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A structural approach to the Markov chain model  

with an application to the commercial French farms 

Laurent PIET1,2,* 

August 3, 2010 

Abstract 

The number and size distribution of farms are, among others, strategic control variables 

for public policy makers who wish to assess ex-ante the impact of the agriculture related 

policies they design. Among the various methods used in the academic literature, the Markov 

chain model (MCM) has become one of the most popular tool to explain the past evolution of 

and simulate the future developments in the number and size distribution of farms. In this 

paper, I show that the way MCMs have been implemented by agricultural economists so far 

suffers from the fact that transition probabilities are estimated as almost independent variables 

(up to the summing constraints). The alternative structural MCM I have developed addresses 

the deriving issues since (i) it is parsimonious in terms of parameters; (ii) it can be estimated 

with simple econometric techniques; (iii) it reveals a richer information on the demographic 

processes at hand (size transitions, entries and exits). The empirical application of the model 

to the French strand of the Farm Accounting Data Network (FADN) shows that the structural 

MCM is well supported by the data and competes with the traditional approach without any 

significant shortcoming; moreover, it leads to the same kind of stylized facts but further 

permits to derive statistical indicators on the distribution of entries and exits which may 

interest the practitioner. A projection of the population of commercial French farms to the 

2020 horizon is also presented. 
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1. INTRODUCTION 

 

Having a good knowledge of the population to which policy measures they design will apply 

is a key information for public policy makers who whish to assess ex-ante the potential impacts of 

these policies. In that perspective, the number and size distribution of farms are, among others, 

strategic control variables in the particular field of policies related to the agricultural production. 

Zimmermann et al. (2009) review the various methods used in the academic literature to 

forecast the number of farms; as noted by these authors, farms are usually grouped into a finite 

number of categories which are defined on the basis of one or several criteria such as the size of 

farms (be it structural or economic), their location, production orientation or intensity, legal status, 

etc. One of the most popular tool implemented in those works is the so-called Markov chain model 

(MCM) applied to a population of farms grouped relative to their size only. In this paper, I show 

that the way MCMs have been implemented by agricultural economists so far exhibits a feature 

which complicates its estimation and limits the scope of its use. The alternative Markov chain 

modelling approach I propose simplifies the estimation of the model and leads to a richer 

information and a wider application range of the model. 

Basically, a Markov chain model allows to recover the number of farms in a particular 

category at a particular date as the sum of the transitions toward that category experienced by farms 

which where previously in any other category.1 At each time step, these transitions occur only with 

a certain probability (only a fraction of individuals move from one category to another) and the task 

of the modeller is to estimate these transition probabilities somehow. This is quite simple when 

individual (panel) data are available since individual transitions are directly observable and 

countable; it is a more complicated task when only aggregate (cross-sectional) data are available, 

which is the most common situation.2 However, Lee et al. (1965) and Lee et al. (1977) showed that 

                                                 
1 To my knowledge, most empirical works consider the previous date only, leading to a Markov chain process of degree 

1. More general (higher degree) MCMs consider several previous dates (Berchtold, 1998). 
2 Panel data are costly and are therefore usually limited both in terms of observation dates and sample size. 
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econometric techniques make it possible to estimate a robust MCM from aggregate data only; since 

then, most of the MCM literature in agricultural economics has used such aggregate data (Piet, 

2008; Zimmermann et al., 2009). 

The drawback of this aggregate MCM implementation –which I shall refer to as the 

“standard” MCM implementation in the following– is that the number of transition probabilities to 

estimate is usually quite large even when only a few categories are considered. Moreover, this 

number grows exponentially as the number of categories increases, since all the 2n  possible 

transitions, where n  is the number of categories, have to be taken into account and the 

corresponding probabilities to be estimated; actually, this number is limited to ( )1−nn  since 

summation constraints apply, but the exponential growth rate remains.3 Then, the number of 

observations needed to identify all the parameters of the model rapidly becomes prohibitive, leading 

to an ill-posed problem (Karantininis, 2002). In sum, the analyst is faced with a trade-off between 

the richness of the data he has to estimate the model and the richness of the information he can 

recover from it. Two directions have been explored so far in the literature to overcome this 

drawback. First, arbitrary zero-constraints can be imposed on some specific probabilities, assuming 

that the corresponding transitions are impossible and thus reducing the number of parameters to 

estimate (among others, see Krenz (1964), Zepeda (1995) or Gillespie and Fulton (2001)); then, 

simple econometric techniques like linear seemingly unrelated regressions (SUR) or ordinary least-

squares (OLS) can still be applied. Second, more elaborate econometric methods can be used such 

as the generalized cross-entropy (GCE) and instrumental variables GCE (IV-GCE) which take 

advantage of a priori beliefs on the magnitude of transition probabilities rather than making the kinf 

of quite rigid assumptions as above (Karantininis, 2002; Stokes, 2006; Tonini and Jongeneel, 2008); 

however one can suspect that, even if more flexible, these exogenous priors closely drive the results 

                                                 
3 As will be made more explicit in the next section, the transition probabilities for a particular category must sum to 1, 

meaning that all individuals in the category experience a transition, be it moving to another category or staying in the 

same one. 
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in the case of such strongly under-identified models.4 Finally, a consequence of this standard 

approach is the quite limited information it produces: of course, it fulfils its initial objective in the 

sense that it eventually permits to project the population to any arbitrary horizon, that is to simulate 

the number of farms in each category and as a whole (i.e. a relevant information for the planners) 

but… this is it.5 In particular, it does not exploit the fact that in general, at least in all the works 

listed by Zimmermann et al. (2009), the dependant variable in the model, that is the categorization 

criteria, is actually a continuous (size) variable. 6 

The structural MCM I have developed tackles all of the previous four shortcomings: (i) it is 

parsimonious in terms of parameters; (ii) it does not require to form a priori assumptions on the 

individual probabilities themselves; (iii) it can be estimated with standard SUR techniques; and (iv) 

the information it brings leads to richer insights into the process at hand and the distribution of the –

future– population. 

The rest of the paper is organised as follows. The next section presents the modelling 

framework, emphasizing on how it departs from and enriches the standard MCM approach. Section 

3 describes the empirical application of the model to the French strand of the farm accounting data 

network (FADN) for the period 1981-2007: a stationary annual transition probability matrix is 

estimated and a projection up to 2020 is simulated. Finally, the last section discusses the results and 

draws several directions for future work. 

 

 

                                                 
4 As an illustration, Karantininis (2002) works with 19 categories and 15 census years and is so faced with the 

estimation of 324 probabilities from 14 transitions corresponding to 252 data points. 
5 Of course, the so-called non-stationary MCMs bring extra information regarding the impact of some explanatory 

variables (such as policy or market variables) on the transition probabilities but here I only refer to the “intrinsic” 

information regarding the structure of the population that can be extracted from a MCM. More on non-stationarity will 

be said in the last section of the paper. 
6 Butault and Delame (2005) are a worth noticing exception: using a large scale panel, they worked with a large number 

of categories not only defined upon the size of farms but also on qualitative variables such as the region, the type of 

farming, the legal status of the farm or the age of the operator. 
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2. THE MODEL 

2.1 The principles and the originality of the approach 

As in the standard MCM approach described in the previous section, the population under 

study is broken down into a finite number of categories J  on the basis of a quantitative and 

continuous variable X  so that the obtained partition is complete. Said differently, categories 

represent intervals which are defined by a lower and an upper bound that insure continuity and a 

complete coverage of the definition domain of the partitioning variable. 

Denoting the number of individuals in the j -th category at time t  by tjn , , the population 

follows the Markov chain process of degree 1 between two observation dates t  and 1+t  given by:  

 tj

J

k
tkkjtj unpn ,

1
,1, +=∑

=
+  (1) 

where kjp  is the probability for a individual in category k  to move to category j  in one time-

period τ  and tju ,  is an iid error term; further, transition probabilities, which are the parameters to 

be estimated, are subject to the following constraints: 

 0≥kjp  (2) 

 1
1

=∑
=

J

j
kjp  (3) 

Here, I assumed that these probabilities do not change over time; the MCM is thus said to be 

stationary.7 All together, the set of probabilities kjp  define the (square) transition probability matrix 

(TPM) ( )kjp=P ; in matrix notation, equation (1) can thus be written as ttt uPNN +=+1 , where 

( )tJtjtt nnn ,,,1 ,...,,...=N , ( )1,1,1,11 ,...,,... ++++ = tJtjtt nnnN  and ( )tJtjtt uuu ,,,1 ,...,,...=u  are row-vectors. 

In practice, in order to ensure that equation (3) holds, an “exit” category is added, stating that 

some individuals may “disappear” between to dates (i.e., exit the agricultural sector); similarly, an 

                                                 
7 As already mentioned in footnote 5, stationarity issues will be discussed in section 4. 
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“entry” category usually allows to account for new comers. Here, I explicitly accounted for entries 

and exits by rewriting equation (1) as follows: 

 ( ) tj

J

k
tk

ex
k

in
j

J

k
tk

tr
kj

ex
ktj unppnppn ,

1
,

1
,1, ...1 ++−= ∑∑

==
+ ϕφϕ  (4) 

where 0≥tr
kjp  is again the transition probability from category k  to category j , 0≥ex

kp  is the 

probability for an individual in category k  to exit the sector between t  and 1+t , 0≥in
jp  is the 

probability for an individual to enter the sector into category j  between t  and 1+t , and ϕ  and φ  

are scale parameters. This first part of the right hand side of equation (4) states that only the farms 

which did not exit may experience a change in X ; the second part states that the number of 

individuals who enter the sector in each category represent a fraction of the total number of 

individual who exited, a formulation close to the “pool approach” adopted by Stokes (2006). The 

scale parameter φ  determines whether the population is globally stationary ( 1=φ ), expanding 

( 1>φ ) or shrinking ( 1<φ ); the meaning of ϕ  will be explained in sub-section  2.2.  

Note however that since we do not use micro-economic data and hence have no information 

regarding individual movements that could be used in the estimation of equation (4), ex
kp  and in

jp  

actually are “absolute” and net exit and entry probabilities. Absolute because the overtaking of a 

previously existing farm by a new (i.e. previously un-existing) farmer –with or without a 

concomitant increase or decrease in the size of the farm– is treated as a single size transition and not 

as one exit plus one entry; then i) “absolute” exits correspond to situations where a farmer stops his 

activity and is not replaced by a new one, even if the land of his farm is taken over by one or more 

already active farmers –the number of farms actually decreases– and ii) “absolute” entries 

correspond to situations where a new farm settle either on previously un-operated land or on land 

which was previously by one or several other farmers who remain active anyway –the number of 

farms actually increases.8 Net because, for a given size category, exit and entry cannot be separately 

                                                 
8 For instance, this could correspond to a situation where a son would create a new farm by settling on part of his 

father’s land. 
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identified. For both these reasons, entry and exit concepts used here do not directly relate to their 

common sense definition, a feature which has to be kept in mind when interpreting the estimation 

results. 

So far, the assumptions made here are the same as in the standard MCM implementation. In 

particular, it is rarely stressed in the literature that this setting assumes the probabilities to be 

identical from one individual to the other and the individual transitions to be independent from each 

other. The strength of formulation (4) is that the “conservation” constraint of the Markov process 

imposes that equation (3) be now replaced by the following set of summing conditions: 

 1
1

=∑
=

J

j

tr
kjp  (5) 

 1
1

=∑
=

J

j

ex
jp  (6) 

 1
1

=∑
=

J

j

in
jp  (7) 

Then, together with the fact that the variable defining the partition J  is a continuous variable, 

tr
kjp , ex

kp  and in
jp  can all be regarded as generated from any suitable probability density function; 

this is where the originality of my MCM approach lies with respect to the standard one: introducing 

some structural information into the model thanks to the use of probability functional forms, rather 

than estimating each and every probability as almost independent parameters (up to the summing 

constraints). Though this strategy can appear less flexible at first glance, I see it as outclassing the 

standard implementation (provided the fit to empirical data is satisfactory) for the following 

reasons: 

• it is parsimonious in terms of parameters: instead of being ( )1−JJ  as in the standard 

approach, the number of parameters to estimate depends on the functional forms chosen 

for the three probability distributions; in its simplest expression, assuming that each of 

these distributions are fully determined by two parameters, the total number of 

parameters is eight (three distributions times two parameters plus ϕ  and φ ) and is in this 
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case independent from the number of categories; on the contrary, on can expect that the 

more the categories, the more robust the estimation; 

• then, with a limited number of parameters, the chance that enough empirical observations 

are available to build a well-posed problem is greater, so that simple econometric 

methods can be used to estimate the model; 

• except for the choice of the three functional forms, no a priori constraint or knowledge is 

needed regarding impossible or implausible transitions as is the case in the standard 

approach; improbable transitions will “endogenously” derive from the empirically 

estimated forms of the distributions; 

• probability distributions are estimated, not only discrete probabilities, leading to a richer 

information on the transition, exit and entry processes themselves; in particular, one can 

project the initial population into category intervals defined with upper and lower bounds 

which can differ from the initial ones; the number of ending categories not even needs to 

be the same so that the corresponding TPM will no longer be square; actually, any ex-

post TPM can be constructed once the model is estimated. 

In sum, all of the four issues listed in the introduction as shortcomings to the standard 

approach are efficiently addressed. 

2.2 The structural model 

Expressing tr
kjp , ex

kp  and in
jp  as deriving from probability distributions leads to reset the 

model expressed by equation (4) in the following way. 

Instead of identifying categories thanks to their indices, we shall rather consider intervals 

defined over specific ranges of the dependent variable X : with our previous notations, the “initial” 

category k  will be denoted by the interval [ )kk xx ,  and the “final” category j  by the interval 

[ )jj xx , . Then, the model is expressed as: 
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[ ) [ )( ) [ )[ ) [ )
[ )

[ ]

[ ) [ ) [ )
[ )

[ ]

[ ) txx

xx

xx
txx

ex
xx

in
xx

xx

xx
txx

tr
xxxx

ex
xxtxx jj

JJ

kkkkjj

JJ

kkjjkkkkjj
unppnppn ,,

,

,
,,,,

,

,
,,,,,1,,

1111

...1 ++−= ∑∑+ ϕφϕ  (8) 

The probabilities [ )[ )
tr

xxxx jjkk
p ,, , [ )

ex
xx kk

p ,  and [ )
in

xx jj
p ,  are given by: 

 [ )[ ) ∫



















−








−
= k

k
jjkk

x

x

trjtrtrjtr

kk

tr
xxxx dx

x

x
F

x

x
F

xx
p θθ ;;

1
,,  (9) 

 [ ) ( ) ( )ex
k

exex
k

exex
xx xFxFp

kk
θθ ;;, −=  (10) 

 [ ) ( ) ( )in
j

inin
j

inin
xx xFxFp

jj
θθ ;;, −=  (11) 

where ( )trF , ( )exF  and ( )inF  are the distribution functions characterizing the corresponding 

transitions, and tr
θ , ex

θ  and in
θ  the vectors of parameters unambiguously defining these 

distributions. As can be seen from equation (9), a transition is now expressed as a relative change in 

the dependent variable X  rather than a “simple” move from an initial to a final category. Two 

remarks must be made regarding the specification of the transition probability [ )[ )
tr

xxxx jjkk
p ,,  given by 

equation (9). 

Fist, the vector of parameters tr
θ  is assumed to be independent from the interval [ )kk xx , : the 

probability for an individual initially exhibiting a level kxX =  to experience a relative change of, 

say, kj xx , is independent of the initial value kx . This can sound like a strong assumption; whether 

it is supported by the data or not is an empirical question that will be addressed in the next section. 

So far, this assumption allows to express the model in its most parsimonious form as discussed 

earlier and it can be relaxed in two ways as is discussed in section  4. 

Second, as expressed by equation (9), [ )[ )
tr

xxxx jjkk
p ,,  is actually the average probability for an 

individual initially lying in [ )kk xx ,  to move to [ )jj xx , ; the true transition probability for an 

individual initially exhibiting a level [ )kkk xxxX ,∈=  would reduce to 

[ ) 







−







= trjtrtrjtrtr

xxx x

x
F

x

x
Fp

jjk
θθ ;;, . Doing so implicitly assumes that individuals are uniformly 
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distributed inside each interval [ )kk xx , ; it implies that a scale parameter, ϕ , has to be added to the 

model. Working with macro, aggregated, data and in the absence of more precise knowledge upon 

the true underlying population distribution, this is the simplest assumption to do.9 

Eventually, assumptions must be formed regarding the functional forms of ( )trF , ( )exF  and 

( )inF . There is no a priori constraint on this choice but, in practice, the modeler will retain general 

enough forms so as to best fit the data. Note however that, in the general case, there is no guarantee 

that a closed form analytical solution exists for the integral appearing in (9). When relevant in 

empirical applications a numeric approximation of this integral can be performed, through a simple 

trapeze formula for instance, where the implied bias can be rendered as small as desired (at the 

expense of computation time). 

The next section illustrates the implementation of the structural MCM defined by equation (8) 

and constraints (9) to (11) with an application to the population of commercial French farms. 

 

 

3. AN APPLICATION TO THE COMMERCIAL FRENCH FARMS 

3.1 The data used 

The data used in this application come from the French strand of the Farm Accountancy Data 

Network (FADN), an accountancy and technico-economic survey carried across whole European 

Union over a sample of agricultural holdings which are considered as commercial.10 

The FADN sample is stratified using three criteria: region, type of farming and economic size. 

Within each stratum, a set of individuals is drawn pseudo-randomly from the population and each of 

the sample’s farms is assigned an extrapolation coefficient based on its representativeness within 

                                                 
9 Note that, in the standard MCM approach, each transition probability kjp  can also be regarded as an average 

probability; but in this case, this has no direct and formal implication on the underlying population distribution. 
10 For a detailed presentation of the FADN survey: http://ec.europa.eu/agriculture/rica/index_en.cfm 
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the stratum knowing the total number of commercial farms present every year (Rouquette and 

Baschet, 2010). Yet this total is only available for certain years (Fall et al., 2010): in France, it is 

updated each time a Farm Census or Farm Structure Survey (FSS) is issued, that is, every 2 or 3 

years only. The weighting allocated to each individuals in the FADN sample is then calculated on 

the same frequency so that the total number of farms extrapolated from the entire sample is 

consistent with the known total for the corresponding years; for the years in between, these weights 

are determined such that the total extrapolated number of farms does not departs too much from the 

number found by the most recent census or FSS, all the while checking that certain aggregate 

economic variables such as total output value are consistent with the data in the National 

Agricultural Accounts for the corresponding year. As a consequence, the numbers of individuals 

that can be recovered from the FADN data, be them for the whole population or for sub-classes of 

this population, do not evolve smoothly across years but rather step-wise. 

Therefore, “intermediate” years are not included in the following analysis so that the data used 

correspond to eleven years only: 1981, 1983, 1985, 1988, 1990, 1993, 1995, 1997, 2000, 2005 and 

2007.11 In order to estimate annual transitions the numbers of farms in each category for 

“intermediates” years (incl. 1980) were linearly interpolated from the list of years actually used. 

Furthermore, note that the FADN observations are not panel data since farms can join or leave 

the sample every year for non purely demographic reasons; no explicit information is therefore 

available in the dataset regarding entries and exits. 

For the purpose of illustration, the whole population of FADN farms were grouped into five 

categories, depending on their size as measured in operated hectares, defined by the following 

intervals: 0 to 19.99 hectares, 20 to 49.99 hectares, 50 to 99.99 hectares, 100 to 199.99 hectares and 

200 or more hectares. The corresponding number of farms in each category is presented in  Table 1 

(the years which have been actually used appear in bold characters). As a whole, the data consist of 

a set of 26 transitions corresponding to 130 observation points. 

                                                 
11 Due to technical reasons, the FADN coefficients were not updated in 2003 to reflect the 2003 FSS. Hence 2003 is 

also excluded from our list of “observed” years. 
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[insert  Table 1 around here] 

 

3.2 Choosing a functional form for the transition, entry and exit probability distributions  

Three functional forms for ( )trF , ( )exF  and ( )inF  were tested: 

• the lognormal distribution: ( ) ( )σµσµ ,);ln(,; uuL Φ=  where ( )σµ,Φ  is the normal 

distribution with mean µ  and standard deviation 0>σ , and 0>u ; 

• the gamma distribution: ( )κθ ,;uΓ  with scale 0>θ  and shape 0>κ , and 0≥u ; 

• and the Weibull distribution: ( )λν ,;uΩ  with scale 0>ν  and shape 0>λ , and 0≥u . 

All of these distributions share two interesting features: (i) they are fully defined by two 

parameters only so that the model encompasses eight parameters as a whole as previously explained 

and is therefore a well-posed problem; (ii) they can generate a wide range of distributions shapes, 

from symmetric ones to (potentially highly) skewed ones. The model was further designed so that 

the functional forms chosen for ( )trF , ( )exF  and ( )inF  could differ from one distribution to the 

other. 

Finally, as the model depicted in equation (8) consists in a system of J  simultaneous 

equations, it was solved using the non-linear SUR (nlsur) procedure of the Stata 11.0 software. 

3.3 Results 

Results showed that the most satisfactory combination of functional forms was to retain a 

lognormal distribution for ( )trF  and Weibull distributions for both ( )exF  and ( )inF ; the gamma 

distribution was out-performed in any case (results not reported here).12 The estimation results 

corresponding to the lognormal-Weibull-Weibull assumption are reported in  Table 2. The resulting 

point-estimate TPM and exit and entry vectors can be derived directly from the estimated 

                                                 
12 Actually, there was no significant difference on the results when choosing a lognormal distribution for ( )inF ; for 

the sake of homogeneity between entries and exits, it was chosen to present the results with the Weibull distribution. 
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coefficients. Unfortunately, the standard deviations associated with these estimated transition, exit 

and entry probabilities are not easily analytically computable from equations (9) to (11); to 

overcome this problem, I implemented a 1000-draws Monte Carlo simulation using these equations 

and the coefficients and standard deviations of  Table 2. The resulting average probabilities and 

associated standard deviations are reported in  Table 3 (the point-estimate probabilities are not 

reported but are very close to the simulated averages).13 

 

[insert  Table 2 and  Table 3 around here] 

 

The first result worth noticing is that the 2R  associated with each of the simultaneous 

equations are all above 0.99: the model fits the data very well. In order to compare the structural 

MCM approach with the standard one, I estimated in parallel a constrained multinomial logit 

(MNL) with the same data in line with the method found in (Zepeda, 1995).14 Both models quite 

compare in terms of adjustment to the data even if the standard approach slightly outperforms the 

structural model when examining partial and total root mean square errors (RMSE): the total RMSE 

is 10,929.10 with the structural MCM when it is only 9,744.90 with the constrained MNL. The 

corresponding TPMs are quite different though15 and it is then a question for the analyst to decide 

which one seems the more plausible (or to use both in a sensitivity analysis when simulating 

projections). 

The second result is that both trµ  and trσ  are very close to zero, meaning that most probably 

French commercial farms experience no significant relative size change from one year to the other. 

This does not mean no change at all though, as can be seen in the resulting TPM: even if the matrix 

                                                 
13 For convenience, the matrix presented in  Table 3 is a “concatenation” of the transition matrix, the exit vector and the 

entry row-vector; even if, strictly speaking, the term TPM was defined in the previous sections as a subset of it only, I 

call this extended matrix “the TPM” in the following. 
14 As is often assumed, the constraints I imposed in the MNL imply that farms cannot move from more than one 

category at each step; the usual summing-up constraints also apply; as a results, 16 parameters were to be estimated. 
15 The constrained MNL TPM is not reported here; it is available from the author upon request. 



 

 15 

is highly diagonal as is usually the case for annual transitions in the literature, some off-diagonal 

elements are significantly different from zero. Moreover, as was mentioned at the end of section 

 2.1, some transitions appear implausible but this results from the estimated parameters only, not 

from some a priori or arbitrary input to the model. 

Third, the coefficient φ  is strictly less than 1 ( 055.0ˆ =φ ), confirming the general trend of a 

declining population. Absolute net exit rates are at most around 5% of the population in each 

category (4.9% for the “0-19.99 ha” category; 5.1% for the “20-49.99 ha” category and 1.8% for the 

“50-99.99  ha” category); in the mean time, the sole significant absolute net entry probability is 

associated with the “100-199.99 ha” category (4.7%). All of the previous figures may look 

underestimated at first glance. They are no longer surprising when one recalls the explanation given 

in the section  2.1 regarding the true meaning of these “absolute” probabilities. Moreover, note that 

the non-overlapping of the entry and exit distributions confirms that these are net probabilities. 

Altogether, these results however reflect the usual feature that exits occur at a size lower than the 

average and entries at a size higher than the average. 

But the strength of this structural model is also, as already mentioned, to bring more 

information than the standard MCM implementation: various distributional indicators can be easily 

derived from the chosen functional forms and the corresponding estimated coefficients. For 

example, the median of a Weibull distribution is given by ( )( ) λν 12ln=m , its mean by 

( )λνµ 11. +Γ=  and its standard deviation by ( ) 222 21. µλνσ −+Γ=  (Kleiber and Kotz, 2003), 

where Γ  is the gamma function; with the estimated coefficients listed in  Table 2, this means that: 

• 50% of the absolute net exits were operating less than 33 ha before leaving the sector; the 

average absolute net exit size is estimated at 39 ha with a standard deviation of 28 

hectares (precise figures are 33.36 ha, 39.04 ha and 27.50 ha respectively); 

• 50% of the absolute net entries settled on more than 196 ha with an average of 195 ha and 

a standard deviation of 6 ha (precise figures are 196.28 ha, 195.41 ha and 5.68 ha 

respectively). 
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To sum up, the results show that the structural MCM I propose (i) fits the data well and to an 

extent that compares with the standard approach, (ii) drives to the same kind of conclusions 

regarding stylized facts which agricultural experts are familiar with and (iii) allows to derive a 

richer information useful to the practitioner. It can now be used for projection studies; this is the 

subject of the next sub-section. 

3.4 Projection at 2020 

Once its parameters have been estimated, the structural MCM can be used in a standard way 

to forecast the state of the population at some given horizon: one simply applies iteratively equation 

(8) to the desired initial year using the TPM derived from the estimated coefficients. 

I have simulated the distribution of the population of commercial French farms at the 2020 

horizon in this manner, using each of the available observation year as a potential initial date. The 

result is reported in  Table 4. As the model is iterated on an annual basis, intermediate figures are 

also available and the resulting path followed by the total number of farms until 2020 is presented 

in  Figure 1. 

 

[insert  Table 4 and  Figure 1 around here] 

 

Provided that the average demographic and economic conditions that pertained over the 

estimation period (1981-2007) hold constant until then, the total number of commercial farms in 

France is estimated to decrease from 326,008 in 2007 to a little more than 233,300 individuals in 

2020, or a 28% decline in 13 years; the annual rate of decrease (-2.5% per year) would thus be quite 

the same as observed on the most recent years (-2.3% between 2000 and 2007) and lower than 

observed on the previous decades (-3.9% between 1981 and 1990; -3.0% between 1990 and 2000). 

Looking at the influence of the starting year of the simulation, it appears that the total number of 

commercial farms could be lying between 217,100 and 249,200, a “confidence interval” whose 

range amounts for around 14% of the average value. 
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The model forecasts that both the number and share of smaller farms (“0-19.99” ha) will fall 

at an increased rate (-10.0% per year from 2007 to 2020 as compared to -4.3% per year for the 

period 2000-2007) while bigger farms population and share will continue to increase, though at a 

slower rate (+2.8% per year from 2007 to 2020 as compared to +4.5% per year for the period 2000-

2007). However, the sensitivity analysis shows that, globally, the more recent the starting year, the 

higher the number of smaller and bigger farms; still, considering the “middle point estimates” as 

resulting from the simulations with the 1990-1995 initial years implies that the actual number (and 

share) of smaller farms could be even lower than given by the average. Finally, the “middle” sized 

farms (“50-99.99 ha”) would still be the more numerous ones in 2020 but should be ousted by the 

above category (“100-199.99 hectares”) soon after. 

 

 

4. CONCLUDING REMARKS 

 

In this paper, I present an original way of implementing the Markov chain model (MCM) 

which has been widely used in the recent academic literature to study the evolution and structural 

change of agricultural populations in several countries. Unlike the “standard” MCM approach 

which regards the transitions probabilities as almost unrelated parameters (up to summing 

constraints), the method I propose takes advantage of the quantitative and continuous nature of the 

dependent variable used to define the categories into which the studied population is broken down. 

Along with a re-writing of the Markov process which explicitly accounts for absolute entry and exit, 

it allows to express the transition, entry and exit probabilities as deriving from underlying 

probability distributions, for which several functional forms can be chosen and tested. In this sense, 

the approach I proposed can be said “structural”. Moreover, the transition probabilities which are 

estimated do not simply represent the likelihood to move from one category to the other (eventually 



 

 18 

the same), but a richer and more interesting concept: the likelihood to experience a given relative 

change in the dependent variable. 

From the practitioner’s point of view this structural MCM outperforms the standard approach 

on four grounds: (i) it is more parsimonious in terms of parameters; (ii) as a consequence, rather 

standard and efficient econometric techniques can be employed; (iii) no assumption has to me 

formed on specific probabilities but rather on their overall shape; and (iv) it reveals a richer 

information on the underlying demographic processes at hand. From the empirical analyst’s point of 

view, this structural MCM is well supported by the French FADN data used in the proposed 

empirical application; at least, it competes with the traditional approach without any significant 

shortcoming and reproduces the same and usual stylized facts. Two direct extensions of this work 

can be envisaged: on the one hand, the European Union-wide homogeneity of the FADN database 

should make it straightforward to test the method in other national contexts; on the other hand, the 

availability of Farm Structures Surveys should allow to easily include non-commercial farms into 

the analysis. On a broader perspective, the required data are fairly common and usually issued on a 

regular basis in most developed, transition and even some developing countries. 

Yet, as any model, the proposed method relies on a set of assumptions. Actually, the main 

difference with the standard approach in this respect is the replacement of several assumptions on 

the magnitude of transition probabilities into only three assumptions regarding the shape of their 

distribution. As previously noted in section  2, other important assumptions made here deal with two 

issues and should be relatively easy to relax as will be now explained. 

First, it was assumed that the parameters of the transition probability distribution function 

were independent from the initial value of the dependent variable; this could be relaxed by two 

means: (i) these parameters could be made dependent on the initial category to which they apply; 

the drawback of this simple solution is to increase sharply the number of parameters of the model 



 

 19 

and to directly relate this number to the number of categories;16 still this correlation is linear and not 

exponential as in the standard approach; (ii) a statistical relationship between the parameters and the 

initial value of the variable could be specified, adding more structure into the model; on the one 

hand, choosing the simple linear relationship would only double the number of parameters and 

would preserve the independence vis à vis the number of categories, maintaining the parsimonious 

nature of the model; on the other hand, this would intuitively require to have at one’s disposal a 

more detailed information regarding the distribution of the dependent variable among the 

population or would imply further assumptions regarding it. Anyway, either ways of relaxing this 

assumption would be interesting since in both cases the statistical dependence could be rigorously 

tested. 

Second, the model presented here is stationary in the sense that transition, exit and entry 

probabilities do not change over time. There again, two directions are possible to evolve toward a 

non-stationary model: (i) as proposed by Jongeneel and Tonini (2008), several successive TPMs 

could be estimated; but this simple solution is not truly dynamic and the amount of needed data is 

largely increased for a preserved robustness of the estimations; (ii) as is the case in the most recent 

published papers which use the standard MCM approach (Zepeda, 1995; Karantininis, 2002; 

Stokes, 2006; Tonini and Jongeneel, 2008), a really non-stationary version of the structural MCM 

could be built by making the distribution parameters depend on time-varying covariates; a simple 

trend would then preserve parsimony but would not be much interesting from an economic and 

political point of view; more appealing would be to use market and policy explanatory variables as 

is done in the cited references. But then, the structural approach proposed here would face an 

important increase in the number of parameters, as its standard counterparts do. Simple SUR 

estimation procedures would be certainly no longer applicable. Yet the structural approach would 

still be the more parsimonious of the two methods so that more degrees of freedom would be 

                                                 
16 In the empirical application presented in section  3, this would have led to estimate ten (2x5) transition parameters 

plus two exit and two entry parameter plus ϕ  and φ , or a total of 16. 
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preserved for an undoubtedly more robust covariate effects estimation. Moreover, not only the full 

set of transitions could be studied (in most of the non-stationary literature, the impact of covariates 

is studied for only a subset of arbitrarily said “interesting” individual or aggregated transitions) but 

there again the derived information on the effect of market and policy would be richer for the same 

reasons as previously explained. 

Finally, when confronted to the estimation of such an increasing number of parameters, it 

seems to me that, from an econometric perspective, a Bayesian inference approach would be more 

appropriate than the GCE or IV-GCE techniques used so far, both in terms of parameters estimation 

and of structural model (functional forms) selection. This sounds also like a promising direction for 

future research. 
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Table 1. Number of commercial farms for each of the five categories and for the whole population in 

the French strand of the FADN. a 

Number of farms grouped by their size in terms of Used Agricultural Area (hectares) 
Years 

0-19.99 20-49.99 50-99.99 100-199.99 >200 
Total 

1980 258,992 392,403 113,480 24,074 202 789,151 

1981 233,707 375,147 112,722 23,386 813 745,775 

1982 208,422 357,891 111,964 22,699 1,424 702,400 

1983 183,137 340,635 111,206 22,011 2,035 659,024 

1984 178,488 329,173 112,820 23,926 2,086 646,492 

1985 173,839 317,710 114,433 25,841 2,136 633,959 

1986 161,405 299,409 117,367 28,394 2,538 609,113 

1987 148,972 281,108 120,301 30,946 2,939 584,266 

1988 136,538 262,807 123,235 33,499 3,341 559,420 

1989 126,187 248,286 124,979 36,453 4,629 540,532 

1990 115,835 233,764 126,723 39,406 5,916 521,644 

1991 108,175 215,480 127,346 43,796 6,715 501,513 

1992 100,515 197,197 127,969 48,187 7,514 481,381 

1993 92,855 178,913 128,592 52,577 8,313 461,250 

1994 87,007 164,787 129,292 54,584 9,378 445,047 

1995 81,158 150,661 129,991 56,591 10,443 428,844 

1996 76,536 140,979 128,814 59,658 11,252 417,238 

1997 71,914 131,296 127,637 62,725 12,060 405,632 

1998 70,925 126,575 125,164 63,285 12,715 398,664 

1999 69,936 121,853 122,691 63,846 13,370 391,696 

2000 68,947 117,132 120,218 64,406 14,025 384,728 

2001 66,423 110,945 119,237 65,940 14,481 377,026 

2002 63,900 104,759 118,256 67,474 14,937 369,325 

2003 61,376 98,572 117,274 69,007 15,393 361,623 

2004 58,852 92,385 116,293 70,541 15,849 353,921 

2005 56,329 86,199 115,312 72,075 16,305 346,219 

2006 53,500 81,075 112,075 71,766 17,698 336,114 

2007 50,671 75,951 108,837 71,457 19,091 326,008 
a FADN original data appear in bold font; normal font denotes interpolated data (see text for further explanation) 

Source: author’s calculations based on FADN data 
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Table 2. Estimation results of the model defined by equations (8) to (11) with a lognormal distribution 

for ( )trF  and Weibull distributions both for ( )exF  and ( )inF .  a 

 Coefficient Std. error z P>|z| 

trµ  0.0050 0.0002 21.28 0.000 

trσ  0.0082 . . . 

ϕ  3.6137 0.3252 11.11 0.000 

exν  43.0244 3.1625 13.60 0.000 

exλ  1.4414 0.1675 8.60 0.000 

φ  0.0555 0.0188 2.95 0.003 

inν  197.9466 1.3601 145.54 0.000 

inλ  43.3801 . . . 

SUR estimation results 
 equation 1 (« 0-19.99 ha ») 

 equation 2 (« 20-49.99 ha ») 

 equation 3 (« 50-99.99 ha ») 

 equation 4 (« 100-199.99 ha ») 

 equation 5 (« >200 ha ») 

R² 
0.9989 

0.9997 

0.9998 

0.9991 

0.9990 

RMSE 
4045.03 

3427.83 

1548.31 

1566.07 

341.86 

 

a RMSE stands for root mean square error. 

Source: author’s estimates 

 

Table 3. Transition probability matrix resulting from the coefficients reported in  Table 2. a,b 

t  1+t  0-19.99 20-49.99 50-99.99 100-199.99 >200 exit 

0-19.99 
0.9271 

(0.0090) 

0.0235 
(0.0002) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0494 
(0.0091) 

20-49.99 
0.0000 

(0.0000) 

0.9331 
(0.0082) 

0.0160 
(0.0001) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0509 
(0.0082) 

50-99.99 
0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.9721 
(0.0024) 

0.0099 
(0.000) 

0.0000 
(0.0000) 

0.0179 
(0.0024) 

100-199.99 
0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.9891 
(0.0019) 

0.0096 
(0.0017) 

0.0013 
(0.0007) 

>200 
0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

1.0000 
(0.0000) 

0.0000 
(0.0000) 

entry 
0.0000 

(0.0000) 

0.0000 
(0.0000) 

0.0000 
(0.0000) 

0.0468 
(0.0183) 

0.0119 
(0.0064) 

 

a In each cell, the bold figure is the average transition probability and the figure in brackets its associated standard deviation, 
both resulting from a Monte Carlo simulation with 1,000 draws (see text for further explanation) 
b Mean values appearing in shaded cells are significantly different from zero. 

Source: author’s estimates 
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Table 4. Projected population distribution in 2020 using the point-estimate TPM derived from the 

coefficients reported in  Table 2. a 

Number of farms grouped by their size in terms of Used Agricultural Area (hectares) Starting 
year 0-19.99 20-49.99 50-99.99 100-199.99 >200 

Total 

1981 11,446 37,379 84,724 68,818 26,891 229,258 

1983 10,470 36,661 82,280 63,161 24,567 217,140 

1985 11,601 38,973 84,047 64,072 23,974 222,668 

1988 11,491 38,323 85,066 65,736 23,968 224,584 

1990 11,380 38,154 85,924 67,712 25,978 229,149 

1993 11,505 35,606 84,676 73,340 28,193 233,320 

1995 11,738 34,227 85,092 74,427 29,164 234,647 

1997 12,141 33,846 84,892 77,189 30,053 238,120 

2000 14,680 36,794 84,512 76,086 29,601 241,672 

2005 17,655 37,175 86,517 79,283 28,566 249,197 

2007 18,539 36,907 84,541 77,155 29,464 246,606 

Average 12,968 36,731 84,752 71,544 27,311 233,305 

(st. dev.) (2,746) (1,616) (1,070) (5,808) (2,345) (10,043) 

2007 pop. 50,672 75,951 108,837 71,457 19,092 326,008 

2020 av. share 5.6% 15.7% 36.3% 30.7% 11.7% 100.0% 

2007 share 15.5% 23.3% 33.4% 21.9% 5.9% 100.0% 
a Italic figures for 2007 are recalled or derived from  Table 1 for comparison. 

Source: author’s simulations 
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Figure 1. Projected total number of farms up to 2020 using the point-estimate TPM derived from the 

coefficients reported in  Table 2. a 
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a All the eleven “observed” years were used as starting dates for projection; thus, in the rightmost part of the graph, the 
hollow circles correspond to the average of the simulated populations and the vertical error bars are defined by the minimum 
and maximum simulated populations. 

Source: author’s simulations 


