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 
Abstract— Diffusion MRI data are generally acquired using 

hyperpolarized gases during patient breath-hold, which yields a 
compromise between achievable image resolution, lung coverage 
and number of b-values. In this study, we propose a novel method 
that accelerates the acquisition of diffusion MRI data by 
undersampling in both the spatial and b-value dimensions and 
incorporating knowledge about signal decay into the 
reconstruction (SIDER). SIDER is compared with total variation 
(TV) reconstruction by assessing its effect on both the recovery of 
ventilation images and the estimated mean alveolar dimensions 
(MAD). Both methods are assessed by retrospectively 
undersampling diffusion datasets of healthy volunteers and COPD 
patients (n=8) for acceleration factors between x2 and x10. TV led 
to large errors and artifacts for acceleration factors equal to or 
larger than x5. SIDER improved TV, with a lower solution error 
and MAD histograms closer to those obtained from fully sampled 
data for acceleration factors up to x10. SIDER preserved image 
quality at all acceleration factors, although images were slightly 
smoothed and some details were lost at x10. In conclusion, we 
developed and validated a novel compressed sensing method for 
lung MRI imaging and achieved high acceleration factors, which 
can be used to increase the amount of data acquired during 
breath-hold. This methodology is expected to improve the 
accuracy of estimated lung microstructure dimensions and 
provide more options in the study of lung diseases with MRI.     
 

Index Terms—Compressed sensing, lung diffusion MRI, 
hyperpolarized gas MRI, sparsity, split Bregman method  
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I. INTRODUCTION 

HE increase in MRI sensitivity using hyperpolarized 
contrast media has enabled the development of imaging 

techniques to assess anatomical features and functional 
processes beyond the limits of conventional MRI [1], [2]. In 
particular, hyperpolarized noble gas MRI can provide 
quantitative maps of clinically relevant anatomical and 
physiological parameters (e.g. ventilation distribution [3], [4], 
acinar airway dimensions [5], alveolar oxygen partial pressure 
(pO2) [6], [7], and gas washout [8]). An increase in the MRI 
signal is achieved using laser polarization techniques (e.g. 
optical pumping-spin exchange [9], [10]), which result in a non-
equilibrium net magnetization that is up to 5 orders of 
magnitude higher than in conventional MRI (thermally 
polarized).  

However, the non-renewable nature of the magnetization in 
hyperpolarized gases imposes limits on the duration of MRI 
acquisition. In the presence of oxygen, the T1 of hyperpolarized 
gases (15-20 s) is of the order of duration of the breath-hold that 
can be achieved by patients within the scanner. As a 
consequence of this limitation, together with the high cost of 
the gas (e.g. 4He and isotopically enriched 129Xe), most 
hyperpolarized gas methods aim to perform a complete 
acquisition during a single breath-hold using a single 
hyperpolarized gas dose. Furthermore, there are advantages in 
acquisition with more than one sequence or even different 
nuclei during a single breath-hold [11]. This need for rapid 
acquisition has been addressed using various accelerated 
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acquisition approaches, including parallel imaging [12], [13] 
and compressed sensing (CS) [14], [15]. In CS, the acquisition 
was accelerated in the spatial encoding direction and the images 
were reconstructed using spatial total variation (TV). More 
recently, Chan et al [16] used CS to acquire diffusion images of 
hyperpolarized gases in the lungs. Diffusion MRI images are 
sensitive to changes in lung microstructure [17] due to disease 
and are used to estimate the dimensions of acinar airways based 
on theoretical models obtained from numerical simulations. 
These theoretical models require the acquisition of images for 
several diffusion sensitization values (b-values), which, 
together with the longer duration of the diffusion scan (due to 
the presence of diffusion gradients), result in long acquisition 
times. Owing to the limitation imposed by breath-hold duration, 
there is a compromise between achievable image resolution, 
number of slices and number of b-values, which limits the 
accuracy and number of parameters of the theoretical models 
[18]. Typically, most protocols acquire 5 slices (10 mm thick, 
spacing 10 mm) with a resolution of 64x64 pixels and 4 to 6 b-
values, thus leading lung coverage to be sacrificed [19].  Chan 
et al. achieved full lung coverage by using CS with a 3D 
diffusion acquisition and undersampling along the two phase-
encoded spatial directions [16]. CS has also been proposed for 
accelerating diffusion-weighted imaging [5], [20]–[22]. In 
diffusion spectrum imaging, CS has been applied using 
adaptive dictionaries [23] and different types of undersampling 
patterns and sparsifying transforms [24], [25].  

Although 3He lung diffusion images are sparser in the b-
direction than in the spatial domain, the feasibility of exploiting 
sparsity along both the spatial encoding and the b-value 
directions has not been studied in hyperpolarized gas MRI. In 
other MRI applications, such as in cardiac cine MRI [26]–[28] 
and fMRI [29], [30], CS leads to large acceleration factors by 
exploiting high data dimensionality.  

In this study, we propose a novel CS method that 
incorporates a model of the signal decay as prior information 
into the reconstruction (SIDER) to accelerate the acquisition of 
diffusion-weighted MRI data by undersampling in both the 
spatial and the b-value dimensions. We incorporate knowledge 
of diffusion signal behavior into the reconstruction to accelerate 
the acquisition of diffusion MRI data. The method we propose 
is compared with TV and zero filling reconstructions by 
assessing its effect on the estimated parameters of a stretched 
exponential model, which has been used to estimate mean 
alveolar dimensions (MAD) [31], [32]. The methods were 
applied in control and COPD patient data sets (n=8 in total) 
using retrospective undersampling simulations, with fully 
sampled data as the gold standard. 

 
1 Results and MATLAB code for TV and SIDER methods are available from 

the GitHub repository https://github.com/HGGM-LIM/compressed-sensing-
diffusion-lung-MRI 

II. METHODS 

A. Image reconstruction methods 

1) Total variation 
Previous CS studies for MRI using hyperpolarized gases 
assumed that each ventilation image ui is sparse under a 
transformation , which accounts for spatial sparsity [14]–[16]. 
The most common choice for  is the gradient that leads to the 
total variation functional. If F represents the undersampled 
Fourier transform and fi represents the undersampled k-space 
corresponding to the i-th b-value, then the total variation 
problem is given by  

 

,            (1) 

where =(x,y), i=1,…,B, and B is the total number of b-
values.  
2) Signal decay–based reconstruction  
We propose a novel CS method based on undersampling in both 
the spatial and the b-value dimensions that incorporates a model 
of the signal decay into the reconstruction (SIDER). It 
combines TV with a penalty function that promotes sparsity 
across the b-direction as follows: 

     (2) 

where u and f  are the ventilation images and undersampled data 
corresponding to all values of b, u=[u1

H,…,uB
H]H, f =[f1

H,…, f 

B
H]H, uH denotes the Hermitian transpose of u, F is the 

undersampled multislice Fourier transform, and M is an 
operator that encodes the relationship between ventilation 
images for consecutive values of b. This relationship can be 
approximated using a stretched exponential model [16], [31] as 

             (3) 

where uj is the ventilation image for the j-th b-value and 𝐷ഥ and 
 are the estimated average value of diffusivity and the 

heterogeneity index, respectively, across the whole volume, 
which can be obtained from a previously reconstructed image 
(here we used the image provided by the TV method).1 This 
global estimation for the model parameter provides sufficient a 
priori information to guide the image reconstruction. The 
transform M is a generalization of the gradient across the b-
dimension, which takes the signal decay into account. 
Ventilation images are actually sparser on the stretched 
exponential domain defined by M than under the spatial 
gradient domain. 
 
3) Split Bregman formulation  
The problems in (1) and (2) were solved using the Split 
Bregman formulation, which efficiently handles L1-based 
constrained problems [27], [28], [33], [34]. Using this 
formulation, constrained problems are converted to equivalent 
unconstrained problems, where constraints are imposed 
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iteratively using the Bregman iteration. L2- and L1-norm 
functionals are separated into several subproblems, which are 
solved analytically in alternating steps. The subproblem 
including the L2-norm functionals results in a linear system that 
can be efficiently solved using iterative Krylov solvers; 
subproblems including L1-norm functionals are solved using 
shrinkage formulas. As TV can be obtained from SIDER by 
making β=0, we develop the formulation for the general case of 
SIDER.  
   To perform the split, we include the new variables dx, dy, and 
w and formulate a new problem that is equivalent to (2): 
 

 (4) 

Equation (4) is now easily managed using an equivalent 
unconstrained optimization approach, in which constraints are 
imposed by adding Bregman iterations bi,  

   (5) 

where µ is a parameter that weights the data fidelity term,  is 
another parameter that weights the terms imposing the 
constraints for the dummy variables, k is the iteration number 
and the Bregman iterations are updated as 

                       (6) 
Since u and auxiliary variables w, dx, and dy are independent 

of each other, equation (5) can now be split into several 
equations (one for each variable) that are solved sequentially, 
as follows: 

  (7)  

Since the solution of u only involves L2-norm functionals, it 
can be obtained exactly as the solution of the linear system 
 

        (8) 

where wH denotes the Hermitian transpose of w. It is common 

practice to modify (7) by adding a quadratic term to improve 
the stability of the algorithm [34]. This replaces the update for 
uk+1 (8) as follows:  
  

       (9) 

 
Note that (9) constitutes a very large-scale problem, where 

K=NxN and N is the number of pixels, yet it can be solved 
efficiently using a Krylov solver, such as the biconjugate 
gradient stabilized method, which involves only matrix-vector 
multiplications:  

                        (10)    

 
   The auxiliary variables dx, dy, and w are solved analytically 
using shrinkage formulas, which are thresholding operations 
(1,2) 

      (11) 

B. Datasets and retrospective undersampling 

Eight fully sampled diffusion datasets were available from a 
previous study, 3 from healthy volunteers [19] and 5 from three 
patients with COPD (2 patients had 2 acquisitions at different 
sessions) [31]. Data consisted of 5 slices (10 mm thick with 10 
mm gap between slices), 64x64 resolution and 5 b-values (0, 
1.6, 3.2, 4.8 and 6.4 s/cm2), obtained with a diffusion time of 
1.6 ms. These data were acquired in a GE HDx 1.5 T scanner 
(GE Healthcare, USA) using a 2D spoiled gradient echo 
sequence with bipolar diffusion sensitization gradients [19], 
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Fig. 1. Undersampling pattern for an acceleration factor of x7. 
Randomization is performed in the phase-encoding direction and through 
the b-direction, for a 64x64 resolution and 5 b-values.  
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[31]. 3He gas was polarized using a SEOP commercial polarizer 
(Helispin, GE Healthcare, USA), which achieved polarizations 
of 30-40%.  

These datasets were retrospectively undersampled to 
simulate CS acquisition and reconstruction. Quasi-random 
undersampling patterns were created using a variable density 
pattern as proposed in [35], [36]. The patterns were based on 
the polynomial probability density function of the form (1-r)p, 
which assigned the highest probability to the center of the k-
space and then assigned probabilities with a decay rate of p as 
a function to the center. Randomization was performed in the 
phase-encoding direction and through the b-direction (Fig. 1), 

thus enabling us to exploit data redundancy in 2 dimensions. 
We analyzed the results for acceleration factors of x2, x4, x5, 
x7, and x10. The decay rate was set to p=4 (for x2), p=4 (for 
x4), p=4 (for x5), p=6 (for x7) and p=9 (for x10).  

 

C.  Image analysis and evaluation 

To evaluate the results, we first fitted the reconstructed signal 
u(b) on a pixel-by-pixel basis to the stretched exponential 
model, which estimates maps of the distributed diffusion 
coefficient D and heterogeneity index α [31]: 
 

.                      (12) 

As reconstructed images u(b) are noisy, especially for 
patients and larger values of b, images u(b) were smoothed 
using a Gaussian filter (window of 3 neighboring pixels and SD 
of 1 pixel) before fitting the model in (12). D and α were 
estimated only within a mask that had been created by 
segmenting the lungs in ventilation images from fully sampled 
data. Then, we estimated the MAD, Lm, from D and α as 
described in [16], [32]. Lm was estimated only in the ranges 
0<D<0.9 and 0.3<α<1, which were assumed to be physically 

meaningful. (The upper limits for these parameters correspond 
to diffusion within structures much larger than acinar airspaces, 
i.e. free diffusion with D0=0.87 cm2/s and α=1). Areas of the 
image that were outside this range appear black on the estimated 
maps. The process for estimating Lm from ventilation images, 
u(b), as well as the differences between the patient and control 
data sets are shown in Fig. 2. 

All retrospectively undersampled data sets (n=8 for 
acceleration factors x2, x4, x5, x7, and x10) were reconstructed 
with zero filling (ZF), TV and SIDER. These methods were 
evaluated in terms of the following metrics: 1) relative mean-
square error (MSE) of the recovered ventilation images, 2) 

relative MSE of MAD, 3) histograms and 4) mean values of the 
estimated maps of MAD. MSE was computed by adopting the 
images and maps obtained from the fully sampled data as the 
gold standard. The results are given as mean and SD across all 
data sets. To assess the statistical significance of the difference 
between the methods, we used a Mann-Whitney test, which is 
robust and avoids the assumption of normality in the data.  

Histograms and images are shown for 1 control and 1 patient 
data set for all methods. The mean and SE of Lm in a region of 
interest (1 slice) are shown for the 3 patients to verify that errors 
due to undersampling were smaller than patient variability. 

To determine the maximum acceleration factor achieved by 
the SIDER method, we studied its ability to discriminate 
between patients and controls and compared it with the 
reproducibility of the experiment. COPD can be diagnosed in 
terms of the histogram of Lm, as patients present larger values 
of Lm and a larger spread of the histogram. We computed the 
percentage error of the estimated mean of Lm as a function of 
the acceleration factor and the percentage error of the cross-
correlation between the histogram corresponding to each 
acceleration factor and that of the histogram of the complete 
data set. The reproducibility of the experiment was estimated 
based on 2 patients who had undergone the experiment twice 
the same day. Images and histograms for all datasets are shown 

  ( ) (0) expu b u bD
 

 

 
Fig. 2. Process for estimating mean alveolar dimensions, Lm, from ventilation images, u(b), for datasets from a control and COPD patient. Top left: slice of 
ventilation images for different values of b. Top right: mean value of u(b) across the slice to illustrate the typical difference in signal decay between controls
and patients. Bottom: Estimated maps of distributed diffusion coefficient D, heterogeneity index α (12) and Lm for one control and one patient. 
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for the SIDER method and for the maximum acceleration 
factor. 

To validate the feasibility of SIDER for differentiation 
between control and COPD patients, we run a Mann-Whitney 
test to assess statistical significance between control and 
patients and between SIDER and fully sampled data.  

III. RESULTS 

1) Selection of the reconstruction algorithm parameters 
The parameters necessary for the TV and SIDER methods are 
µ, , γ, and the number of iterations. The parameter µ that 
weights the data fidelity term was selected following 
suggestions from previous studies [28], [33], [34], [36]–[38], 
which showed that the algorithm converges to the same solution 
independently of its value, as long as it is sufficiently small. In 
[37], a two-fold decrease in µ doubled the number of iterations 

needed to converge to the same solution. Hence, the larger the 
value of µ, the faster the convergence, although if µ is 
excessively large, the algorithm converges to a noisy solution 
on the first iterations. In contrast to unconstrained optimization, 
where optimal selection of the regularization parameters is 
needed based on the L-curve or a similar method [39], [40], we 
only need to select the number of iterations (stopping criterion). 

The stopping criterion used in previous studies was the 
discrepancy principle [34] or a fixed number of iterations [28]. 
In order to compare TV and SIDER in this study, the number of 
iterations was chosen to minimize the MSE, considering the 
fully sampled image as the correct solution. For µ≤2, the 
method converged to the same solution at different iteration 
numbers. For µ>2 overfitting occurred at the first iterations and 
an optimal solution was not found. Increasing  (higher weight 
to the TV constraint) lowers the threshold in the shrinkage 
formulas (11), resulting in slightly faster convergence, but for 

>20, the convergence became unstable. Values of <1 resulted 
in low smoothing at the first iterations and an excessively high 
threshold in the shrinkage formulas, which also led to unstable 
convergence and large errors. Values in the range 1≤≤20 led 
to similar results. The parameter γ makes it possible to keep the 
Hessian matrix K (9) well-conditioned when µ is relatively 
larger than . A small value of γ is usually chosen (10-4≤γ≤10-

2).  
 

The weighting parameters that control the relative degree of 
sparsity between TV (α) and model decay sparsity (β) were 
heuristically determined as follows. Increasing α>1 (higher 
sparsity to TV) led to images largely affected by cartoon-like 
artifacts and large solution errors. Selecting α<0.1 led to 
excessively fast convergence, compromising the robustness of 
the algorithm. Values of α in the range 0.1<α<1 suppressed 

most noise in the image and yielded similar results. Increasing 
β imposed higher sparsity on the model of signal decay than on 
TV, leading to lower solution errors, images with fewer 
cartoon-like artifacts and images less affected by noise 
(especially images corresponding to large b-values). However, 
the larger the value of β, the slower the convergence. We found 
that values in the range 0.2≤β≤1 were a good compromise. 
Table 1 shows a summary of the parameter values used for both 
TV and SIDER. In order to use the same range of parameters 
for all data sets, the algorithm normalizes the data item f as 
f/ǁf/nǁ, where n is the square root of the number of pixels in the 
image, following the suggestions from [Tom Goldstein. Split 
Bregman. Retrieved in 2009 from 
http://www.ece.rice.edu/~tag7/Tom_Goldstein/Split_Bregman
.html]. 

B. Comparison of methods 

Fig. 3 (left) shows the MSE of the reconstruction of ventilation 
images (for b=0) with the various methods for all the 
acceleration factors tested. SIDER led to a significantly lower 
MSE than ZF and TV in all cases (for b=0); SIDER also led to 
a lower MSE for large values of b, although the differences 
were significant only at high accelerations.  

TABLE I 
REGULARIZATION PARAMETERS FOR TV AND SIDER  

 
 α β  µ   

TV 1 -  1 1 1 

SIDER 0.2 0.2  1 1 0.01 

 

 
Fig. 3. MSE of ventilation images for b=0 (left) and estimated mean alveolar dimension (right) versus the acceleration factor for the different reconstruction 
algorithms. Results show mean and SD across all data sets (n=8). 
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With an MSE of 10% as a reference for the comparison, the 
acceleration factors achieved by the methods were x2 for ZF, 

x5 for TV and x10 for SIDER. SIDER also presented a 
significantly lower MSE of MAD for all acceleration factors 
(Fig. 3, right). Similar to the MSE of ventilation images, at x10, 
SIDER presented the same MSE as TV at x5. 

Maps of MAD and image differences for the various methods 

 
2 Videos of results for all data sets are available from 
https://github.com/HGGM-LIM/compressed-sensing-diffusion-lung-MRI. 

and for the highest acceleration factors (x5, x7, and x10) are 
shown in Fig. 4 for one control dataset and one patient dataset, 

respectively2. In the case of the control dataset, for acceleration 
factor x5, ZF and TV led to errors and artifacts, whereas SIDER 
provided maps that were almost identical to the fully sampled 
dataset. For acceleration factor x10, ZF and TV led to larger 
errors and artifacts and a shift in the mean value. In contrast, 

 
Fig. 5. Histograms of images of mean alveolar length for the reconstruction algorithms and acceleration factors for a control (top) and a patient (bottom). 

 

 
Fig 4. One slice of an estimated mean alveolar length map (left) and image differences (right) for each of the methods and acceleration factors, for a control 
subject (top) and for a COPD patient (bottom). The arrows point to areas where errors are more visible: (1) Black regions where estimated values were outside 
what is physically reliable, (2) shift in the mean values (3) and other errors in the estimated maps. 
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SIDER still preserved image quality with small errors in the 
estimated maps at x10.  

 
Fig. 5 shows the histograms of estimated MAD from images 

reconstructed with the algorithms for a control and patient 
dataset. ZF and TV led to larger errors as the acceleration 
increased, becoming very noticeable above x7. In contrast, 
SIDER presented histograms close to the target for 
accelerations up to x10.  

Fig. 6 shows the mean and SE of MAD across one slice for 
three patients. For accelerations larger than five, errors by ZF 
and TV were larger than differences between datasets. In 
contrast, SIDER led to small errors for all acceleration factors. 

C. Analysis of the acceleration factor in retrospective data 

Fig. 7 shows a slice of the map of estimated MAD and image 
differences obtained by the SIDER method for the remaining 
datasets (two controls and four patient data sets) and for the 

highest acceleration factors. Image quality was preserved for all 
accelerations, although there were small deviations from the 

fully sampled map for an acceleration factor of x10.  
Errors for the estimation of the mean and the histogram of Lm 

are shown in Fig. 8. SIDER provides a very accurate estimation 
of the mean value of Lm, with errors below 1% for all 
accelerations. These errors were comparable to the 
experimental error (dotted line). An estimation of the histogram 
led to a value that was larger than the mean value. The cross-

correlation error for x7 was 2%, which was similar to the 
experimental error. Higher accelerations (x10) led to larger 
errors. 

Fig 9. shows histograms of the estimated MAD obtained 
from fully sampled data and using the SIDER method for 
acceleration factor x7 in all datasets. Histograms were very 
close to those of fully sampled data, and errors derived from the 
undersampling were much smaller than the intragroup 
differences between the control and patient datasets.  

 

 
Fig. 6. Mean and SE of mean alveolar length across one slice vs. the acceleration factor for three different patients. Solid and dashed lines represent mean 
and SE, respectively, for fully sampled data. 

 

 
Fig. 7. One slice of estimated mean alveolar dimensions (left) and image differences (right) with SIDER for four patient and two control datasets.  
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Fig. 10 shows that the proposed method can be used to 
differentiate between controls and COPD patients based on the 
mean and FWHM of Lm (p<0.01). There were no significant 
differences between the proposed method and the complete data 

for these metrics (p<0.01). 
 

D. Computation time 

The code was implemented in MATLAB on a Windows 

computer with a 64-bit operating system, i7-3770, 3.40 GHz 
CPU and 16 GB RAM. SIDER took 28 s to reconstruct all 
ventilation images (for 5 values of b) for one slice. We used a 
straightforward parallelization of SIDER over the five slices to 
reduce computation time.  

IV. DISCUSSION  

We proposed and validated a novel CS method that incorporates 
a model of the signal decay into the reconstruction method as 

prior information. The proposed method, SIDER, was validated 
on both control and COPD patient data (n=8). Using 
retrospective undersampling, we found that accelerations of at 
least x7 are achievable with a negligible effect on the estimates 

of ventilation images and estimated MAD maps. This 
acceleration factor (x7) is very relevant, as it could be used to 
increase the resolution by two-fold and simultaneously in the x-
y plane, in the number of slices and in the number of b-values. 
Such an approach would not only increase the resolution and 

volume coverage, but also improve the accuracy of estimated 
microstructural dimensions and may enable the use of models 
with a larger number of parameters.  

The acceleration factor depends on the criterion chosen to 
decide whether a result is acceptable. Adopting the 
experimental repeatability error as an upper bound, SIDER 
accurately calculated the mean of Lm up to x10 and of the entire 
histogram up to x7. Nevertheless, this criterion may be very 
restrictive, as the experimental repeatability is very high. In 

 
Fig 8. Left: Percentage error of the estimated average of the mean alveolar dimensions (Lm) versus the acceleration factor. The mean and SD values shown 
were computed across all datasets. The dotted line represents the experimental error, which was estimated from two patients who had two acquisitions acquired 
at different sessions. Right: Percentage error of the estimation of the histogram of Lm. The estimation of the histogram is measured by the cross-correlation 
between the histogram for each acceleration factor and the histogram for the complete data. The error is computed with respect to the autocorrelation for the 
complete data. 
 

 
Fig. 9. Histograms of estimated mean alveolar dimensions for fully sampled data (left) and SIDER method for an acceleration factor x7 (right). Controls 
are depicted using dashed lines and COPD patients with solid lines. 
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fact, we showed that MSE remained small and histograms were 
similar to those obtained from fully sampled data for 
acceleration factors up to x10. Image quality was preserved 
with small errors in the estimated maps at a factor x10. A more 
practical criterion would be the ability to differentiate between 
controls and patients. In this case, SIDER provided the same 
results for x7 as those provided by fully sampled data, in terms 
of mean and FWHM of Lm, which are used in clinical practice. 
For accelerations higher than x10, errors were larger and the 
number of encoding lines acquired was very small for the 

present resolution (images of 64x64), which was not considered 
acceptable. An acceleration factor of x7, which would enable 
doubling of the spatial resolution, number of slices and the 
number of b-values, presented negligible errors.  

Previous CS implementations achieved lower acceleration 
factors: x2 using spatial TV in 2D [14], x3 using spatial TV in 
2D with prior knowledge of a proton image acquired during the 
same breath-hold [15], and x3 using TV in 3D [16]. The 
acceleration factors achieved in this study, from x7 to x10, are 
superior because of the exploitation of undersampling along the 
b-dimension and the use of a reconstruction model that 
incorporates prior knowledge of signal decay. SIDER could 
also be extended to the 3D case as in [16], potentially achieving 
even higher accelerations.  

In this study, we aimed to exploit sparsity not only in the 
spatial domain, but also across the b-dimension, by both 
modeling the signal decay and randomizing the acquisition 
along the b-direction. The proposed SIDER method is a 
combination of spatial TV and a functional that models signal 
decay. Given that SIDER and TV are both solved using the split 
Bregman formulation, the only difference between these two 
methodologies lies in the exploitation of the b-dimension. TV 
has been chosen as spatial regularization, which had been 
previously proposed for hyperpolarized gas MRI [14]–[16]. 
Other functionals for spatial regularization, such as total 
generalized variation (TGV) [41], [42], could lead to results that 
are superior to those of TV. Nevertheless, TGV or different 
spatial regularization could be included in the proposed 
methodology by replacing the TV functional.  

Our study is subject to several limitations. Various 

approximations have been adopted for modeling signal decay. 
First, we assumed a stretched exponential model (3) with global 
parameters Dഥ and  averaged across the whole volume. 
Second, model parameters were estimated from a previously 
reconstructed image, which we chose as that provided by the 
TV method. We performed tests to assess these limitations. We 
compared the use of the global parameters obtained from TV 
and from SIDER (by running SIDER twice), although no 
significant improvements were observed. This could be 
explained by the fact that average parameters provided by TV 

were sufficient to guide the reconstruction algorithm. We also 
found that using zero filling instead of TV led to large errors for 
high acceleration factors. Thus, zero filling could not provide a 
good estimate of average parameters for the stretched 
exponential model. A more simplified assumption could be to 
model the signal decay for consecutive values of b with an 

exponential model, . 

In this case, using zero filling to estimate Dഥ across the whole 
volume led to reasonably good results. This approximation is 
faster and simpler, as it requires a less accurate estimation of Dഥ, 
although it provided slightly worse results for some values of b 
than the proposed model. A plausible improvement in the 
method proposed could be to model the parameters of the 
stretched model (D and α) on a pixel-by-pixel basis (instead of 
average parameters) and to include them as unknowns in the 
reconstruction procedure. This method could use the 
reconstructed image to update the signal decay model in an 
iterative fashion and iterate until convergence. Another 
improvement could be to rewrite the reconstruction problem in 
terms of D and α or in terms of Lm. However, such an approach 
lies beyond the scope of the present study.  
 Another limitation is that we validated the method by 
retrospectively undersampling control and patient data. 
However, implementation of the proposed CS sequence in an 
MR scanner will be validated in future studies. In addition, the 
potential gain in microstructure information is promising but 
requires a dedicated study.  

In future studies, this method will be extended to the 
acquisition of 3D diffusion data, where higher accelerations can 



 1 1expj j j j jMu u u D b b 
     

 
 

Fig 10. Comparison between COPD patients and controls for mean and FWHM of histograms of Lm. These results correspond to the histograms shown in Fig. 9. 
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be achieved through undersampling over 3 directions (e.g. 2 
spatial directions plus b-value), and to other hyperpolarized gas 
MR applications, where a model of the signal behavior has been 
assessed (e.g., pO2 mapping [7]). Our method is not restricted 
to hyperpolarized gas imaging, but could also be used in other 
diffusion MRI applications and in metabolic imaging based on 
hyperpolarized 13C.  

In conclusion, we validated a novel CS method for lung MRI 
imaging and achieved high acceleration factors that can be used 
to increase the amount of data acquired during breath-hold. This 
methodology is expected to improve the accuracy of estimated 
lung microstructure data and widen the possibilities of studying 
lung diseases with MRI.   
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