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ABSTRACT

The Markov chain model (MCM) has become a poputenl in the agricultural economics
literature to explain the past evolution of anddete the future developments in the number aral siz
distribution of farms. In this paper, | show thia¢ twvay MCMs have been implemented by agricultural
economists so far suffers from the fact that ttémsiprobabilities are estimated as almost indepanhd
variables (up to adding-up to unity constraintd)e Blternative parametric MCM | propose addresses
the deriving issues since (i) it is parsimoniouserms of parameters; (ii) it can be estimated with
simple econometric techniques; (iii) it revealsailetl information on the structural change procgsse
at hand. Applying it to experimentally controlledtd with noise shows that the proposed model
behaves well and competes with the traditional @g@gnr without any significant shortcoming. Two
illustrative empirical applications, one using déitam the EU-15 Farm Accounting Data Network
(FADN) and the other using data from the USA Agitiaxal Resource Management Survey (ARMS),
reveal the rich information that can be derivedarding the economic size changes experienced
annually by farms in both regions.

1. INTRODUCTION

The so-called Markov chain model (MCM) has beconmopular tool to study the evolution of
structural change in agriculture, that is the etrofu of the number and structures distribution of
populations of agricultural firms (Zimmermann et 2009).

Basically, a Markov chain model allows to recovss humber of farms in a particular category at
a particular date as the sum of the transitionsatdw/this category experienced by farms which where
previously in any other categoriésit each time step, transitions occur only withregiain probability
(i.e, only a fraction of individuals move from one aatey to another, including staying in the same

J
category). Formally, this can be written al%m:Zpkjnk’t, where J is the (finite) number of
k=1

categories indexed by, k :{1...J}; n;, is the number of individuals in the-th category at timet;
and p,; is the probability for the individuals in categdkyto move to category betweent andt +1;
further, p, is subject to the standard probability constraoftpositivity (p,; = 0) and adding-up to

J

unity (Z Py =1). When p,; depends ont the model is said non-stationary; otherwise is#d
j=1

stationary.

The task of the modeller then consists in estingativese transition probabilities. This is quite
simple when individual (panel) data are availabtee individual transitions are directly observable
and countable; it is a more complicated task whag aggregate (cross-sectional) data are available,
which is the most common empirical situation —ini@gtural economics at leaStHowever, Leeet al.
(1965) and Leet al. (1977) showed that econometric techniques magessible to estimate a robust
MCM from aggregate data only; since then, moshefMCM literature in agricultural economics has
used such aggregate data (Zimmermetnal,, 2009).

! To my knowledge, most empirical works consider phevious date only, leading to a Markov chain pescof degree 1.
More general (higher degree) MCMs consider seyarlious dates (Berchtold, 1998).
2 panel data are costly and are therefore usuadiyelil both in terms of observation dates and sasipte



The drawback of this aggregate MCM implementatiarieh | shall refer to as the “standard”
MCM implementation in the following— is that the mber of transition probabilities to estimate is
usually large even when only a few categories aasidered. Moreover, this number grows

exponentially as the number of categories increasiase all theJ® possible transitions have to be
taken into account and the corresponding probegdslihave to be estimated; this number is actually
limited to J(J —1) thanks to the adding-up to unity constraints hatéxponential growth rate remains.
Then, the number of observations needed to ideatifthe parameters of the model rapidly becomes
prohibitive, leading to an ill-posed problem (Katiamis, 2002). In sum, the analyst is faced with a
trade-off between the richness of the data he hhs aisposal to estimate the model and the risbine
of the information he can recover from it. Two ditens have been explored so far in the literatare
overcome this drawback. First, arbitrary zero-c@ists can be imposed on some specific
probabilities, assuming that the correspondingsiteoms are impossible and thus reducing the number
of parameters to estimate (among others, see KiE3t4), Zepeda (1995) or Gillespie and Fulton
(2001)); then, simple econometric techniques likedr seemingly unrelated regressions (SUR) or
ordinary least-squares (OLS) can still be appl&etond, more elaborate econometric methods can be
used such as the generalized cross-entropy (GGE)nstrumental variables GCE (IV-GCE) which
take advantage & priori beliefs on the magnitude of transition probal@itrather than making rigid
assumptions as above (Karantininis, 2002; Stok@86;2Tonini and Jongeneel, 2008); however one
can suspect that, even if more flexible, these emogs priors closely drive the results in the aase
such strongly under-identified modél&inally, a consequence of this standard approsthe quite
limited information it produces: of course, it filgfits initial objective in the sense that it eusadly
permits to project the population to any arbitréprizon, that is to simulate the number of farms in
each category and as a whdle.(a relevant information for the planners) but... iki&.* In particular,

it does not exploit the fact that in general, astan all the works listed by Zimmermaanal. (2009),

the dependant variable in the model, that is theer@ defining the J categories, is actually a
continuous (size) variabfe.

The structural MCM | have developed tackles all tbé previous shortcomings: (i) it is
parsimonious in terms of parameters; (ii) it doesnequire to forma priori assumptions or beliefs on
the individual probabilities themselves; (iii) its isimpler version, it can be estimated with stashda
SUR techniques; and (iv) the information it brirlgads to richer insights into the structural change
process at hand and the distribution of the pregegbpulation.

The rest of the paper is organised as follows.i@e& presents the proposed parametric modelling
framework, emphasizing on how it departs from andcées the standard MCM approach that was
briefly outlined in this introduction. Section 34t describes the data which were used to demdastra
the satisfactory behavior of the proposed modeal theoretic experimental design; it then describes
two empirical datasets, one for EU-15 (15 Membatest of the European Union) and the other for the
United States of America (USA). Section 4 repohs tesults for both the experimental and the
empirical illustrative applications before conclogi remarks and directions for future work are
discussed in the last section.

% As an illustration, Karantininis (2002) works of ategories and 15 census years and is so facedhei estimation of
324 probabilities from 14 transitions correspondin@52 data points.

4 Of course, non-stationary MCMs bring extra infotim regarding the impact of some explanatory \#eis (such as
policy or market variables) on the transition proibaes but here | only refer to the “intrinsichfiormation regarding the
structure of the population that can be extracteshfa MCM.

® Butault and Delame (2005) are a worth noticingegion: using a large scale panel, they worked withrge number of
categories not only defined upon the size of faboisalso on qualitative variables such as the regtee type of farming,
the legal status of the farm or the age of the atper
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2. THE PROPOSED MODEL

As in the standard approach, the population untetysis partitioned into a finite number of
categoriesJ . But here, these categories are explicitly defiogdr the continuous quantitative size

variable X as intervals(x;,x;], with j :{l..J}. Dealing with aggregate data, the numbers of firms
each category at several time perlcmgs are the only observations we have.

X1t

With these definitions, the standard Markov chajonation can be expressed as:

(>< X+l Zk 1p(><k xk](x X1 (><k X It (1)

where Pox, #10x, %] is the probability to move from an initial sizerg in (x,,X ] to a final size lying in

(X;,%;] in one time-period. The standard probability coaists of positivity, Pl 5 10,.%,] >0, and

adding-up to unity,Zj:1 Pox, x10x, %1 = 1o apply.
Whereas in the standard approach it is an aggragé&eown, here the transition probability
Pox, 510x,.%,1 €@N be explicitly derived from the individual pedhlity 77(1+ 5x|x) of experiencing a

relative change in sizé+ dx (-1< & < +w )® between two consecutive dates, conditional omiali
size x:

1(1+ x| X) = P()g+l/)§:1+5>f)§: >) (2)

For an individual exhibiting the initial siz&, =x lying in (x,,X.], the probability to exhibit a
final size X,,, = X' lying in [x;, %) is then given by:

P

S :Lk p( X, = x)( ,// 71(1+5x| >§ do >)j 3

In the absence of more precise information reggrdime distribution of the probabilities
P( X = x), as is the case when dealing with aggregate tteaimplest assumption to be made is that

of a uniform distribution over each intervék,,x], that is, P( X, = X) =1/(% - % ). Then, equation
(3) simplifies to:

_ 1 X %/%
Pix x10x,.%1 ——X( X Lk “Xj/xn(1+ ox|x) d@ X)j dx 4)

It is worth noticing that assuming a uniform distriion of sizes on(x,,X,] does not imply that

this distribution be uniform on the whole range Xf but only that it is piece-wise uniform. Any size
distribution could thus be approximated be the nemds categories sufficient. This assumption could
be relaxed in empirical applications if some knalge regarding the true size distributions at eath d
were available.

® 5x = —1 would correspond to exiting the sector, afieanot taken into account so far (see Section 5).



A parametric form with a known cumulative distritaut function F(x;6, (x)), where,(x) is a
set of| parameters definindgr , can be chosen fo;rr(1+ oxX| x). This allows rewriting (4) in a simpler
way:

Pl xele; 1 =F]-l(k'|.xk( ( J/X 0 ) F(l( /X 0 )) (5)

Then, the parametric Markov chain model to estinmtine system of pooled equations (1) with
the addition of error terms; ,,, and p,_ being given by (5):

(%)%, 1

(>< XLt Zk 1p(><k xk](x X1 (><k X ]t u1,t+1

(6)
Withp(xk,xkl(xj,x,q:)—(kixkf( Fx X, /%0, (x ()= F (x /x:0, (x))lix

It is easy to see that the standard probabilitysttamts of positivity and adding-up to unity are
implied by (5) and the definition df (J; 0, (x)) as a cumulative distribution function.

3. EXPERIMENTAL AND EMPIRICAL DATA

In order to demonstrate the characteristics andubmess of the parametric MCM defined by
equation (6), | first designed a hypothetical datxperimental data; the choices that | have madiot
so are arbitrary but it was intended to reprodbeekind of data that are usually available in erogir
studies in the agricultural sector. As an illustnatof such data, | then applied the parametric MoM
two datasets, one for EU-15 and the other for t8BAU

This section presents both types of data succdgsive

3.1. The experimental design

A hypothetical set of experimental data was usedetimonstrate the behavior of the parametric
MCM: a set of 100 hypothetical individuals was giemed into ten classes defined over a hypothktica
(size) variable taking its values over the domdln¢). The category intervals chosen were (0;2],
(2;5], (5;10], (10;20], (20;50], (50;75], (75;10Q0.00;200], (200;400] and (400%} and the initial
distribution of sizes was chosen to follow a logmal distribution F(X)=d)(ln(X);In(ZO),In(Z))
where ®(u;m,s) is the normal distribution with meam and standard deviatios. As can be seen

from Table 1, | chose (i) unequally spaced lowed apper bounds to define the size intervals and (ii
an initial size distribution which is not uniformutorather highly skewed toward small sizes; as
previously mentioned, this is meant to mimic wisaisually found in the empirical data.

[insert Table 1 around here]

In this experiment, a log-normal functional forf(dx) = CD(In(1+ OX) ;,u,a') for the distribution

of 77(1+0Jx|x) was also chosen. For the sake of simplicity arttiaut loss of generality, the and
o parameters were chosen not to depend on thel isitie; they were both set to 0.01. Equation (5)
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was then used to compute the transition probaslif and equation (1) to generate a set of

X X)X}, %)
20 more observation periods; the dataset then dsetp1 time periods, or 20 transitidh8. second

set of data was created by aggregating the iniéal categories into five ones on the following
intervals: (0;10], (10;20], (20;50], (50;100] and (100;+o |; this aggregation preserves the overall log-

normal shape of the initial size distribution.
Table 1 reports the 10-category population aggiegatataset and Table 2 presents the transition
probability matrix for the 5-category aggregati@se.

[insert Table 2 around here]

A simple white noise could not be directly addeattsiit could have moved the data too far away
from the underlying Markov process. | therefore@tdd the following procedure which was applied a
hundred times to both the 10- and 5-category poipualaggregations to obtain 100 replications ohbot
datasets:

1. for each category and each time period, compofte= 05x (n(xjjj]’t_l + n@jmt) and

n’, = 05x (n@j,ij]’t + n@j,ij]m); for the first ¢=0) and last {=20) periods, take
a _— b b _ a H .
n'y = 2n(5j %10 ~Njo andn; ,, = 2n(5j %120~ N} 200 respectively;

; — i a b "= a b
2. definen,, = mln(njyt,njyt) andnj = max(nj’t,nj’t)

3. replacen, ;. by N, . :n(xj,ij],ﬁa.gj,t.(nj,t —n“)/z where g, is a random number

uniformly drawn in[-11] and a is a parameter ranging from 0.1 (minimum noise)l 1

(maximum noise);
4. for each time period, scale back the resultiaga do 100; this preserves a constant population
at each date so that entries and exits are notideyed, only the evolution of population

shares are.

Finally, a third set of data was prepared by agafieg the disturbed 10-category data into five
categories defined on the same intervals as thalibicategory data for each replication.

Fig. 1 compares the resulting disturbance of thgiral data for two levels of noise intensity in
the case of th€0; 2] category of the 10-category population and forfitst replication.

[insert Fig. 1 around here]

" Actually, the integral in equation (5) has no eldform analytical solution when the log-normaltisition is used; a
numeric approximation of the integral was perfornusthg a simple trapeze formula and choosing astize of 1 and an
upper bound of the last interval set to 1000 aspproximation for infinity.
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3.2. Empirical datasets

A first dataset was created for the fifteen “higtal’ Member states of the EUrom the Farm
Accounting Data Network (FADN) data available oe thebsite of the European Commissidn.the
database available on-line, the total populatioprofessional farms can be split up according &rth
economic size measured in Economic Size Unit (E8W)the sake of homogeneity across countries, |
only kept categories defined over a size greatan tir equal to 8 ESU, leading to 4 classes: 84s le
than 16 ESU; 16 to less than 40 ESU, 40 to less 108 ESU and 100 or more ESU. Though data are
available from 1989 to 2008 on the Commission webshe time period covered here is 1995-2007
only because (i) data are not available before I80Bustria, Finland and Sweden who joined the EU
in 1994 and (ii) data are lacking for Italy in 200&is results in 12 observed annual transitions.

A second dataset was created for the USA from thecAltural Resource Management Survey
(ARMS) data available on the website of the US Depent of Agriculture (USDAY? In the database
available on-line, the total population of farmsnchae split up according to their economic size
measured in US dollars of gross sales; in the AR&®inology, | kept only categories defined over
gross sales greater than or equal to US$ 100,8@djrig also to 4 classes: US$ 100,000 to less than
US$ 250,000; US$ 250,000 to less than US$ 500,0@% 500,000 to less than US 1,000,000; and
US$ 1,000,000 or more. The time period covered 996312009, resulting in 13 observed annual
transitions.

Table 3 presents the resulting two datasets. As thé experimental dataset, the parametric MCM
defined by equation (6) was run on the shares @uladon and not on the population numbers
themselves in order to focus on structural chamgernst on entry/exit issues.

[insert Table 3 around here]

4., RESULTS

With only two parameters to estimate whatever thenlmer of categories considered, the
parametric model was always a well-posed problémould be therefore estimated with a simple non
linear system of equations seemingly unrelatedessgon (SUR) estimation procedure.

4.1. Assessing the parametric Markov Chain Model

The parametric model was first estimated with thigeeimental datasets described in the previous
section. The left panel of Fig. 2 shows that thénestion of the parameterg and ¢ is unbiased
whatever the intensity of the noise added to thgiral data. Still, as expected, the dispersionhef
estimated coefficients, which could be assessemh fite 100 replications, increases with the noise
intensity. The centre panel of Fig. 2 shows thatektimation remains unbiased with more aggregated
data if the aggregation occubgforethe addition of noise; however, the rightmost pasfeFig. 2
shows that the estimation is no longer unbiasechvithe data are aggregat&itierwards

[insert Fig. 2 around here]

8 Austria, Belgium, Denmark, Finland, France, GerypaBreece, Ireland, ltaly, Luxembourg, the Nethedls Portugal,
Spain, Sweden and the United Kingdom.

® http://ec.europa.eu/agriculture/rica/index_en.cfm

10 http://www.ers.usda.gov/Briefing/ARMS/



In order to assess how the parametric MCM compaittsthe standard approach, | estimated a
stationary multinomial logit model following Zepédg1995) specification with the 5-category data.
The unconstrained logit would have required esi'mga5><(5—1) = 20 transition probabilities (thanks
to the adding-up to unity constraint); since thperkmental database contains 20 transitions ohiy, t
model would have been an ill-posed problem. Thensaisually done, | imposed constraints on some
transition probabilities in order to reduce the te@mof parameters by only setting possible: i)ty s
in the same category; ii) to move to the very poasi category; and iii) to move to the very next
category. So constrained, the logit model enconguh8gparameters only.

The sum of the root mean square errors over thgudt®ns forming the system to estimate was
used as a measure of how the models fit the 'ddtia. 3 reports this overall fit for both the pawtnic
and the constrained multinomial logit MCMs. It stethat, if both models perform quite similarly
whatever the level of noise, the standard modeiglbetter on average though. However, the standard
model fails to recover the true underlying tramsitiprobability matrix while the parametric model
always does (not reported here).

[insert Fig. 3 around here]

4.2. Empirical results

The parametric MCM was then estimated with the emapirical datasets using four alternative
functional forms forF (dx):

« alog-normal distributionf (6x) = LN(1+5x 1,0) =®(In(1+ 5% ;11,0);

« a Weibull distribution: F (dx) =WB(1+J xv,A) where WB(u;v,A)=1-e ™" with shape
v >0 and scaled >0;

+ a gamma distribution:F (dx) = GM (1+Jxk,8) where GM(u;8,4) =T (x,u/8)/T (k) with
shapex >0 and scaled >0 and () the gamma function;

+  a Gumbel distributionF (6x) = GB(J % i, B) where GB(u; i1, B) =€
and scales >0.

(u-p)/ B . .
" with location y

Here again, the parameters definirfg(dx) were chosen independent from the initial size

whatever the specification for the functional fof.he number of parameters to be estimated in each
case (two) was thus always much smaller than thmbeu of observations. Table 4 reports the
corresponding results; note that, since the econsime is not measured with the same indicatoes, th
results for EU-15 and the USA cannot be directijmpared to each other.

In both cases, the Weibull specification outperfortime other distributions on the ground of the
total root mean square error; differences are stialligh from one specification to the other, esgbci
in the USA case.

[insert Table 4 around here]

11 Since there is neither entry nor exit in the carded experimental dataset, we are in fact dealiit a constant
population so that the number of individuals in, thay, last category is known once the number difiduals in the other
categories have been determined. One equatiombeefdre to be dropped in the estimation processs Zepeda, 1995).

2 For those which must be strictly positive, the tdghe parameter was actually estimated.



In the parametric MCM, the “standard” transitiorolpabilities are not estimated directly. Rather,
they derive from the underlying probability disuition of relative size change as was shown in 8ecti
2. The standard errors associated to these praieshihre therefore not readily available from the
estimation process and are not easy to computgtaxadlly from equation (5). To overcome this issue,
I implemented a Monte Carlo simulation of the traos probability matrices, replicating equation (5
200 times by drawing in the normal distributionginked by the coefficients and standard deviations
appearing in Table 4 for each parameter of the Wedistribution. The resulting average estimated
transition probabilities and their associated staddleviations are reported in the transition piodig
matrices of Table 5.

[insert Table 5 around here]

As is usually found in the literature, both matsicare highly diagonal: every diagonal term is
close or above 0.90 and the only off-diagonal tewhsch are significantly different from zero are
small (below 0.05). This means that most probaliyls and USA farms tend to stay in the same size
category from one year to the other: as can be fseenthe cumulative distributions reported in Hg.
resulting from the estimated coefficients, bothdkerage and the median relative changes in ecanomi
size are close to zero for either datasets.

This does not mean no structural change at allghoas these curves also show, 10% of the farms
experience of relative decrease of -6.0% and -100%ore respectively in EU-15 and in the USA,
while 10% experience an increase in their econaize of respectively +5.1% and +7.7% or more.
Note that this kind of information could not haveeb derived from the standard MCM approach.

[insert Fig. 4 around here]

Finally, some transitions appear implausible, tBsoaiated probabilities being estimated very
close to zero: the estimated cumulative distrimgiof Fig. 4 show that this is the case for a nedat
change in economic size below -13.7% or above +7of%U-15 and below -20.0% or above +12.1%
for the USA. Note again that this could not haverbmferred in the standard approach setting.

5. CONCLUDING REMARKS

In this paper, | present an original way of impletneg the Markov chain model (MCM) which
has been widely used in the recent academic litexdb study the evolution and structural change of
agricultural populations in several countries. Kalthe “standard” MCM approach which regards the
transitions probabilities as almost unrelated patans (up to adding-up to unity constraints), the
method | propose takes advantage of the quangtatind continuous nature of the dependent variable
used to define the categories into which the stugegpulation is broken down. It allows to exprdss t
transition probabilities as deriving from an ungier probability distribution of the relative chaagn
size, leading to a much richer information on theictural change process at hand. Further, no
assumption has to be formed regarding the impdgilwr implausibility of specific transitions:
improbable transitions derive “endogenously” frdra estimated probability distribution.

Yet an assumption on the shape of this distributias to be made. Choosing a parametric
functional form reduces sharply the number of patans to be estimated. The model is thus made
parsimonious and it is less likely to be an illpdgproblem; rather “simple” econometric techniques
can then be employed. Moreover, several functiforahs could be tested and four of them have been
illustrated here. More flexible forms could be chiesat the expense of an increasing set of parasnete
this number should however stay small comparethabin the standard approach. Another important
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assumption that was used here regarding the pidiatiistribution is that its parameters were set
independent of the initial size. This could be xelhin two ways: (i) these parameters could be made
dependent on the initial size category to whichytlaply; this would increase the number of
parameters of the model and relate it directlyn® number of categories; still the relation wouéd b
linear whereas it is exponential in the standargr@gch; (i) a statistical relationship between the
parameters and the initial size itself could becB@al, adding more structure into the model; chiogs

a simple linear relationship would only double tmember of parameters and would preserve the
independenceis-a-visthe number of categories, maintaining the parsim@nature of the model; but
this would intuitively require to have a more dktdiinformation regarding the distribution of sizes
among the population at one’s disposal or to faunther assumptions regarding it. Either ways would
however allow to test rigorously the relationshgivizeen the relative size change and the initiad, siz
l.e. to test whether the so-called Gibrat’s law holdsat.

In the illustrative empirical analyses presentedcehéhe model was applied to the evolution of
population shares. The recovered information tleeeefleals with structural change only and not with
the developments in the absolute numbers of fatmshould be easy to extend the framework to
account for entries and exits, either in the dicecbf Zepeda (1995) who complements the Markov
chain with a net exit process, or in the directminKarantininis (2002) and Stokes (2006) who
explicitly consider entries and exits separately.

Finally, the model presented here is stationarnoA-stationary version could be built by making
the probability distribution parameters depend mnetvarying covariates. A simple trend would
preserve parsimony but would not be much intergdtiom an economic and political point of view.
More appealing would be to use market and policglamatory variables as is done in the recent
literature using the standard MCM approach (Zep&885; Karantininis, 2002; Stokes, 2006; Tonini
and Jongeneel, 2008). The number of parameterstitnage would increase so that even the structural
approach proposed here would become an ill-posalgmm and generalized cross-entropy (GCE) or
instrumental variables GCE (IV-GCE) techniques wlobke required. Yet the structural approach
would still be the more parsimonious of the two moels so that more degrees of freedom would be
preserved for an undoubtedly more robust covagHeets estimation.
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Table 1. The experimental population

t Category intervals
(02) [25) [510) [1020) [2050) [50;75) [75100  [100200) [200400 [40Q+w)

0 0.0447 22303  13.5005  34.1345  40.6904 6.4829 4981 0.9671 0.0439 0.0008
1 0.094: 2.083¢ 12.815(  33.678¢  41.259: 7.033: 1.945¢ 1.024; 0.063¢ 0.001"

2 0.1295 1.9594  12.0929  33.1821  41.7982 75749  83.08 1.0867 0.0845 0.0031
3 0.1540 1.8519  11.4216  32.6509  42.3062 8.1076 3224 1.1536 0.1060 0.0049
4 0.170¢ 1.756¢  10.798:  32.091°  42.782( 8.631: 2.408( 1.225¢ 0.128¢ 0.007:

5 0.181: 1.671:  10.219: 31508,  43.226° 9.145: 2.582¢ 1.303¢ 0.152: 0.009¢

6 0.1872 1.5929 9.6816  30.9068  43.6382 9.6499 2766 1.3872 0.1769 0.0132
7 0.1899 1.5204 9.1820  30.2914  44.0171  10.1446  72.95 1.4770 0.2028 0.0170
8 0.190: 1.452¢ 8.717: 29665  44.363:  10.629; 3.156¢ 1.573: 0.230: 0.021

9 0.1885 1.3888 8.2846  29.0332  44.6774  11.1034 2936 1.6760 0.2590 0.0263
10 0.1856 1.3284 7.8812  28.3966  44.9595 115671 7585  1.7855 0.2894 0.0318
11 0.1816 1.2710 75046  27.7587 452102  12.0200 9287  1.9018 0.3214 0.0380
12 0.1770 1.2165 7.1526  27.1217 454300  12.4620 1540  2.0250 0.3553 0.0449
13 0.1719 1.1644 6.8231  26.4875 456196  12.8928 4182  2.1552 0.3910 0.0525
14 0.166¢ 1.114; 6.514.  25.857¢ 45779  13.312 4.472: 2.292: 0.428¢ 0.060¢
15 0.1610 1.0673 6.2242 252340 459113  13.7206 0627  2.4366 0.4687 0.0701
16 0.1553 1.0220 5.9516  24.6174  46.0151  14.1172 4269  2.5879 0.5108 0.0802
17 0.149¢ 0.978¢ 5.695(  24.008¢  46.092(  14.502 5.181: 2.746: 0.555: 0.091
18 0.144( 0.937 5.453;  23.400:  46.142¢  14.875 5.421¢ 2.911: 0.602: 0.103(
19 0.1385 0.8980 5.2251  22.8198  46.1685  15.2368 629.6  3.0831 0.6515 0.1159
20 0.1331 0.8604 5.0095  22.2404  46.1700 155864 058.9  3.2617 0.7035 0.1298

Source: author’s calculations

Table 2. Transition probability matrix for the 5-category aggregation case'

(020) [1020) [2050) [50100  [10Q+w)
(020) 0.9579  0.0421  0.0000  0.0000  0.0000
[1020) 0.0079 09500  0.0421  0.0000  0.0000
[2050) 0.0000  0.0026 09782  0.0192  0.0000
[50100 0.0000  0.0000  0.0016  0.9765  0.0219

[10Q+oo) 0.0000 0.0000 0.0000 0.0001 0.9999

& The functional form of the underlying relativeeschange probability distribution is log-normal tviparamete/ = 0.01 ando = 0.01.

Source: author’s calculations

Table 3. Farm population data for EU-15 and the USA (1,000ndividuals) 2

Year EU-15 USA

8-16 16-40 40-100 >100 Total 100-250  250-500 5000 >1000 Total
199¢ 781.¢ 829.¢ 483.£ 153.¢ 2248.¢
1996 757.5 820.7 515.7 181.9 2275.7 206.5 100.7 340 224 369.8
1997 753.7 822.0 519.5 184.4 2279.6 206.1 82.6 6 34. 187 342.0
199¢ 747.¢ 819.7 517.2 184.2 2269.( 197.¢ 96.C 43.C 24.¢ 361.5
199¢ 657.4 768.¢ 529.4 232.5 2187.¢ 199.2 81.4 38.2 26.2 345.1
2000 656.7 769.7 527.3 233.9 21875 202.2 82.7 041. 213 347.1
2001 649.0 771.0 529.9 236.6 2186.4 191.0 87.9 439. 279 346.3
200z 578.¢ 710.1 518.1 258.1 2065.: 187.¢ 88.7 42.1 27.2 345.€
2003 578.1 7111 517.9 260.4 2067.5 170.0 87.4 0 45. 28.0 330.4
2004 602.7 728.5 514.6 262.6 2108.5 167.9 88.9 7 44. 345 336.0
200t 598.¢ 735.2 515.1 264.% 2113 165.¢ 89.¢ 43.¢ 35.1 334.%
200¢ 562.¢ 735.5 505.¢ 279.€ 2083.¢ 165.4 90.2 45.7 35.2 336.%
2007 571.7 731.5 505.8 281.9 2090.8 147.8 96.9 172. 476 364.4
2008 145.1 97.8 74.4 51.3 368.5
200¢ 147.2 99.C 74.4 50.1 370.%

& The categories for the EU-15 are based on the @mimsize of the farms measured in European Size(E8U); the categories for the
USA are based on the economic size of farms mehsud00 US$ of gross sales.

Source: European Commission, FADN for the EU-15dB8®A, ARMS for the USA
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Table 4. Estimation results for the four tested functional brms @

EU-15 USA
LN wB GM GB LN WB GM GB
6, -0.0020 0.0194%* 6.2158"* -0.0217* -0.0085 0.025 5.2791* -0.0393
(0.0069) (0.0061) (0.7379)  (0.0118) (0.0240) (6L (1.4936)  (0.0421)
& 31077 3.3100%*  -6.2168%*  -3.3132%* 2.6389%  2.8413%*  -52850%* -2.8435%*
(0.3686) (0.3662) (0.7343)  (0.3530) (0.7461) (07 (1.4775)  (0.7210)
TRMSE  0.02805 0.02801 0.02805  0.02805 0.07636 0.07636 07686  0.07636

& “LN" stands for log-normal; the corresponding pareeters ared, = 4 and & = In(0). “WB” stands for Weibull; the corresponding
parameters ared, = In(A) and & = In(V).“"GM” stands for Gamma; the corresponding paramstere 6, = In(8 and & = In(x).“GB”
stands for Gumbel; the corresponding parameters @re i and & = In(f). “TRMSE” stands for the total root mean squareagrr
Estimated coefficients are in bold font with theresponding standard deviations in bracketed regfdet. *** stands for significantly
different from zero at the 1% level, ** for sigedintly different from zero at the 5% level and ¥ $ggnificantly different from zero at the
10% level.

Source: author’s estimates

Table 5. Estimated transition probability matrices for the EU-15 and the USA®

EU 8-16 16-40 40-100 100+ USA 100-250  250-500 5000 1000+
8-1€ 0.9613 0.0287 0.000( 0.000( 10C-25¢ 0.95¢7 0.0402 0.000( 0.000(
(0.0065)  (0.0065)  (0.0000)  (0.0000) (0.0173) (0.0173)  (0.0000)  (0.0000)
16-40 0.0147 009568  0.0285 0.0000  250-500 0.0353 09174  0.0472 0.0000
(0.0035) (0.0053) (0.0067)  (0.0000) (0.0443) = (0.0593) (0.0213)  (0.0000)
40-100 0.0000  0.0131  0.9591  0.0278 500-1000  0.0000 0.0347 09183  0.0469
(0.0000) = (0.0035) (0.0057) (0.0068) (0.0028)  (0.0427) (0.0597) (0.0214)
100+ 0.000( 0.000( 0.0(28 0.9¢72 1000+ 0.000( 0.000 0.0043 0.957
(0.0000)  (0.0000) (0.0006)  (0.0006) (0.0000)  (0.0003)  (0.0052 (0.0055)

2 The categories for the EU-15 are based on the @mimsize of the farms measured in European Size(E8U); the categories for the
USA are based on the economic size of farms mehgurED00 US$ of gross sales; the functional foohthe underlying relative size
change probability distributions are both Weilbwlith parameterdn(A) = 0.0194 andn(v) = 3.3190 for EU-15 anth(A) = 0.0255 and
In(v) = 2.8413 for the USA (see Table 4); in each ¢k#, bold figure is the estimated transition probispiand the figure in brackets its
associated standard deviation, both resulting fravlonte Carlo simulation with 200 draws (see textftirther explanation); shaded
cells indicate coefficients which are significardijferent from zero at the 5% level at least.

Source: author’s estimates

Fig. 1. The impact of the added-noise intensity
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Fig. 2. Impacts of the added-noise intensity and of the agggation level on the estimation of the

parameters y and o ®
a) 10-category data b) 5-category data
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Source: author’s estimates

Fig. 3. Quality of the adjustment for the parametric vs. the standard MCM
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Fig. 4. Estimated cumulative distributions of the relativesize change probability for EU-15 and

the USA for various functional forms?
a) EU-15
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2 The parameters defining the distributions are giue Table 4; vertical bars mark the resulting aage relative size change; in either
panel, the bold distribution is the one with thevést associated total root mean square error (TRMSE

Source: author’s estimates
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