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ABSTRACT 
 
The Markov chain model (MCM) has become a popular tool in the agricultural economics 

literature to explain the past evolution of and simulate the future developments in the number and size 
distribution of farms. In this paper, I show that the way MCMs have been implemented by agricultural 
economists so far suffers from the fact that transition probabilities are estimated as almost independent 
variables (up to adding-up to unity constraints). The alternative parametric MCM I propose addresses 
the deriving issues since (i) it is parsimonious in terms of parameters; (ii) it can be estimated with 
simple econometric techniques; (iii) it reveals detailed information on the structural change processes 
at hand. Applying it to experimentally controlled data with noise shows that the proposed model 
behaves well and competes with the traditional approach without any significant shortcoming. Two 
illustrative empirical applications, one using data from the EU-15 Farm Accounting Data Network 
(FADN) and the other using data from the USA Agricultural Resource Management Survey (ARMS), 
reveal the rich information that can be derived regarding the economic size changes experienced 
annually by farms in both regions. 

 
 

1. INTRODUCTION  

The so-called Markov chain model (MCM) has become a popular tool to study the evolution of 
structural change in agriculture, that is the evolution of the number and structures distribution of 
populations of agricultural firms (Zimmermann et al., 2009). 

Basically, a Markov chain model allows to recover the number of farms in a particular category at 
a particular date as the sum of the transitions towards this category experienced by farms which where 
previously in any other categories;1 at each time step, transitions occur only with a certain probability 
(i.e., only a fraction of individuals move from one category to another, including staying in the same 

category). Formally, this can be written as ∑
=

+ =
J

k
tkkjtj npn

1
,1, , where J  is the (finite) number of 

categories indexed by { }Jkj ...1, = ; tjn ,  is the number of individuals in the j -th category at time t ; 

and kjp  is the probability for the individuals in category k  to move to category j  between t  and 1+t ; 

further, kjp  is subject to the standard probability constraints of positivity ( 0≥kjp ) and adding-up to 

unity ( 1
1

=∑
=

J

j
kjp ). When kjp  depends on t  the model is said non-stationary; otherwise it is said 

stationary. 
The task of the modeller then consists in estimating these transition probabilities. This is quite 

simple when individual (panel) data are available since individual transitions are directly observable 
and countable; it is a more complicated task when only aggregate (cross-sectional) data are available, 
which is the most common empirical situation –in agricultural economics at least.2 However, Lee et al. 
(1965) and Lee et al. (1977) showed that econometric techniques make it possible to estimate a robust 
MCM from aggregate data only; since then, most of the MCM literature in agricultural economics has 
used such aggregate data (Zimmermann et al., 2009). 

                                                 
1 To my knowledge, most empirical works consider the previous date only, leading to a Markov chain process of degree 1. 
More general (higher degree) MCMs consider several previous dates (Berchtold, 1998). 
2 Panel data are costly and are therefore usually limited both in terms of observation dates and sample size. 
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The drawback of this aggregate MCM implementation –which I shall refer to as the “standard” 
MCM implementation in the following– is that the number of transition probabilities to estimate is 
usually large even when only a few categories are considered. Moreover, this number grows 
exponentially as the number of categories increases, since all the 2J  possible transitions have to be 
taken into account and the corresponding probabilities have to be estimated; this number is actually 
limited to ( )1−JJ  thanks to the adding-up to unity constraints but the exponential growth rate remains. 
Then, the number of observations needed to identify all the parameters of the model rapidly becomes 
prohibitive, leading to an ill-posed problem (Karantininis, 2002). In sum, the analyst is faced with a 
trade-off between the richness of the data he has at his disposal to estimate the model and the richness 
of the information he can recover from it. Two directions have been explored so far in the literature to 
overcome this drawback. First, arbitrary zero-constraints can be imposed on some specific 
probabilities, assuming that the corresponding transitions are impossible and thus reducing the number 
of parameters to estimate (among others, see Krenz (1964), Zepeda (1995) or Gillespie and Fulton 
(2001)); then, simple econometric techniques like linear seemingly unrelated regressions (SUR) or 
ordinary least-squares (OLS) can still be applied. Second, more elaborate econometric methods can be 
used such as the generalized cross-entropy (GCE) and instrumental variables GCE (IV-GCE) which 
take advantage of a priori beliefs on the magnitude of transition probabilities rather than making rigid 
assumptions as above (Karantininis, 2002; Stokes, 2006; Tonini and Jongeneel, 2008); however one 
can suspect that, even if more flexible, these exogenous priors closely drive the results in the case of 
such strongly under-identified models.3 Finally, a consequence of this standard approach is the quite 
limited information it produces: of course, it fulfils its initial objective in the sense that it eventually 
permits to project the population to any arbitrary horizon, that is to simulate the number of farms in 
each category and as a whole (i.e. a relevant information for the planners) but… this is it.4 In particular, 
it does not exploit the fact that in general, at least in all the works listed by Zimmermann et al. (2009), 
the dependant variable in the model, that is the criteria defining the J  categories, is actually a 
continuous (size) variable.5 

The structural MCM I have developed tackles all of the previous shortcomings: (i) it is 
parsimonious in terms of parameters; (ii) it does not require to form a priori assumptions or beliefs on 
the individual probabilities themselves; (iii) in its simpler version, it can be estimated with standard 
SUR techniques; and (iv) the information it brings leads to richer insights into the structural change 
process at hand and the distribution of the projected population. 

The rest of the paper is organised as follows. Section 2 presents the proposed parametric modelling 
framework, emphasizing on how it departs from and enriches the standard MCM approach that was 
briefly outlined in this introduction. Section 3 first describes the data which were used to demonstrate 
the satisfactory behavior of the proposed model in a theoretic experimental design; it then describes 
two empirical datasets, one for EU-15 (15 Member states of the European Union) and the other for the 
United States of America (USA). Section 4 reports the results for both the experimental and the 
empirical illustrative applications before concluding remarks and directions for future work are 
discussed in the last section. 

 

                                                 
3 As an illustration, Karantininis (2002) works on 19 categories and 15 census years and is so faced with the estimation of 
324 probabilities from 14 transitions corresponding to 252 data points. 
4 Of course, non-stationary MCMs bring extra information regarding the impact of some explanatory variables (such as 
policy or market variables) on the transition probabilities but here I only refer to the “intrinsic” information regarding the 
structure of the population that can be extracted from a MCM. 
5 Butault and Delame (2005) are a worth noticing exception: using a large scale panel, they worked with a large number of 
categories not only defined upon the size of farms but also on qualitative variables such as the region, the type of farming, 
the legal status of the farm or the age of the operator. 
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2. THE PROPOSED MODEL 

As in the standard approach, the population under study is partitioned into a finite number of 
categories J . But here, these categories are explicitly defined over the continuous quantitative size 
variable X  as intervals ],( jj xx , with { }Jj ...1= . Dealing with aggregate data, the numbers of firms in 

each category at several time periods txx jj
n ],,(  are the only observations we have. 

With these definitions, the standard Markov chain equation can be expressed as: 
 

 ∑ =+ = J

k txxxxxxtxx kkjjkkjj
npn

1 ],,(],](,(1],,(  (1) 

 
where ],](,( jjkk xxxxp  is the probability to move from an initial size lying in ],( kk xx  to a final size lying in 

],( jj xx  in one time-period. The standard probability constraints of positivity, 0],](,( ≥
jjkk xxxxp , and 

adding-up to unity, 1
1 ],](,( =∑ =

J

j xxxx jjkk
p , apply. 

Whereas in the standard approach it is an aggregate unknown, here the transition probability 

],](,( jjkk xxxxp  can be explicitly derived from the individual probability ( )1 |x xπ δ+  of experiencing a 

relative change in size 1 xδ+  ( +∞<<− xδ1 )6 between two consecutive dates, conditional on an initial 
size x : 

 

 ( ) ( )11 | 1t t tx x P X X x X xπ δ δ++ ≡ = + =  (2) 

 
For an individual exhibiting the initial size xXt =  lying in ],( kk xx , the probability to exhibit a 

final size '1 xXt =+  lying in [ , )j jx x  is then given by: 

 

 ( ) ( )( , ]( , ] 1 | ( )
k j

k jk j
k j

x x x

x x x x tx x x
p P X x x x d x dxπ δ δ = = + 

 ∫ ∫  (3) 

 
In the absence of more precise information regarding the distribution of the probabilities 

( )tP X x= , as is the case when dealing with aggregate data, the simplest assumption to be made is that 

of a uniform distribution over each interval ],( kk xx , that is, ( ) ( )1 kt kP X x x x= = − . Then, equation 

(3) simplifies to: 
 

 ( )( , ]( , ]

1
1 | ( )

k j

k jk j
k j

x x x

x x x x x x x
kk

p x x d x dx
x x

π δ δ = + −  ∫ ∫  (4) 

 
It is worth noticing that assuming a uniform distribution of sizes on ],( kk xx  does not imply that 

this distribution be uniform on the whole range of X , but only that it is piece-wise uniform. Any size 
distribution could thus be approximated be the number of categories sufficient. This assumption could 
be relaxed in empirical applications if some knowledge regarding the true size distributions at each date 
were available. 

                                                 
6 δx = –1 would correspond to exiting the sector, a feature not taken into account so far (see Section 5). 
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A parametric form with a known cumulative distribution function ( )( )xxF lθ;δ , where ( )xlθ  is a 

set of l  parameters defining F , can be chosen for ( )1 |x xπ δ+ . This allows rewriting (4) in a simpler 

way: 
 

 ( )( ) ( )( )( )∫ −
−

= k

k
jjkk

x

x ljlj
kk

xxxx dxxxxFxxxF
xx

p θθ ;;
1

],](,(  (5) 

 
Then, the parametric Markov chain model to estimate is the system of pooled equations (1) with 

the addition of error terms 1, +tju  and ],](,( jjkk xxxxp  being given by (5): 

 

 
( )( ) ( )( )( )∫

∑

−
−

=

+= +=+

k

k
jjkk

kkjjkkjj

x

x ljlj
kk

xxxx

tj

J

k txxxxxxtxx

dxxxxFxxxF
xx

p

unpn

θθ ;;
1

     with ],](,(

1,1 ],,(],](,(1],,(

 (6) 

 
It is easy to see that the standard probability constraints of positivity and adding-up to unity are 

implied by (5) and the definition of ( )( )xxF lθ;δ  as a cumulative distribution function. 

 

3. EXPERIMENTAL AND EMPIRICAL DATA  

In order to demonstrate the characteristics and usefulness of the parametric MCM defined by 
equation (6), I first designed a hypothetical set of experimental data; the choices that I have made to do 
so are arbitrary but it was intended to reproduce the kind of data that are usually available in empirical 
studies in the agricultural sector. As an illustration of such data, I then applied the parametric MCM to 
two datasets, one for EU-15 and the other for the USA. 

This section presents both types of data successively. 

3.1. The experimental design 

A hypothetical set of experimental data was used to demonstrate the behavior of the parametric 
MCM: a set of 100 hypothetical individuals was partitioned into ten classes defined over a hypothetical 
(size) variable taking its values over the domain (0;+∞). The category intervals chosen were (0;2], 
(2;5], (5;10], (10;20], (20;50], (50;75], (75;100], (100;200], (200;400] and (400;+∞) and the initial 
distribution of sizes was chosen to follow a log-normal distribution ( ) ( ))2ln(),20ln();ln(XXF Φ=  

where ( )smu ,;Φ  is the normal distribution with mean m  and standard deviation s. As can be seen 
from Table 1, I chose (i) unequally spaced lower and upper bounds to define the size intervals and (ii) 
an initial size distribution which is not uniform but rather highly skewed toward small sizes; as 
previously mentioned, this is meant to mimic what is usually found in the empirical data. 

 
[insert Table 1 around here] 

 
In this experiment, a log-normal functional form ( ) ( )( )ln 1 ; ,F x xδ δ µ σ= Φ +  for the distribution 

of ( )1 |x xπ δ+  was also chosen. For the sake of simplicity and without loss of generality, the µ  and 

σ  parameters were chosen not to depend on the initial size; they were both set to 0.01. Equation (5) 
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was then used to compute the transition probabilities [ , )[ , )k jk jx x x xp  and equation (1) to generate a set of 

20 more observation periods; the dataset then comprised 21 time periods, or 20 transitions.7 A second 
set of data was created by aggregating the initial ten categories into five ones on the following 
intervals: (0;10], (10;20], (20;50], (50;100] and (100; ]+∞ ; this aggregation preserves the overall log-
normal shape of the initial size distribution. 

Table 1 reports the 10-category population aggregation dataset and Table 2 presents the transition 
probability matrix for the 5-category aggregation case. 

 
[insert Table 2 around here] 

 
A simple white noise could not be directly added since it could have moved the data too far away 

from the underlying Markov process. I therefore adopted the following procedure which was applied a 
hundred times to both the 10- and 5-category population aggregations to obtain 100 replications of both 
datasets: 

1. for each category and each time period, compute ( )txxtxx
a

tj jjjj
nnn ],,(1],,(, 5.0 +×= −  and 

( )1],,(],,(, 5.0 ++×= txxtxx
b

tj jjjj
nnn ; for the first ( 0=t ) and last ( 20=t ) periods, take 

b
jxx

a
j nnn

jj 0,0],,(0, 2 −=  and a
jxx

b
j nnn

jj 20,20],,(20, 2 −= , respectively; 

2. define ( )b
tj

a
tjtj nnn ,,, ,min=  and ( )b

tj
a

tjtj nnn ,,, ,max=  

3. replace txx jj
n ],,(  by ( ) 2..~

,,,],,(],,( tjtjtjtxxtxx nnnn
jjjj

−+= εα  where tj ,ε  is a random number 

uniformly drawn in ]1;1[−  and α  is a parameter ranging from 0.1 (minimum noise) to 1.0 

(maximum noise); 

4. for each time period, scale back the resulting data to 100; this preserves a constant population 

at each date so that entries and exits are not considered, only the evolution of population 

shares are. 

 
Finally, a third set of data was prepared by aggregating the disturbed 10-category data into five 

categories defined on the same intervals as the initial 5-category data for each replication. 
 
Fig. 1 compares the resulting disturbance of the original data for two levels of noise intensity in 

the case of the (0;2]  category of the 10-category population and for the first replication. 
 

[insert Fig. 1 around here] 
 

                                                 
7 Actually, the integral in equation (5) has no closed form analytical solution when the log-normal distribution is used; a 
numeric approximation of the integral was performed using a simple trapeze formula and choosing a size step of 1 and an 
upper bound of the last interval set to 1000 as an approximation for infinity. 
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3.2. Empirical datasets 

A first dataset was created for the fifteen “historical” Member states of the EU8 from the Farm 
Accounting Data Network (FADN) data available on the website of the European Commission.9 In the 
database available on-line, the total population of professional farms can be split up according to their 
economic size measured in Economic Size Unit (ESU); for the sake of homogeneity across countries, I 
only kept categories defined over a size greater than or equal to 8 ESU, leading to 4 classes: 8 to less 
than 16 ESU; 16 to less than 40 ESU, 40 to less than 100 ESU and 100 or more ESU. Though data are 
available from 1989 to 2008 on the Commission website, the time period covered here is 1995-2007 
only because (i) data are not available before 1995 for Austria, Finland and Sweden who joined the EU 
in 1994 and (ii) data are lacking for Italy in 2008. This results in 12 observed annual transitions. 

A second dataset was created for the USA from the Agricultural Resource Management Survey 
(ARMS) data available on the website of the US Department of Agriculture (USDA).10 In the database 
available on-line, the total population of farms can be split up according to their economic size 
measured in US dollars of gross sales; in the ARMS terminology, I kept only categories defined over 
gross sales greater than or equal to US$ 100,000, leading also to 4 classes: US$ 100,000 to less than 
US$ 250,000; US$ 250,000 to less than US$ 500,000; US$ 500,000 to less than US 1,000,000; and 
US$ 1,000,000 or more. The time period covered is 1996-2009, resulting in 13 observed annual 
transitions. 

Table 3 presents the resulting two datasets. As with the experimental dataset, the parametric MCM 
defined by equation (6) was run on the shares of population and not on the population numbers 
themselves in order to focus on structural change and not on entry/exit issues. 

 
[insert Table 3 around here] 

 

4. RESULTS 

With only two parameters to estimate whatever the number of categories considered, the 
parametric model was always a well-posed problem. It could be therefore estimated with a simple non 
linear system of equations seemingly unrelated regression (SUR) estimation procedure. 

4.1. Assessing the parametric Markov Chain Model 

The parametric model was first estimated with the experimental datasets described in the previous 
section. The left panel of Fig. 2 shows that the estimation of the parameters µ  and σ  is unbiased 
whatever the intensity of the noise added to the original data. Still, as expected, the dispersion of the 
estimated coefficients, which could be assessed from the 100 replications, increases with the noise 
intensity. The centre panel of Fig. 2 shows that the estimation remains unbiased with more aggregated 
data if the aggregation occurs before the addition of noise; however, the rightmost panel of Fig. 2 
shows that the estimation is no longer unbiased when the data are aggregated afterwards. 

 
[insert Fig. 2 around here] 

 

                                                 
8 Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, 
Spain, Sweden and the United Kingdom. 
9 http://ec.europa.eu/agriculture/rica/index_en.cfm 
10 http://www.ers.usda.gov/Briefing/ARMS/ 
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In order to assess how the parametric MCM compares with the standard approach, I estimated a 
stationary multinomial logit model following Zepeda’s (1995) specification with the 5-category data. 
The unconstrained logit would have required estimating ( ) 20155 =−×  transition probabilities (thanks 
to the adding-up to unity constraint); since the experimental database contains 20 transitions only, this 
model would have been an ill-posed problem. Then, as is usually done, I imposed constraints on some 
transition probabilities in order to reduce the number of parameters by only setting possible: i) to stay 
in the same category; ii) to move to the very previous category; and iii) to move to the very next 
category. So constrained, the logit model encompassed 8 parameters only. 

The sum of the root mean square errors over the 4 equations forming the system to estimate was 
used as a measure of how the models fit the data.11 Fig. 3 reports this overall fit for both the parametric 
and the constrained multinomial logit MCMs. It shows that, if both models perform quite similarly 
whatever the level of noise, the standard model doing better on average though. However, the standard 
model fails to recover the true underlying transition probability matrix while the parametric model 
always does (not reported here). 

 
[insert Fig. 3 around here] 

 

4.2. Empirical results 

The parametric MCM was then estimated with the two empirical datasets using four alternative 
functional forms for ( )F xδ : 

• a log-normal distribution: ( ) ( ) ( )( )1 ; , ln 1 ; ,F x LN x xδ δ µ σ δ µ σ≡ + = Φ + ; 

• a Weibull distribution: ( ) ( )1 ; ,F x WB xδ δ ν λ≡ +  where ( ) ( )νλλν ueuWB −−= 1,;  with shape 

0>ν  and scale 0>λ ; 
• a gamma distribution: ( ) ( )1 ; ,F x GM xδ δ κ θ≡ +  where ( ) ( ) ( )κθκκθ ΓΓ= uuGM ,,;  with 

shape 0>κ  and scale 0>θ  and ( ).Γ  the gamma function; 

• a Gumbel distribution: ( ) ( ); ,F x GB xδ δ µ β≡  where ( ) ( ) βµ
βµ

−−−=
ueeuGB ,;  with location µ  

and scale 0>β . 
 
Here again, the parameters defining ( )F xδ  were chosen independent from the initial size 

whatever the specification for the functional form.12 The number of parameters to be estimated in each 
case (two) was thus always much smaller than the number of observations. Table 4 reports the 
corresponding results; note that, since the economic size is not measured with the same indicators, the 
results for EU-15 and the USA cannot be directly compared to each other. 

In both cases, the Weibull specification outperforms the other distributions on the ground of the 
total root mean square error; differences are small though from one specification to the other, especially 
in the USA case. 

 
[insert Table 4 around here] 

 

                                                 
11 Since there is neither entry nor exit in the constructed experimental dataset, we are in fact dealing with a constant 
population so that the number of individuals in the, say, last category is known once the number of individuals in the other 
categories have been determined. One equation has therefore to be dropped in the estimation process (see Zepeda, 1995). 
12 For those which must be strictly positive, the log of the parameter was actually estimated. 
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In the parametric MCM, the “standard” transition probabilities are not estimated directly. Rather, 
they derive from the underlying probability distribution of relative size change as was shown in Section 
2. The standard errors associated to these probabilities are therefore not readily available from the 
estimation process and are not easy to compute analytically from equation (5). To overcome this issue, 
I implemented a Monte Carlo simulation of the transition probability matrices, replicating equation (5) 
200 times by drawing in the normal distributions defined by the coefficients and standard deviations 
appearing in Table 4 for each parameter of the Weibull distribution. The resulting average estimated 
transition probabilities and their associated standard deviations are reported in the transition probability 
matrices of Table 5. 

 
[insert Table 5 around here] 

 
As is usually found in the literature, both matrices are highly diagonal: every diagonal term is 

close or above 0.90 and the only off-diagonal terms which are significantly different from zero are 
small (below 0.05). This means that most probably EU-15 and USA farms tend to stay in the same size 
category from one year to the other: as can be seen from the cumulative distributions reported in Fig. 4 
resulting from the estimated coefficients, both the average and the median relative changes in economic 
size are close to zero for either datasets. 

This does not mean no structural change at all though: as these curves also show, 10% of the farms 
experience of relative decrease of -6.0% and -10.0% or more respectively in EU-15 and in the USA, 
while 10% experience an increase in their economic size of respectively +5.1% and +7.7% or more. 
Note that this kind of information could not have been derived from the standard MCM approach. 

 
[insert Fig. 4 around here] 

 
Finally, some transitions appear implausible, the associated probabilities being estimated very 

close to zero: the estimated cumulative distributions of Fig. 4 show that this is the case for a relative 
change in economic size below -13.7% or above +7.7% for EU-15 and below -20.0% or above +12.1% 
for the USA. Note again that this could not have been inferred in the standard approach setting. 

 

5. CONCLUDING REMARKS  

In this paper, I present an original way of implementing the Markov chain model (MCM) which 
has been widely used in the recent academic literature to study the evolution and structural change of 
agricultural populations in several countries. Unlike the “standard” MCM approach which regards the 
transitions probabilities as almost unrelated parameters (up to adding-up to unity constraints), the 
method I propose takes advantage of the quantitative and continuous nature of the dependent variable 
used to define the categories into which the studied population is broken down. It allows to express the 
transition probabilities as deriving from an underlying probability distribution of the relative change in 
size, leading to a much richer information on the structural change process at hand. Further, no 
assumption has to be formed regarding the impossibility or implausibility of specific transitions: 
improbable transitions derive “endogenously” from the estimated probability distribution. 

Yet an assumption on the shape of this distribution has to be made. Choosing a parametric 
functional form reduces sharply the number of parameters to be estimated. The model is thus made 
parsimonious and it is less likely to be an ill-posed problem; rather “simple” econometric techniques 
can then be employed. Moreover, several functional forms could be tested and four of them have been 
illustrated here. More flexible forms could be chosen, at the expense of an increasing set of parameters; 
this number should however stay small compared to that in the standard approach. Another important 
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assumption that was used here regarding the probability distribution is that its parameters were set 
independent of the initial size. This could be relaxed in two ways: (i) these parameters could be made 
dependent on the initial size category to which they apply; this would increase the number of 
parameters of the model and relate it directly to the number of categories; still the relation would be 
linear whereas it is exponential in the standard approach; (ii) a statistical relationship between the 
parameters and the initial size itself could be specified, adding more structure into the model; choosing 
a simple linear relationship would only double the number of parameters and would preserve the 
independence vis-à-vis the number of categories, maintaining the parsimonious nature of the model; but 
this would intuitively require to have a more detailed information regarding the distribution of sizes 
among the population at one’s disposal or to form further assumptions regarding it. Either ways would 
however allow to test rigorously the relationship between the relative size change and the initial size, 
i.e. to test whether the so-called Gibrat’s law holds or not. 

In the illustrative empirical analyses presented here, the model was applied to the evolution of 
population shares. The recovered information therefore deals with structural change only and not with 
the developments in the absolute numbers of farms. It should be easy to extend the framework to 
account for entries and exits, either in the direction of Zepeda (1995) who complements the Markov 
chain with a net exit process, or in the direction of Karantininis (2002) and Stokes (2006) who 
explicitly consider entries and exits separately. 

Finally, the model presented here is stationary. A non-stationary version could be built by making 
the probability distribution parameters depend on time-varying covariates. A simple trend would 
preserve parsimony but would not be much interesting from an economic and political point of view. 
More appealing would be to use market and policy explanatory variables as is done in the recent 
literature using the standard MCM approach (Zepeda, 1995; Karantininis, 2002; Stokes, 2006; Tonini 
and Jongeneel, 2008). The number of parameters to estimate would increase so that even the structural 
approach proposed here would become an ill-posed problem and generalized cross-entropy (GCE) or 
instrumental variables GCE (IV-GCE) techniques would be required. Yet the structural approach 
would still be the more parsimonious of the two methods so that more degrees of freedom would be 
preserved for an undoubtedly more robust covariate effects estimation. 

 

6. REFERENCES 

Berchtold, A. (1998). Chaînes de Markov et modèles de transition : application aux sciences sociales. Editions Hermès, Paris (France). 
Butault, J.-P. and N. Delame (2005). Concentration de la production agricole et croissance des exploitations. Economie et Statistique 

390: 47-64. 
Gillespie, J. M. and J. R. Fulton (2001). A Markov chain analysis of the size of hog production firms in the United States. Agribusiness 

17(4), 557–570. 
Karantininis, K. (2002). Information-based estimators for the non-stationary transition probability matrix: an application to the Danish 

pork industry. Journal of Econometrics 107(1-2): 275-290. 
Krenz, R. D. (1964). Projection of farm numbers for North Dakota with Markov chains. Agricultural. Economics Research 16: 77-83. 
Lee, T. C., G. G. Judge and T. Takayama (1965). On estimating the transition probabilities of a Markov process. Journal of Farm 

Economics 47(3): 742-762. 
Lee, T. C., G. G. Judge and A. Zellner (1977). Estimating the parameters of the Markov probability model from aggregate time series 

data. North Holland, Amsterdam (The Netherlands). 
Stokes, J. R. (2006). Entry, exit, and structural change in Pennsylvania’s dairy sector. Agricultural and Resource Economics Review 

35(2): 357-373. 
Tonini, A. and R. Jongeneel (2008). The distribution of dairy farm size in Poland: a Markov approach based on information theory. 

Applied Economics 40, 1-15. 
Zepeda, L. (1995). Asymmetry and nonstationarity in the farm size distribution of Wisconsin milk producers: an aggregate analysis. 

American Journal of Agricultural Economics 77: 837-852. 
Zimmermann, A., T. Heckeleï and I. Perez Dominguez (2009). Modelling farm structural change for integrated ex-ante assessment: 

review of methods and determinants. Environmental Science and Policy 12: 601-618. 

 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Piet, L. (2011). Assessing structural change in agriculture with a parametric Markov chain

model. Illustrative applications to EU-15 and the USA.  Presented at 13.  EAAE Congress: "Change
and Uncertainty Challenges for Agriculture, Food and Natural Resources", Zurich, CHE (2011-08-30

- 2011-09-02).  13 p.

 

 11 

Table 1. The experimental population 

t  
Category intervals 

( )2;0  [ )5;2  [ )10;5  [ )20;10  [ )50;20  [ )75;50  [ )100;75  [ )200;100  [ )400;200  [ )+∞;400  

0 0.0447 2.2303 13.5905 34.1345 40.6904 6.4829 1.8149 0.9671 0.0439 0.0008 
1 0.0942 2.0836 12.8150 33.6788 41.2592 7.0332 1.9458 1.0247 0.0638 0.0017 
2 0.1295 1.9594 12.0929 33.1821 41.7982 7.5749 2.0888 1.0867 0.0845 0.0031 
3 0.1540 1.8519 11.4216 32.6509 42.3062 8.1076 2.2432 1.1536 0.1060 0.0049 
4 0.1705 1.7569 10.7981 32.0911 42.7826 8.6312 2.4080 1.2258 0.1286 0.0072 
5 0.1811 1.6712 10.2193 31.5082 43.2267 9.1454 2.5826 1.3036 0.1521 0.0099 
6 0.1872 1.5929 9.6816 30.9068 43.6382 9.6499 2.7661 1.3872 0.1769 0.0132 
7 0.1899 1.5204 9.1820 30.2914 44.0171 10.1446 2.9577 1.4770 0.2028 0.0170 
8 0.1901 1.4526 8.7173 29.6657 44.3634 10.6292 3.1569 1.5732 0.2302 0.0214 
9 0.1885 1.3888 8.2846 29.0332 44.6774 11.1034 3.3629 1.6760 0.2590 0.0263 
10 0.1856 1.3284 7.8812 28.3966 44.9595 11.5671 3.5750 1.7855 0.2894 0.0318 
11 0.1816 1.2710 7.5046 27.7587 45.2102 12.0200 3.7926 1.9018 0.3214 0.0380 
12 0.1770 1.2165 7.1526 27.1217 45.4300 12.4620 4.0151 2.0250 0.3553 0.0449 
13 0.1719 1.1644 6.8231 26.4875 45.6196 12.8928 4.2419 2.1552 0.3910 0.0525 
14 0.1665 1.1147 6.5142 25.8578 45.7798 13.3124 4.4724 2.2924 0.4288 0.0609 
15 0.1610 1.0673 6.2242 25.2340 45.9113 13.7206 4.7062 2.4366 0.4687 0.0701 
16 0.1553 1.0220 5.9516 24.6174 46.0151 14.1172 4.9426 2.5879 0.5108 0.0802 
17 0.1496 0.9788 5.6950 24.0089 46.0920 14.5021 5.1812 2.7461 0.5553 0.0911 
18 0.1440 0.9375 5.4532 23.4094 46.1428 14.8754 5.4214 2.9112 0.6022 0.1030 
19 0.1385 0.8980 5.2251 22.8198 46.1685 15.2368 5.6629 3.0831 0.6515 0.1159 
20 0.1331 0.8604 5.0095 22.2404 46.1700 15.5864 5.9052 3.2617 0.7035 0.1298 

Source: author’s calculations 
 

Table 2. Transition probability matrix for the 5-category aggregation case a 
 ( )10;0  [ )20;10  [ )50;20  [ )100;50  [ )+∞;100  

( )10;0  0.9579 0.0421 0.0000 0.0000 0.0000 
[ )20;10  0.0079 0.9500 0.0421 0.0000 0.0000 
[ )50;20  0.0000 0.0026 0.9782 0.0192 0.0000 
[ )100;50  0.0000 0.0000 0.0016 0.9765 0.0219 
[ )+∞;100  0.0000 0.0000 0.0000 0.0001 0.9999 
a The functional form of the underlying relative size change probability distribution is log-normal with parameter µ = 0.01 and σ = 0.01. 

Source: author’s calculations 
 

Table 3. Farm population data for EU-15 and the USA (1,000 individuals) a 

Year 
EU-15  USA 

8-16 16-40 40-100 > 100 Total  100-250 250-500 500-1000 >1000 Total 
1995 781.8 829.8 483.4 153.9 2248.8       
1996 757.5 820.7 515.7 181.9 2275.7  206.5 100.7 40.3 22.4 369.8 
1997 753.7 822.0 519.5 184.4 2279.6  206.1 82.6 34.6 18.7 342.0 
1998 747.9 819.7 517.2 184.2 2269.0  197.6 96.0 43.0 24.9 361.5 
1999 657.4 768.6 529.4 232.5 2187.9  199.2 81.4 38.3 26.2 345.1 
2000 656.7 769.7 527.3 233.9 2187.5  202.2 82.7 41.0 21.3 347.1 
2001 649.0 771.0 529.9 236.6 2186.4  191.0 87.9 39.4 27.9 346.3 
2002 578.8 710.1 518.1 258.1 2065.1  187.5 88.7 42.1 27.2 345.6 
2003 578.1 711.1 517.9 260.4 2067.5  170.0 87.4 45.0 28.0 330.4 
2004 602.7 728.5 514.6 262.6 2108.5  167.9 88.9 44.7 34.5 336.0 
2005 598.5 735.2 515.1 264.5 2113.3  165.9 89.8 43.9 35.1 334.7 
2006 562.9 735.5 505.9 279.6 2083.9  165.4 90.3 45.7 35.3 336.7 
2007 571.7 731.5 505.8 281.9 2090.8  147.8 96.9 72.1 47.6 364.4 
2008       145.1 97.8 74.4 51.3 368.5 
2009       147.2 99.0 74.4 50.1 370.7 
a The categories for the EU-15 are based on the economic size of the farms measured in European Size Unit (ESU); the categories for the 
USA are based on the economic size of farms measured in 1000 US$ of gross sales. 

Source: European Commission, FADN for the EU-15 and USDA, ARMS for the USA 
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Table 4. Estimation results for the four tested functional forms a 
 EU-15  USA 

 LN WB GM GB  LN WB GM GB 

θ1 -0.0020 0.0194*** 6.2158*** -0.0217*  -0.0085 0.0255* 5.2791*** -0.0393 
(0.0069) (0.0061) (0.7379) (0.0118)  (0.0240) (0.0138) (1.4936) (0.0421) 

θ2 -3.1077*** 3.3190*** -6.2168*** -3.3132***  -2.6389*** 2.8413*** -5.2850*** -2.8435*** 
(0.3686) (0.3662) (0.7343) (0.3530)  (0.7461) (0.7709) (1.4775) (0.7210) 

TRMSE 0.02805 0.02801 0.02805 0.02805  0.07636 0.07636 0.07636 0.07636 
a “LN” stands for log-normal; the corresponding parameters are θ1 = µ and θ2 = ln(σ). “WB” stands for Weibull; the corresponding 
parameters are θ1 = ln(λ) and θ2 = ln(ν).“GM” stands for Gamma; the corresponding parameters are θ1 = ln(θ) and θ2 = ln(κ).“GB” 
stands for Gumbel; the corresponding parameters are θ1 = µ and θ2 = ln(β). “TRMSE” stands for the total root mean square error. 
Estimated coefficients are in bold font with the corresponding standard deviations in bracketed regular font. *** stands for significantly 
different from zero at the 1% level, ** for significantly different from zero at the 5% level and * for significantly different from zero at the 
10% level. 

Source: author’s estimates 
 

Table 5. Estimated transition probability matrices for the EU-15 and the USA a 
EU 8-16 16-40 40-100 100+  USA 100-250 250-500 500-1000 1000+ 
8-16 0.9613 0.0387 0.0000 0.0000  100-250 0.9597 0.0403 0.0000 0.0000 
 (0.0065) (0.0065) (0.0000) (0.0000)   (0.0173) (0.0173) (0.0000) (0.0000) 
16-40 0.0147 0.9568 0.0285 0.0000  250-500 0.0353 0.9174 0.0472 0.0000 
 (0.0035) (0.0053) (0.0067) (0.0000)   (0.0443) (0.0593) (0.0213) (0.0000) 
40-100 0.0000 0.0131 0.9591 0.0278  500-1000 0.0000 0.0347 0.9183 0.0469 
 (0.0000) (0.0035) (0.0057) (0.0068)   (0.0028) (0.0427) (0.0597) (0.0214) 
100+ 0.0000 0.0000 0.0028 0.9972  1000+ 0.0000 0.0000 0.0043 0.9957 
 (0.0000) (0.0000) (0.0006) (0.0006)   (0.0000) (0.0003) (0.0052) (0.0055) 
a The categories for the EU-15 are based on the economic size of the farms measured in European Size Unit (ESU); the categories for the 
USA are based on the economic size of farms measured in 1000 US$ of gross sales; the functional forms of the underlying relative size 
change probability distributions are both Weilbull with parameters ln(λ) = 0.0194 and ln(ν) = 3.3190 for EU-15 and ln(λ) = 0.0255 and 
ln(ν) = 2.8413 for the USA (see Table 4); in each cell, the bold figure is the estimated transition probability and the figure in brackets its 
associated standard deviation, both resulting from a Monte Carlo simulation with 200 draws (see text for further explanation); shaded 
cells indicate coefficients which are significantly different from zero at the 5% level at least. 

Source: author’s estimates 
 

Fig. 1. The impact of the added-noise intensity a 
 a) Noise intensity 1.0=α  b) Noise intensity 0.1=α  
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a Category (0;2] of the 10-category aggregation and replication #1 

Source: author’s calculations 
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Fig. 2. Impacts of the added-noise intensity and of the aggregation level on the estimation of the 
parameters µ  and σ  a 
a) 10-category data b) 5-category data c) 5-category aggregation 

 with noise with noise of 10-category data with noise 
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a The box, whiskers and outliers have the standard definitions and summarize the results of 100 replications; the bold horizontal lines are 
set to the true values of µ and σ. 

Source: author’s estimates 
 

Fig. 3. Quality of the adjustment for the parametric vs. the standard MCM 
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Source: author’s estimates 
 

Fig. 4. Estimated cumulative distributions of the relative size change probability for EU-15 and 
the USA for various functional forms a 

 a) EU-15 b) USA 
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a The parameters defining the distributions are given in Table 4; vertical bars mark the resulting average relative size change; in either 
panel, the bold distribution is the one with the lowest associated total root mean square error (TRMSE). 

Source: author’s estimates 


