HE,0 × LT of Problem (2.40). Moreover any solution is such that % > 0
a.e in Ω (meaning that %nK > 0 for any n = 1, ..., N and for any K ∈ T ).

Uniqueness remains an open problem.
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2.4 Projection operators

In this section we introduce several projection operators. We first define the mean-value interpolator
over LT :

PT : L1
loc(Ω) −→ LT

ϕ 7→ PT ϕ =
∑
K∈T

ϕK XK , (2.41) {projprimalmesh}

with
ϕK = 1

|K|

∫
K
ϕ(x)dx, ∀K ∈ T . (2.42) {meanvalueprimal}

We also define over H(i)
E,0 the following interpolation operator P(i)

E :

P(i)
E : H1

0 (Ω) −→ H
(i)
E,0

ϕ 7→ P(i)
E ϕ =

∑
σ∈E(i)

int

ϕσ XDσ
, (2.43) {projdualmesh}

with
ϕσ = 1

|σ|

∫
σ
ϕ(x)dγ(x), ∀σ ∈ E(i)

int, (2.44) {meanvaluedual}

where dγ is the (d− 1)−Lebesgue measure on σ, and we denote

PE = (P(1)
E , ...,P(d)

E ) ∈ L(H1
0 (Ω)d,HE,0) (2.45) {projdualmeshmac}

the vector valued extension. This operator preserves the divergence in the following sense, see [21].

Lemma 2.3.
∀v ∈ H1

0 (Ω)d,∀q ∈ LT ,
∫

Ω
q divT PEv dx =

∫
Ω
q div v dx. (2.46) {L1-1}

In particular, if divv = 0 then divT PE(v)) = 0.

The next lemma deals with the properties of the projections defined by (2.41) and (2.43). It can be
obtained by rescaling from the standard inequalities on the reference cell [0, 1]d, see e.g [5] or [20, Lemma
3.2].

Lemma 2.4. [Mean value inequalities]
Let K =

∏d
i=1(ai, bi) be a bounded open square of Rd, d ≥ 1. Let σ ⊂ ∂K be a face of K. Let 1 ≤ p ≤ ∞.

There exists c only depending on d and p such that ∀v ∈W 1,p(K),

||v − vσ||Lp(K) ≤ c diam(K)‖∇v‖Lp(K;Rd), (2.47) {L1-2}

||v − vK ||Lp(K) ≤ c diam(K)‖∇v‖Lp(K;Rd), (2.48) {L1-3}

where vK and vσ are defined in (2.42), (2.44).

From Lemma 2.4 on deduces in almost straightforward way the following "global" properties of
projections PT , PE (see [20, Lemma 3.2]):

Lemma 2.5. Let D = (T , E) be a MAC grid of the computational domain Ω. Let 1 ≤ p ≤ ∞. There
exists c > 0 only depending on d and p and |Ω| such that for any i = 1, ...d one has

∀v ∈ Lp(Ω), ‖PT v‖Lp(Ω) ≤ c‖v‖Lp(Ω), (2.49) {dod11}

∀v ∈W 1,p(Ω), ‖PT v − v‖Lp(Ω) ≤ ch‖∇v‖Lp(Ω;Rd),

∀v ∈W 1,p
0 (Ω), ‖P(i)

E v‖Lp(Ω) ≤ c‖∇v‖Lp(Ω;Rd), (2.50) {dod12}

∀v ∈W 1,p
0 (Ω), ‖P(i)

E v − v‖Lp(Ω) ≤ ch‖∇v‖Lp(Ω;Rd).
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Lemma 2.6. Let D = (T , E) be a MAC grid of the computational domain Ω. Let 1 ≤ p ≤ ∞. There
exists c > 0 only depending on d and p and |Ω| and on ηT in a nondecreasing way such that for any
i = 1, ...d one has

∀v ∈W 1,p(Ω) ∩H1
0 (Ω), ‖∇E(i)P(i)

E v‖Lp(Ω;Rd) ≤ c‖∇v‖Lp(Ω;Rd), (2.51) {dod13}

∀v ∈W 2,∞(Ω) ∩H1
0 (Ω), ‖ðjP(i)

E v − ∂jv‖L∞(Ω) ≤ ch‖∇2v‖
L∞(Ω;Rd2 ).

Next we introduce and recall some properties of different velocity interpolators.

Definition 2.3. [Velocity interpolators]

1. Velocity reconstruction operator with respect to (i, j)
For a given MAC grid D = (T , E), we define, for i, j = 1, ..., d, the full grid velocity reconstruction
operator with respect to (i, j) by

R(i,j)
E : H(i)

E,0 → H
(j)
E,0, v 7→ R(i,j)

E v =
∑

σ∈E(j)
int

v̂(i,j)
σ XDσ , (2.52) {def:ufull}

where

v̂(i,j)
σ = vσ if σ ∈ E(i)

int, v̂(i,j)
σ = 1

card(Nσ)
∑
σ′∈Nσ

vσ′ otherwise, Nσ = {σ′ ∈ E(i), Dσ ∩ σ′ 6= ∅}.

(2.53)

2.Velocity reconstruction to LT
For any i = 1, ...d, we also define a projector from H

(i)
E into LT by

R(i)
T : H(i)

E → LT , v 7→ R(i)
T v =

∑
K∈T

vKXK , (2.54) {def:ufullprimal}

where
vK = 1

|K|

∫
K
v(x)dx = 1

2
∑

σ∈E(i)(K)

vσ. (2.55) {eq:interpolate_primal}

We then set

RT : HE → LdT , v = (v1, ...vd) 7→ RT v = (R(1)
T v1, ...,R(d)

T vd). (2.56) {def:ufullprimalvect}

3. Upwind velocity reconstruction operator with respect to (i, j)
Let σ = K|L ∈ E(j) and let u ∈ H(j)

E,0. We define

σup
u =


K if uσ,K ≡ uj,σe(j) · nσ,K > 0,

L if uσ,K ≡ uj,σe(j) · nσ,K ≤ 0

 ∈ T .
For any v ∈ H(i)

E,0 we define

R(i,j,u)
E (v) =

∑
σ∈E(j)

vσup
u
χ(Dσ) ∈ H(j)

E,0.

The following Lemmas 2.7-2.9 are straightforward consequence of Definition 2.3, see [20, Lemma 4]
for the proofs.
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K L

σ
=
K
|LDσtK

DσtL

DσbK
DσbL

Figure 5: Full grid velocity interpolate.

K

L

σ = K|L

σ1 σ2

σ3 σ4

Figure 6: Set Nσ = {σ1, σ2, σ3, σ4} with σ ∈ E(j)
int (K), j 6= i in two dimensions (i = 1, j = 2)

Lemma 2.7. There exists c > 0 depending on d, p such that for any i = 1, ...d, , for any v ∈ H(i)
E,0 and

for any 1 ≤ p ≤ ∞ one has

‖R(i)
T v‖Lp(Ω) ≤ c‖v‖Lp(Ω), ‖R(i)

T v − v‖Lp(Ω) ≤ ch‖ðiv‖Lp(Ω). (2.57) {ufullprimalest}

Lemma 2.8. There exists c > 0, depending only on d, p and on the regularity of the mesh (defined by
(2.8)) in a nondecreasing way, such that, for any v ∈ Lp(Ω), for any 1 ≤ p ≤ ∞ and for any i, j = 1, ..., d,

‖R(i,j)
E v‖Lp(Ω) ≤ c‖v‖Lp(Ω), ‖R(i,j)

E v − v‖Lp(Ω) ≤ ch‖∇
(i)
E v‖Lp(Ω;Rd). (2.58) {def:ufullest}

Lemma 2.9. There exists c > 0, depending only on d, p and on the regularity of the mesh (defined by
(2.8)) in a nondecreasing way, such that, for any v ∈ Lp(Ω), for any 1 ≤ p ≤ ∞ and for any i, j = 1, ..., d,

‖R(i,j,u)
E v‖Lp(Ω) ≤ c‖v‖Lp(Ω), ‖R(i,j,u)

E v − v‖Lp(Ω) ≤ ch‖∇
(i)
E v‖Lp(Ω);Rd . (2.59) {R2up}

The following algebraic identity derived in [20, Lemma 5] in the spirit of [27] is useful to transform
terms involving the dual fluxes into terms involving primal fluxes.

Lemma 2.1. Let % ∈ LT and u ∈ HE,0. Let i ∈ {1, . . . , d} Let ϕ =
∑
σ∈E(i)

int
ϕσχDσ ∈ H

(i)
E,0 be a discrete

scalar function. Let the primal fluxes be given by (2.12) and let the dual fluxes Fε,σ be given by (2.19)
or (2.20) (depending on the direction of nε with respect to e(i)). Then we have:

∑
σ∈E(i)

int

∑
ε∈Ẽ(Dσ)

Fε,σuεϕσ =
∑
K∈T

(R(i)
T ϕ)

∣∣∣
K

d∑
j=1

∑
σ∈E(j)

int (K)

Fσ,K(R(i,j)
E ui)

∣∣∣
σ

+Ri(ui, ϕ)
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where

Ri(ui, ϕ) =
∑
K∈T

∑
σ∈E(i)

int(K)

(ϕσ − (R(i)
T ϕ)

∣∣∣
K

)Fσ,K(uσ − (R(i)
T ui)K)

+
∑
K∈T

∑
σ∈E(i)

int(K)

(ϕσ − (R(i)
T ϕ)

∣∣∣
K

)
d∑

j=1,j 6=i

∑
τ∈E(j)

int (K)

∑
σ′∈Nτ,σ

Fτ,K
2
(ui,σ + ui,σ′

2 − (R(i)
T ui)

∣∣∣
K

)
.

In the last sum we have denoted

Nτ,σ = {σ′ ∈ E(i) | intd−1τ ∩ intd−1(Dσ|Dσ′) 6= ∅},

where σ ∈ E(i)
int(K), τ ∈ E(j)

int (K), j 6= i.

K L

σ
=
K
|L

σ
′

Dσ

D′σ

ε

ε K
⊂
K

τ

Figure 7: Set Nτ,σ = {σ′} with τ ∈ E(j)
int (K), σ ∈ E(i)(K), j 6= i in two dimensions (i = 1, j = 2)

2.5 Main result: asymptotic preserving error estimates

Now, we are ready to state the main results of this paper. For the sake of clarity, we shall state the
theorem and perform the proofs only in the most interesting three dimensional case. The modifications
to be done for the two dimensional case, which is in fact more simple, are mostly due to the different
Sobolev embedings and are left to the interested reader.

2.5.1 Relative energy and relative energy functional

Before the announcement of the main theorems, we introduce relative energy function

E : [0,∞)× (0,∞)→ [0,∞), E(%|z) = H(%)−H′(z)(%− z)−H(z), where H(%) = %
∫ %

1
p(s)
s2 ds. (2.60) {E}

We notice that under assumption p′(%) > 0, function % 7→ H(%) is strictly convex on (0,∞); whence

E(%|z) ≥ 0 and E(%|z) = 0 ⇔ % = z.

In fact E obeys stronger coercivity property.

Lemma 2.10. Let p satisfies assumptions (1.4). Let % > 0. Then there exists c = c(%) > 0 such that
for all % ∈ [0,∞) there holds

E(%|%) ≥ c
(
1R+\[%/2,2%](%) + %γ1R+\[%/2,2%](%) + (%− %)21[%/2,2%](%)

)
. (2.61) {added}

Finally we introduce the corresponding relative energy functional,

Eε(%,u|z,v) =
∫

Ω

(
%|u− v|2 + 1

ε2E(%|z)
)
dx, (2.62) {calE}

where % ≥ 0, z > 0, u, v are measurable functions on Ω.
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2.5.2 Error estimates

We are at the point to announce the main theorem of the paper.

Theorem 2.1. [Error estimate in the low Mach number regime]
Let Ω ⊂ R3 be a bounded domain compatible with the MAC grid and let D = (T , E) be a MAC grid of
Ω (see Definition 2.1] with step size h (see (2.6)) and regularity ηT where ηT is defined in (2.8). Let
us consider a partition 0 = t0 < t1 < ... < tN = T of the time interval [0, T ], which, for the sake of
simplicity, we suppose uniform where δt stands for the constant time step.

Let (%,u) ∈ YT ,δt ×XE,δt (see Section 2.1.2) be a solution of the discrete problem (2.40) emanating
from the initial data (%0

ε,u
0
ε) ∈ LT ×HE,0 such that %0

ε > 0 and

M0,T ,ε =
∫

Ω
%0
ε dx, E0,T ,ε =

∫
Ω
%0
ε|u0

ε|2 dx+ 1
ε2

∫
Ω
E(%0

ε|%) dx, (2.63) {energieinit}

where
M0/2 ≤M0,T ,ε ≤ 2M0, %|Ω| = M0, E0,T ,ε ≤ E0, E0 > 0 (2.64) {dod2}

(existence of which is guaranteed by Proposition 2.1).
Suppose that [Π,V] is a classical solution to the initial-boundary value problem (1.7–1.9) in (0, T )×Ω

in the regularity class (1.10) with p = max(2, γ′), emanating from the initial data V(0) ≡ V 0 ∈ L2(Ω).
Then there exists a positive number

C = C
(
M0, E0, %, ‖V ‖XT (Ω), ‖Π‖YpT (Ω)

)
depending on these parameters in a nondecreasing way, on ηT in a nondecreasing way and dependent
tacitly also on |Ω|, T , γ, p0, p∞ (and independent in particular on h, δt, ε) such that

sup
1≤n≤N

Eε
(
%n,un

∣∣∣%,V n
E

)
+ µδt

N∑
n=1
||un − V n

E ||21,E,0 + (µ+ λ)δt
N∑
n=1
||divT (un − V n

E )||2L2(Ω) (2.65) {M1}

≤ C
(√

δt+ hA + ε+ Eε
(
%0
ε,u

0
ε

∣∣∣%,V 0
E

))
,

where
A = min(2γ − 3

γ
, 1). (2.66) {A1}

Here we have denoted V n
E = PE(V (tn)), where PE is the projection to the discrete space HE,0 defined in

Section 2.4. Operator divT is defined in (2.25) and the norm ‖ ·‖1,E,0 is given in (2.36a–2.36b). Finally,
in the above

‖V ‖XT (Ω) = ‖V ‖C1([0,T ]×Ω;R3) + ‖∇2V ‖C([0,T ]×Ω;R27) (2.67) {normspacestrong}

+‖∂2
t V ‖L2(0,T ;L6/5(Ω;R3)) + ‖∂t∇V ‖L2(0,T ;L6/5(Ω;R9)),

‖Π‖YT (Ω) = ‖Π‖C1([0,T ]×Ω) + ‖∂tΠ‖L1(0,T ;Lp(Ω)).

Remark 2.1.
1. Due to (1.7) and (1.9–1.10), V0 belongs necessarily to C1(Ω;R3) and it is divergence free. If the

initial data are ill prepared, meaning that∫
Ω
E(%0

ε|%) <∼ ε2,

∫
Ω
%0
ε|u0

ε −V0
E |2

<∼ 1,

we obtain in Theorem 2.1 for the error solely a bound independent of ε. On the other hand, if the
initial data are well prepared, with a convergence rate, εξ, ξ > 0, meaning∫

Ω
E(%0

ε|%) <∼ ε2+ξ,

∫
Ω
%0
ε|u0

ε − V 0
E |2

<∼ εξ,
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Theorem 2.1 gives uniform convergence as (h, δt, ε) → 0 of the numerical solution to the strong
solution of the incompressible Navier-Stokes equations, provided the strong solution exists, including
the rates of convergence. These results are in agreement with the theory of low Mach number limits
in the continuous case.

2. In view of Lemma 2.10, formula (2.65) provides the bound for the "essential part" of the solution
(where the numerical density remains bounded from above and from below outside zero):

‖%m − %‖2L2(Ω∩{%/2≤%m≤2%}) + ‖um −Vm
E ‖2L2(Ω∩{%/2≤%m≤2%}),

and for the "residual part" of the solution, where the numerical density can be "close" to zero or
infinity:

|{%m ≤ %/2}|+ |{%m ≥ 2%}|+ ‖%m‖γLγ(Ω∩{%m≥2r}) + ‖%m|um −Vm
E |2‖L1(Ω∩{%m≥2%}).

In the above, for B ⊂ Ω, |B| denotes the Lebesgue measure of B.
Moreover, in the particular case of p(%) = %2, we have E(%|r) = (% − r)2 and the error estimate
(2.65) provides a bound for the Lebesgue norms

‖%m − %‖2L2(Ω) + ‖%m|um −Vm
E |2‖L1(Ω).

3. Theorem 2.1 remains valid also for two dimensional bounded domains compatible with the MAC
disretization described in Setion 2.2.1 with any 0 < A < 2γ−2

γ if γ ∈ (1, 2], and A = 1 if γ > 2.

3 Mesh independent estimates

3.1 Conservation of mass

Due to (2.15), summing (2.40a) over K ∈ T , we obtain immediately the total conservation of mass,

∀n = 1, ...N,
∫

Ω
%n dx =

∫
Ω
%0 dx. (3.1) {masscons}

3.2 Energy Identity

In the next theorem we report the energy identity for any solution of the numerical scheme (2.40).
This theorem shows that the scheme (2.40) is unconditionally stable meaning that the discrete energy
inequality holds without any extra assumptions on the discrete solution. The theorem whose detailed
proof can be find in [20, Theorem 4] reads

Lemma 3.1. [Energy identity]
Let (%,u) ∈ YT ,δt × XE,δt be a solution of with pressure obeying hypotheses (1.4)1. Then there

exists %n−1,n ∈ LT , min(%n−1
K , %nK) ≤ %n−1,n

K ≤ max(%n−1
K , %nK) and %nσ ∈ [min(%nK , %nL),max(%nK , %nL)],

σ = K|L ∈ E int, n = 1, . . . , N such that for all n = 1, . . . , N we have,

1
δt

1
ε2

∫
Ω
H(%n)−H(%n−1) dx+ 1

2δt

∫
Ω
%n|un|2 − %n−1|un−1|2 dx

+ µ||un||21,E,0 + (µ+ λ)||divT un||2L2(Ω) + 1
2δt

∫
Ω
%n−1|un − un−1|2 dx

+ 1
2δt

1
ε2

∫
Ω
H′′(%n−1,n)(%n − %n−1)2dx+ 1

2
1
ε2

∑
σ∈Eint
σ=K|L

|σ|H′′(%nσ)(%nK − %nL)2|unσ,K | = 0. (3.2) {ied1g}
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From now on, the letter c denotes a positive number that may tacitly depend on T , |Ω|, γ, p0, p∞,
µ, λ and on ηT in a nondecreasing way. This dependence on the above parameters will not be indicated
in the argument of c. The number c may be dependent further in a nondecreasing way on M0, E0, %
(see (2.64)), and on given functions denoted (Π,U) ∈ XT (Ω) × YpT (Ω), see (1.10). The dependence on
these quantities (if any) is always explicitly indicated in the argument of c.

The numbers c can take different values even in the same formula. They are always independent of
the size of the discretisation δt and h and on the Mach number ε.

Now, for fixed number % > 0 and fixed functions %n, n = 0, . . . , N , we introduce the residual and
essential subsets of Ω (relative to %n) as follows:

Ωn
ess = {x ∈ Ω

∣∣∣ 1
2% ≤ %

n(x) ≤ 2%}, Ωn
res = Ω \ Ωn

ess, (3.3) {essres}

and we set
[g]ess(x) = g(x)1Ωness(x), [g]res(x) = g(x)1Ωnres(x), x ∈ Ω, g ∈ L1(Ω).

Corollary 3.1. Let (%,u) ∈ YT ,δt×XE,δt be a solution of (2.40) with pressure p obeying (1.4) emanating
from initial data (2.63-2.64). Then we have

1. Induced standard energy estimates:

‖u‖L2(0,T ;HE,0(Ω)) ≤ c, (3.4) {est0}

‖u‖L2(0,T ;L6(Ω;R3)) ≤ c, (3.5) {est1}

‖%|u|2‖L∞(0,T ;L1(Ω)) ≤ c, (3.6) {est2}

max
0≤n≤N

∫
Ω
E(%n|%)dx ≤ cε2 (3.7) {est3-}

max
0≤n≤N

(
‖%n‖qLq(Ωnres) ≤ cε

2, 1 ≤ q ≤ γ, max
0≤n≤N

|Ωn
res| ≤ cε2 (3.8) {est3}

max
0≤n≤N

‖%n − %‖Lq(Ωness) ≤ c(%)ε2, 2 ≤ q <∞.

2. Estimates of numerical dissipation

δt
N∑
n=1

∑
σ=K|L∈Eint

|σ| (%nK − %nL)2

[max(%nK , %nL)](2−γ)+ 1{%nσ≥1} |unσ,K |

+ δt
∑

σ=K|L∈Eint

|σ|(%nK − %nL)21{%nσ<1} |unσ,K | ≤ c(M0, E0)ε2, (3.9) {dissipative1}

N∑
n=1

∑
K∈M

|K| (%nK − %
n−1
K )2

[max(%n−1
K , %nK)](2−γ)+ 1{%n−1,n

K ≥1}

+
N∑
n=1

∑
K∈M

|K|(%nK − %n−1
K )21{%n−1,n<1} ≤ c(M0, E0)ε2. (3.10) {dissipative2}

m∑
n=1

3∑
i=1

∑
σ∈E(i)

int

|Dσ|%n−1
Dσ
|unσ − un−1

σ |2 ≤ c. (3.11) {dis}

The quantities %nσ and %n−1,n are defined in Lemma 3.1.
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Proof of Corollary 3.1
Lemma 3.1 in combination with the conservation of mass (3.1) and the definition (2.60) of E(·|·), yields

1
δt

1
ε2

∫
Ω
E(%n|%)− E(%n−1|%) dx+ 1

2δt

∫
Ω
%n|un|2 − %n−1|un−1|2 dx

+ µ||un||21,E,0 + (µ+ λ)||divT un||2L2(Ω) + 1
2δt

∫
Ω
%n−1|un − un−1|2 dx

+ 1
2δt

1
ε2

∫
Ω
H′′(%n−1,n)(%n − %n−1)2dx+ 1

2
1
ε2

∑
σ∈Eint
σ=K|L

|σ|H′′(%nσ)(%nK − %nL)2|unσ,K | = 0. (3.12) {dodano4}

This yields immediately (after multiplication by δt and summation over n = 1, . . . , N) estimates (3.4),
(3.6), (3.7) and (3.11). We obtain (3.5) from (3.4) and the discrete Sobolev inequality reported in Lemma
2.2. We obtain (3.9) and (3.10) from the corresponding terms in Lemma 3.1 after employing (1.4)

Integrating inequality (2.61) we deduce∫
Ω

([
1
]

res
+
[
(%n)γ

]
res

+
[
%n − %

]2
ess

)
dx ≤ c(%)

∫
Ω
E(%n,un

∣∣∣%, 0)dx; (3.13) {rentropy}

whence estimates (3.8) follow from (3.7). This completes the proof of Corollary 3.1.

4 Relative energy inequality for the discrete problem

4.1 Exact relative energy inequality for the discrete problem

In this Section, we report the exact relative energy inequality for the numerical scheme (2.40). The proof
of this inequality is available in [20, Proposition 2].
Theorem 4.1. [Exact discrete relative energy inequality]
Any solution (%,u) ∈ YT ,δt ×XE,δt of the discrete problem (2.40) with pressure p obeying hypotheses
(1.4)1 satisfies relative energy inequality that reads:

1
δt

(
Eε(%n,un

∣∣∣rn,Un)− Eε(%n−1,un−1
∣∣∣rn−1,Un−1)

)
(4.1) {erelativeenergy}

+µ||un −Un||21,E,0 + (µ+ λ)||divT (un −Un)||2L2(Ω) ≤
5∑

k=1
Tnk

for any couple of discrete test functions (r,U), 0 < r ∈ YT ,δt, U ∈XE,δt, where

Tn1 =
∫

Ω
%n−1U

n−1 −Un

δt
·
(
un−1 − 1

2(Un−1 + Un)
)

dx,

Tn2 =
3∑
i=1

∑
σ∈E(i)

int

∑
ε∈Ẽ(Dσ),ε=Dσ |Dσ′

Fε,σ(%n,un)Un
σ ·
(
unε −Un

ε

)
,

Tn3 = µ[Un − un,Un]1,E,0 + (µ+ λ)
∫

Ω
divT (Un − un) divT Un dx,

Tn4 = − 1
ε2

∫
Ω
p(%n) divT Un dx,

Tn5 = 1
ε2

∫
Ω

(rn − %n)H
′(rn)−H′(rn−1)

δt
dx+ 1

ε2

∫
Ω

divup
T (%nun)H′(rn−1) dx.

In the above formulas, flux Fε,σ is defined in (2.19–2.20), Uσ = (Ui,σ)i=1,2,3, see last alinea in Section
2.1.2, divT is defined in (2.25), the bilinear form [·, ·]1,E,0 and corresponding norm ‖ · ‖1,E,0 are given in
(2.35), (2.36a–2.36b). Finally, the operation denoted by ε is defined in (2.18), i.e. uni,ε = ui,σ+ui,σ′

2 if
σ, σ′ ∈ E(i)

int, ε = Dσ|Dσ′, unε = (uni,ε)i=1,2,3, and similarly for Un
ε .
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4.2 Approximate relative energy inequality for the discrete problem

The exact relative energy inequality in Theorem 4.1 is an intrinsic inequality for the given MAC scheme.
In what follows, we shall write this inequality with particular discrete test functions r = % ∈ YT ,δt,
U = PE(V n), where V is divergence free function with zero traces in the regularity class XT (Ω;R3). At
the same time we shall transform some of the terms in the resulting inequality to the form convenient for
comparison with an integral identity satisfied by any strong solution to problem (1.7–1.9). This identity
will be derived later. The modified relative energy inequality and the latter mentioned inequality will
give the wanted error estimate announced in Theorem 2.1. The lemma reads:

Lemma 4.1. [Approximate discrete relative energy]
Let (%,u) ∈ YT ,δt×XE,δt be a solution of the discrete problem (2.40) with pressure p satisfying relations
(1.4)γ≥3/2 emanating from initial data obeying (2.63–2.64) . Let V ∈ C1([0, T ]× Ω;R3) be such that

V|∂Ω = 0, divV = 0.

Then there exists
c = c(M0, E0, ‖V ,∇V , ∂tV ‖L∞(QT ;R15))

such that for all m = 1, . . . , N we have:

Eε(%m,um
∣∣∣%,V m

E )− Eε(%0,u0
∣∣∣%,V 0

E )

+ δt
m∑
n=1

(
µ||un − V n

E ||21,E,0 + (µ+ λ)||divT (un − V n
E )||2L2(Ω)

)
≤

3∑
k=1

Sk +RmT ,h,δt +GmT ,δt, (4.2) {relativeenergy-}

where
S1 = δt

m∑
n=1

∫
Ω
%n−1

(V n
E − V n−1

E
δt

)
·
(
V n
E − un

)
,

S2 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ V n

j,σe
(j) · nσ,K

(
uni,K − V n

i,K

)

S3 = δt
m∑
n=1

µ[V n
E − un,V n

E ]1,E,0,

for any divergence free vector field V ∈ XT (Ω;R3) (see (1.10)) vanishing at the boundary of Ω. In the
above inequality,

|GmT ,δt| ≤ cδt
m∑
n=1
Eε(%m,um

∣∣∣%,V m
E ) (4.3)

|RmT ,δt | ≤ c(
√
δt+ hA), (4.4)

and where A is by formula (2.66). Here, we have used the abbreviated notation Vi,E = P(i)
E (Vi), VE =

PEV = (Vi,E)i=1,2,3, where projections P(i)
E , PE are defined in Section 2.4. Further, Vi,E,K = [Vi,E ]K =

[R(i)
T Vi,E ]|K , where the interpolator RT = (R(i)

T )i=1,2,3 is defined in Definition 2.3. Operator divT is
defined in (2.25), the bilinear form [·, ·]1,E,0 and corresponding norm ‖ ·‖1,E,0 are given in (2.35), (2.36a–
2.36b).

Proof of Lemma 4.1
We shall use in the relative energy inequality (4.1) test functions r = % and U = VE . Since % is constant,
term Tn5 = 0. According to Lemma 2.3, divT VE = 0; whence Tn4 = 0. Term Tn3 will be kept as it stays.
It remains to transform terms Tn1 and Tn2 . This will be done in several steps.
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Step 1: Term Tn1 .
We have

Tn1 = Tn1,1 +Rn1,1 +Rn1,2, (4.5) {S1}

Tn1,1 =
∫

Ω
%n−1

(V n
E − V n−1

E
δt

)
·
(
V n
E − un

)
dx,

Rn1,1 = −
∫

Ω

1
2%

n−1V
n
E − V n−1

E
δt

· (V n
E − V n−1

E ) dx, Rn1,2 =
∫

Ω
%n−1V

n
E − V n−1

E
δt

· (un − un−1) dx.

By virtue of the first order integral Taylor formula applied to V in the interval (tn−1, tn), definition

(2.43) of projection PE , Cauchy-Schwartz inequality and numerical dissipation (3.11), we easily get

|δt
m∑
n=1

Rn1,1| ≤ δt c(M0, ‖∂tV ‖L∞(QT ;R3)), |δt
m∑
n=1

Rn1,2| ≤
√
δtc(M0, E0, ‖∂tV ‖L∞(QT ;R3)). (4.6) {S1r}

Step 2: Term Tn2
This step will consist of several successive transformations performed in four movements.

Step 2a:
Employing Lemma 2.1 we get

Tn2 = Tn2,1 +Rn2,1 (4.7) {S2}

Tn2,1 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

(
V n
i,E,K − V n

i,σ

)
Fσ,K(%n,un) (R(i,j)

E (uni − V n
i,E))

∣∣∣
Dσ
,

Rn2,1 =
3∑
i=1

Ri(uni − V n
i,E , V

n
i,E), where Ri is defined in Lemma 2.1.

We have used the local conservation of primal fluxes (2.15) in order to replace in Tn2,1 expression V n
i,E,K

by the difference V n
i,E,K − V n

i,σ.
We easily see from definitions of the projections and interpolates in Section 2.4, and first order Taylor

formula that
|V n
i,E,K − V n

i,σ| ≤ ch ‖∇Vi‖L∞(QT ;R3) (4.8) {F1}

Recalling definition of Fσ,K(%n,un) we obtain by Hölder’s inequality

|
3∑
i=1

Ri(uni − V n
i,E , V

n
i,E)| ≤ c‖%n‖Lγ0 (Ω)‖un‖L6(Ω;R3)‖RT (un − V n

E )− (un − V n
E )‖Lq(Ω,R3), (4.9) {F1+}

where 1
γ0

+ 1
q = 5

6 ,γ0 = min(γ, 3). Due to Lemmas 2.5 2.7, and Lemma 2.2

‖RT V n − V n‖Lq(Ω) ≤ c h‖∇V n‖Lq(Ω),

‖RT un − un‖L2(Ω) ≤ c h‖un‖1,E,0, ‖RT un − un‖L6(Ω) ≤ c ‖un‖1,E,0;

whence interpolation of Lq between L2 and L6 yields

‖RT un − un‖Lq(Ω) ≤ c h
2γ0−3
γ0 ‖un‖1,E,0. (4.10) {F2}

Consequently, coming back to formula (4.9), we arrive to the estimate

|δt
m∑
n=1

Rn2,1| ≤ hA c(M0, E0, %, ‖∇xV ‖L∞(QT ;R9)) (4.11) {S2r}
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after employing the known bounds (3.4–3.8) derived in Corollary 3.1. Here A is defined in (2.66).

Step 2b:
We rewrite Tn2,1 by using the definition (2.12) of Fσ,K as follows

Tn2,1 = Tn2,2 +Rn2,2, (4.12) {S2+}

where

Tn2,2 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ unj,σe

(j) · nσ,K
(
ui,σup

un
j

− V n
i,σup

un
j

)

Rn2,2 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
(R(i)
T (V n

i,E))K − V n
i,σ

)
%n,up
σ unj,σe

(j) · nσ,K

×
(
[̂uni ]

(i,j)
σ − [̂V n

i,E ]
(i,j)

σ
− (ui,σup

un
j

− V n
i,E,σup

un
j

)
)
.

Here, the number [̂·]
i,j

σ , the primal cell σup
unj
, and the related operators Ri,jE , R

i,j,unj
E used in the next

formulas are defined in items 1. and 3. of Definition 2.3. Using (4.8) and the Hölder’s inequality, we get

|Rn2,2| ≤ c‖%n‖Lγ0 (Ω)‖un‖L6(Ω)

3∑
i=1

3∑
j=1
‖Ri,jE (uni − V n

i,E)−R
i,j,unj
E (uni − V n

i,E)‖Lq(Ω), (4.13) {F3}

1
γ0

+ 1
q = 5

6 , γ0 = min(γ, 3) as in (4.9). Due to Lemmas 2.8 and 2.9

‖Ri,jE (uni − V n
i,E)−R

i,j,unj
E (uni − V n

i,E)‖L2(Ω) ≤ c h ‖∇E(i)(uni − V n
i,E)‖L2(Ω;R3),

‖Ri,jE (uni )− V n
i,E)−R

i,j,unj
E (uni − V n

i,E)‖L6(Ω) ≤ c‖uni − V n
i,E‖L6(Ω),

where by the discrete Sobolev inequality evoked in Lemma 2.2

‖un − V n
E ‖L6(Ω;R3) ≤ ‖un − V n‖1,E,0.

Now, by interpolation of Lq between L2 and L6,

‖Ri,jE (uni − V n
i,E)−R

i,j,unj
E (uni − V n

i,E)‖Lq(Ω) ≤ c h
2γ0−3
γ0 (‖un‖1,E,0 + ‖V n

E ‖1,E,0),

similarly as in (4.10). Consequently, employing formula (4.13), the above estimates and estimates (3.4),
(3.8) from Corollary 3.1, we get

|δt
∑
n=1m

Rn2,2| ≤ hA c(M0, E0, %, ‖∇xV ‖L∞(QT ;R9)). (4.14) {S2r+}

Step 2c:
In the next step, we write

Tn2,2 = Tn2,3 +Rn2,3 (4.15) {S2++}

with

Tn2,3 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ V n

j,σe
(j) · nσ,K

(
ui,σup

un
j

− V n
i,σup

un
j

)
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and

Rn2,3 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ

(
unj,σ − V n

j,σ)e(j) · nσ,K
(
ui,σup

un
j

− V n
i,E,σup

un
j

)
;

Noticing that ∫
Ω
%n|un|2dx =

3∑
i=1

∑
K=
−−−→
[σ,σ′],σ∈E(i)

(
|Dσ,K |%nK |uni,σ|2 + |Dσ′,K |%nK |uni,σ′ |2

)

and recalling the definition of the primal cell [·]σup
·

in Definition 2.3, formula (4.8) and definition of
relative energy Eε(·|·) (see (2.62)), we conclude that

δt|
m∑
n=1

Rn2,3| ≤ c(‖∇V ‖L∞(QT ;R3)) δt
m∑
n=1
Eε(%n,un|%,V n

E ). (4.16) {S2r++}

Step 2d:
Finally,

Tn2,3 = Tn2,4 +Rn2,4, (4.17) {S2+++}

where

Tn2,4 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ V n

j,σe
(j) · nσ,K

(
uni,K − V n

i,K

)
and

Rn2,4 =
3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)∩E(j)

int

|σ|
(
V n
i,E,K − V n

i,σ

)
%n,up
σ V n

j,σe
(j) · nσ,K

×
(
uni,σup

un
j

− V n
i,σup

un
j

− (uni,K − V n
i,K)

)
.

Next, by the Hölder and Minkowski inequalities and (4.8),

|Rn2,4| ≤ c(‖V‖L∞(0,T ;W 1,∞(Ω;R3))‖%n‖Lγ0 (Ω)

3∑
i=1

3∑
j=1

(
‖R

(i,j,unj )
E uni −R

(i)
T u

n
i ‖Lq(Ω)+‖R

(i,j,unj )
E V n

i,E−R
(i)
T V

n
i,E‖Lq(Ω)

)
where γ0 = min(γ0, 2), 1

γ0
+ 1

q = 1. Now we estimate

‖R
(i,j,unj )
E uni −R

(i)
T u

n
i ‖L2(Ω) ≤ ch‖∇E(i)uni ‖L2(Ω)

and
‖R

(i,j,unj )
E uni −R

(i)
T u

n
i ‖L6(Ω) ≤ c‖uni ‖L6(Ω) ≤ c‖∇E(i)uni ‖L2(Ω)

by virtue of Lemmas 2.7, 2.9 and 2.2. Similar estimates are true if we replace uni by V n
i,E in the argument

of R
(i,j,unj )
E and of R(i)

T . Consequently, by interpolation of Lq between L2 and L6,

‖R
(i,j,unj )
E uni −R

(i)
T u

n
i ‖Lq(Ω) ≤ ch

5γ0−6
2γ0 ‖∇E(i)uni ‖L2(Ω)

Putting together these estimates, and employing in addition estimates for the numerical solution deduced
in Corollary 3.1, we get

δt|
m∑
n=1

Rn2,4| ≤ h
5γ0−6

2γ0 c(M0, E0, ‖∇V‖L∞(QT ;R9)). (4.18) {S2r+++}

Now we put together formulas (4.5) and (4.17) together with estimates of remainders (4.6), (4.11),
(4.14), (4.16), (4.18) in order to get the required result. Lemma 4.1 is proved.

23



5 An identity for the strong solution. Consistency error.
The goal of this section is to prove the following lemma.

Lemma 5.1. [Consistency error]
Let (%,u) ∈ YT ,δt×XE,δt be a solution of the discrete problem (2.40) with pressure p satisfying relations
(1.4)γ≥3/2 emanating from initial data obeying (2.63–2.64) . Let the couple (Π,V ) belonging to the
regularity class (1.10)p=max(2,γ′) be a strong solution to the incompressible Navier-Stokes equations (1.7–
1.9).

Then there exists

c = c(M0, E0, %, ‖V ,∇V ,∇2V ,∇Π‖L∞(QT ;R42), ‖∂t∇V ‖L2(0,T ;L6/5(Ω;R9), ‖∂tΠ‖L1(0,T ;Lp(Ω)),

p = max(2, γ′) such that for all m = 1, . . . , N we have

3∑
k=1
Sk +Rmh,δt = 0, (5.1) {consistency}

where
S1 = δt

m∑
n=1

∫
Ω
%
(V n
E − V n−1

E
δt

)
·
(
V n
E − un

)
,

S2 = δt
m∑
n=1

3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)

(
V n
i,E,K − V n

i,σ

)
%V n

j,σe
(j) · nσ,K(uni,K − V n

i,E,K)

S3 = δt
m∑
n=1

µ[V n
E − un,V n

E ]1,E,0,

and
|Rmh,δt| ≤ c(h+ δt+ ε).

Here we use the same notation as in Lemma 4.1.

The rest of this section is devoted to the proof of Lemma 4.1.

5.1 Getting started

Since (Π,V ) satisfies (1.7–1.9) on (0, T ) × Ω and belongs to the class (1.10), equation (1.7) can be
rewritten in the form

%∂tV + %V · ∇V +∇Π− µ∆V = 0 in (0, T )× Ω.

From this fact, we deduce the identity

4∑
s=1

δt
m∑
n=1
T ns = 0, m = 1, . . . , N, (5.2) {strong0}

where
T n1 =

∫
Ω
%[∂tV ]n · (V n − un) dx, T n2 =

∫
Ω
%V n · ∇V n · (V n − un) dx,

T n3 = −
∫

Ω

(
µ∆V n

)
· (V n − un) dx, T n4 = −

∫
Ω
∇Πn · un dx.

In the steps below, we deal with each of the terms Ts.
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5.2 Term with the time derivative

We proceed in two steps.
Step 1:

T n1 = T n1,1 +Rn1,1, (5.3) {calS1}

where
T n1,1 =

∫
Ω
%
V n − V n−1

δt
· (V n

E − un) dx,

Rn2,1 =
∫

Ω
%[∂tV]n · (V n − V n

E ) dx+
∫

Ω
%
(
[∂tV ]n − V n − V n−1

∆t
)
· (V n

E − un) dx.

Realizing that

[∂tV ]n − V n − V n−1

∆t = 1
δt

∫ tn

tn−1

∫ tn

s
∂2
t V (z, ·)dzds,

we get by using Hölder’s inequality (in particular with V n
E − un in L6(Ω;R3)), Lemma 2.5, Lemma 2.2

δt|
m∑
n=1
Rn2,1| ≤ (δt+ h) c

(
M0, E0, %, ‖V , ∂tV ,∇V )‖L∞(QT ;R15), ‖∂

2
t V ‖L2(0,T ;L6/5(Ω;R3))

)
, (5.4) {calS1r}

where we have used Lemma 2.2 and the energy bound (3.4) from Corollary 3.1 for un .

Step 2:
Finally, we write

T n1,1 = T n1,2 +Rn1,2, (5.5) {calS1+}

where
T n1,2 =

∫
Ω
%
V n
E − V n−1

E
δt

· (V n
E − un) dx,

Rn1,2 =
∫

Ω
%
(V n − V n−1

δt
− V n

E − V n−1
E

δt

)
· (V n

E − un) dx.

We have by Hölder’s inequality and Lemma 2.5

|Rn1,2| ≤ h c
∥∥∥∇V n − V n−1

δt
‖L6/5(Ω;R9)‖V

n
E − un‖L6(Ω;R3),

where ∇V n−V n−1

δt = 1
δt

∫ tn
tn−1

∂t∇V (z, ·)dz; whence after taking into account Corollary 3.1, we deduce

|Rn1,2| ≤ h c(M0, E0, %, ‖V ‖L∞(QT ;R3), ‖∂t∇V ‖L2(0,T ;L6/5(Ω;R9))). (5.6) {calS1r+}

5.3 Convective term

Step 1:
We decompose term T n2 as follows:

T n2 = T n2,1 +Rn2,1, (5.7) {calS2}

with
T n2,1 =

∑
K∈T

∫
K
%V n
E,K · ∇V n · (V n

E,K − unK) dx,

Rn2,1 =
∑
K∈T

( ∫
K
%V n · ∇V n ·

(
V n −V n

E,K − (un −unK)
)

dx+
∫
K
%(V n −V n

E,K) · ∇V n · (V n
E,K −unK) dx.
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Consequently, by Lemmas 2.7 2.5, 2.6 and estimate (3.4) in Corollary 3.1,

δt|
m∑
n=1
Rn2,1| ≤ h c(M0, E0, %, ‖V ,∇V )‖L∞(QT ;R12)). (5.8) {calS2r}

Step 2:
Integrating by parts in T n2,1 while using the fact that

∑
σ∈E(K)

∫
σ V

n
E,K · nσ,K = 0, we get

T n2,1 =
∑
K∈T

∑
σ∈E(K)

|σ|%V n
E,K · nσ,K(V n

σ − VE,K) · (V n
E,K − unK).

Now, we rewrite the last expression as follows

T n2,1 = T n2,2 +Rn2,2, (5.9) {calS2+}

where
T n2,2 =

∑
K∈T

∑
σ∈E(K)

|σ|%V n
E · nσ,K(V n

σ − VE,K) · (V n
E,K − unK)

and
Rn2,2 =

∑
K∈T

∑
σ∈E(K)

|σ|%
(
V n
E,K − VE

)
· nσ,K(V n

σ − VE,K) · (V n
E,K − unK).

By Hölder’s inequality, after application of Lemmas 2.5, 2.7 and 2.6, we get

δt|
m∑
n=1
Rn2,2| ≤ h c(M0, E0, %, ‖V ,∇V )‖L∞(QT ;R12)). (5.10) {calS2r+}

Expression T n2,2 written explicitly in coordinates is exactly term S2 in formula (5.1)

5.4 Viscous term

Step 1:
T n3 = T3,1 +Rn3,1, (5.11) {calS3}

T n3,1 =
∫

Ω
µ∆V n · (V n

E − un)dx,

Rn3,1 =
∫

Ω
µ∆V n · (V − V n

E )dx,

where by virtue of the Cauchy-Schwartz inequality and Lemma 2.5

δt|
m∑
n=1
Rn3,1| ≤ h c(‖V ,∇2V )‖L∞(QT ;R12)). (5.12) {calS3r1}

Step 2:
In this step we decompose T n3,1 as follows

T n3,1 =
3∑
i=1

∑
σ∈E(i)

∫
Dσ

µ∆V n
i (V n

i,σ − uni,σ)dx

=
3∑
i=1

∑
σ∈E(i)

∑
ε∈Ẽ(Dσ)

∫
ε
µnε,Dσ · ∇V n

i · (V n
i,σ − uni,σ)dγ
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=
3∑
i=1

3∑
j=1

∑
ε=
−−→
σ|σ′∈Ẽ(i),ε⊥e(j)

∫
ε
∂jVi

(
Vi,σ − ui,σ − (Vi,σ′ − ui,σ′)

)
dγ.

=
3∑
i=1

3∑
j=1

∑
ε=
−−→
σ|σ′∈Ẽ(i),ε⊥e(j)

|ε|dε
[ 1
|ε|

∫
ε
∂jVidγ

]
ðj(ui,E − Vi,E)

∣∣∣
Dε
,

where we have used integration by parts and definition (2.37) of ðj . Here dγ is d − 1 dimensional
Hausdorff measure on σ. Consequently, we may write

T n3,1 = T3,2 +Rn3,2, (5.13) {calS3+}

T3,2 =
3∑
i=1

3∑
j=1

∫
Ω
ðjVi,Eðj(ui,E − Vi,E)dx,

Rn3,2 =
3∑
i=1

3∑
j=1

∑
ε=
−−→
σ|σ′∈Ẽ(i),ε⊥e(j)

|ε|dε
([ 1
|ε|

∫
ε
∂jVidγ

]
− ðjVi,E |Dε

)
ðj(ui,E − Vi,E)

)∣∣∣
Dε
,

where, due to the Cauchy-Schwartz inequality, Lemma 2.6 combined with the first order Taylor formula
applied to

[
1
|ε|
∫
ε ∂jVi

]
− ðjVi,E |Dε and Corollary 3.1, we get

δt|
m∑
n=1
Rn3,2| ≤ h c(M0, E0‖V ,∇V ,∇2V ‖L∞(QT ;R39)). (5.14) {calS3r2}

5.5 Pressure term

Step 1: The following lemma about the consistency of the upwind discretization will be crucial.

Lemma 5.2. For any r,G ∈ LT , any u ∈ HE,0 and any φ ∈ C1(Ω) there holds∫
Ω
ru · ∇φdx+

∑
K∈T

∑
σ∈E(i)

Fσ,K(r,u)GK

=
3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|(rK − rL)(φσ −GK)ui,σ −
3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|(rL − rup
σ )(GK −GL)ui,σ,

where the primal fluxes Fσ,K are defined in (2.12).

Proof of Lemma 5.2
Using integration by parts, ∫

Ω
ru · ∇φdx =

∑
K∈T

∫
K
ru · ∇(φ−GK)dx

=
3∑
i=1

∑
K∈T

∑
σ∈E(i)(K)

|σ|rKφσui,σn(i) · nσ,K −
3∑
i=1

∑
K∈T

∑
σ∈E(i)(K)

|σ|rKGKui,σn(i) · nσ,K

=
3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|(rK − rL)(φσ −GK)ui,σ

−
3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|rL(GK −GL)ui,σ
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=
3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|(rK − rL)(φσ −GK)ui,σ

−
3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|(rL − rup
σ )(GK −GL)ui,σ −

3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|rup
σ (GK −GL)ui,σ,

where for the latter term, we have

3∑
i=1

∑
σ=
−−→
K|L∈E(i)

|σ|rup
σ (GK −GL)ui,σ =

3∑
i=1

∑
K∈T

∑
σ∈E(i)(K)

|σ|rup
σ GKui,σn

(i) · nσ,K

Lemma 5.2 is proved.

Step 2:
We shall now evaluate the error in the upwind disretization. We have

T n4 = −1
%

∫
Ω
%nun · ∇Πndx+ 1

%

∫
Ω

(%n − %)un · ∇Πndx = T n4,1 +Rn4,1, (5.15) {calS41}

where

δt|
N∑
n=1
Rn4,1| ≤ ε c(M0, E0, %, ‖∇Π‖L∞((0,T )×Ω)), (5.16) {calS4r}

by virtue of Hölder’s inequality and estimates (3.5), (3.8) from Corollary 3.1.
Next we deduce from the discrete continuity equation (2.40a) and Lemma 5.2

T n4,1 = J n1 + J n2 + J n3 , (5.17) {calS4+}

where
J n1 = 1

%

∫
Ω

%n − %n−1

δt
Πn
T dx,

J n2 = 1
%

3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|(%nL − %nK)(Πn
σ −Πn

K)uni,σ,

J n3 = 1
%

3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|(%nL − %n,up
σ )(Πn

K −Πn
L)uni,σ,

where Πn
T = PT Πn is defined in (2.41).

Now we estimate each of terms J n1 , J n2 , J n3 separately.

Step 2a:
We get by direct calculation

δt
N∑
n=1
J n1 = δt

%

N∑
n=1

∫
Ω

%n − %n−1

δt
Πn
T dx = 1

%

N∑
n=1

∫
Ω

(
(%n − %)− (%n−1 − %)

)
Πn
T dx

= 1
%

N∑
n=1

∫
Ω

(
(%n − %)Πn

T − (%n−1 − %)Πn−1
T

)
dx + 1

%

N∑
n=1

∫
Ω

(%n−1 − %)(Πn−1
T −Πn

T )dx

= 1
%

∫
Ω

(%n − %)ΠN
T −

∫
Ω

(%0 − %)Π0
T + δt

%

N∑
n=1

∫
Ω

(%n−1 − %)Πn−1
T −Πn

T
δt

dx.

28



Therefore, by virtue of Hölders inequality, Lemma 2.5, the first order Taylor formula

δt|
N∑
n=1
J n1 | =≤ ε(1 + δt) c(M0, E0, %, ‖Π‖L∞(QT ), ‖∂tΠ‖L1(0,T ;Lp(Ω))), p = max(2, γ′),

where we have used estimates (3.5) and (3.8) in Corollary 3.1.

Step 2b:
First, we have by using Hölder’s inequality,

∣∣∣ 3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|(%nL − %nK)(Πn
σ −Πn

K)uni,σ
∣∣∣

≤
√
h‖∇xΠ‖L∞((0,T )×Ω)

( 3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|1Ei(σ)

[
%nK − %nL]2

max(%nK , %nL)δ |u
n
i |
)1/2

×
( 3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|hmax(%nK , %nL)γ
) δ

2γ
(
(

3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|h|uni |
γ
γ−δ
) γ−δ

2γ

+
√
h‖∇xΠ‖L∞((0,T )×Ω)

( 3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|1E(i)\Ei(σ)
[
%nK − %nL]2 |uni |

)1/2

×
( 3∑
i=1

∑
σ=
−−→
K|L∈E(i)(K)

|σ|h|uni |
)1/2

with any 0 ≤ δ < γ and any Ei ⊂ E(i), where we have used estimate Lemma 2.5 to evaluate the difference
Πn
σ −Πn

K . Now employing estimates (3.5), (3.8), (3.9) in Corollary 3.1 we obtain

δt
N∑
n=1
|J n2 |

<∼ εh1/2c(M0, E0, %, ‖∇Π‖L∞((0,T )×Ω)),

where ε
√
h ≤ 1

2(ε2 + h). The same estimate as above holds also for J n3 by the same argument.
Resuming calculations in step 2, we get

δt
N∑
n=1
|T n4,1| ≤ (ε+ h+ δt) c(M0, E0, %, ‖∇Π‖L∞((0,T )×Ω), ‖∂tΠ‖L1(0,T ;Lp(Ω))), p = max(2, γ′). (5.18) {calS4++}

The statement of Lemma 4.1 follows when we put together principal terms (5.3),(5.5), (5.7),(5.9),
(5.11), (5.13) and residual terms (5.4),(5.6), (5.8),(5.10), (5.12), (5.14) (5.16), (5.16),(5.17), (5.17).

6 A Gronwall inequality
In this Section we put together the relative energy inequality (4.2) and the identity (5.1) derived in the
previous section. The final inequality resulting from this manipulation is formulated in the following
lemma.
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Lemma 6.1. Let (%n,un) be a solution of the discrete problem (2.40a–2.40b) with the pressure satisfying
(1.4), where γ ≥ 3/2, emanating from initial data (2.63), (2.64). Then there exists a positive number

c = c
(
M0, E0, %, ‖V ‖XT (Ω), ‖Π‖Y pT (Ω)

)
, p = max(2, γ′)

such that for all m = 1, . . . , N, there holds:

Eε(%m,um|%,V m
E ) + δt

m∑
n=1

(
µ||un − V n

E ||21,E,0 + (µ+ λ)||divT (un − V n
E )||2L2(Ω)

)

≤ c
[
hA +

√
δt+ ε+ Eε(%0,u0|%,VE(0))

]
+ c δt

m∑
n=1
Eε(%n,un|%,V n

E ),

with any couple (Π,V) belonging to (1.10) satisfying (1.7–1.9) on [0, T )×Ω, where A is defined in (2.66)
and Eε is given in (2.62).

Proof of Lemma 6.1
Gathering the formulae (4.2) and (5.1), one gets

Eε(%m,um
∣∣∣%,V m

E )− Eε(%0,u0
∣∣∣%,VE(0)) (6.1) {relativeenergy-1}

+δt
m∑
n=1

(
µ||un − V n

E ||21,E,0 + (µ+ λ)||divT (un − V n
E )||2L2(Ω)

)
≤ P1 + P2 +Q,

where
P1 = δt

m∑
n=1

∫
Ω

(
%n−1 − %

)(V n
E − V n−1

E
δt

)
·
(
V n
E − un

)
,

P2 = δt
m∑
n=1

3∑
i=1

3∑
j=1

∑
K∈T

∑
σ∈E(j)(K)

(
%n,up
σ − %)

(
V n
i,E,K − V n

i,σ

)
V n
j,σe

(j) · nσ,K(uni,K − V n
i,E,K),

Q = RmT ,h,δt +GmT ,δt −Rmh,δt.

We use Hölder’s inequality, together with the Taylor type formula (4.8) in order to get

|P1| ≤ δt
m∑
n=1

(
‖[%n−1]res‖Lq(Ω)|Ωres|1/r + ‖[%n−1 − %]ess‖L2(Ω)‖

)∥∥∥V n
E − V n−1

E
δt

∥∥∥
L∞(Ω;R3)

∥∥∥V n
E −un‖L6(Ω;R3),

|P2| ≤ c‖∇V ‖L∞(QT ;R3)δt
m∑
n=1

(
‖[%n]res‖Lq(Ω)|Ωn

res|1/r+‖[%n−%]ess‖L2(Ω)‖
)∥∥∥V n

E

∥∥∥
L∞(Ω;R3)

∥∥∥V n
E −un‖L6(Ω;R3),

where q = min(γ, 2), 1
r + 1

q + 1
6 = 1, and symbols [·]res, [·]esss and the sets Ωn

res are defined in (3.3).
Evoking estimates (3.5) and (3.8) from Corollary 3.1, one gets

|P1|+ |P2| ≤ ε c(M0, E0, %, ‖V ,∇V , ∂tV ‖L∞(QT ;R15)).

This formula, and the bounds of expressions RmT ,h,δt, GmT ,δt, Rmh,δt evoked in (4.2), (5.1) yield the state-
ment of Lemma 6.1.

Lemma 6.1 implies immediately error estimate (2.65) by the standard discrete Gronwall inequality.
Theorem 2.1 is proved.
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