Hassane El 
  
Fliouet 
  
Généralisation d'extensions lq-modulaires

Keywords: Mathematics Subject Classification MSC2010 : Primary 12F15 Purely inseparable, Degree of irrationality, q-finite extension, Modular extension, lq-modular, uq-modular

come    

Generalization of lq-modular extensions

El Hassane Fliouet

Introduction

Soit K/k une extension purement inséparable de caractéristique p > 0. On rappelle que K/k est modulaire si pour tout n ∈ N, K p n et k sont k ∩ K p nlinéairement disjoints. Cette notion a été définie pour la première fois par Swedleer dans [START_REF] Sweedler | Structure of inseparable extensions[END_REF]. En outre, l'auteur caractérise les extensions purement inséparables qui sont produit tensoriel sur k d'extensions simples. Dans le même ordre d'idées, Waterhouse dans [START_REF] Waterhouse | The structure of inseparable field extensions[END_REF] montre que la modularité est stable par une intersection quelconque portant sur k ou K, et qu'une réunion croissante d'extensions modulaires est aussi modulaire. En particulier, il existe des plus petites extensions notées respectivement par lm(K/k) et um(K/k) telles que k -→ lm(K/k) -→ K -→ um(K/k) avec K/lm(K/k) et um(K/k)/k sont modulaires. Dans cette note nous continuions à s'intéresser au problème d'emplacement de lm(K/k) et um(K/k) par rapport à K/k. Améliorons ainsi le théorème 1.4, (cf. [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 148), on montre que lm(K/k) n'est pas triviale lorsque K/k est de taille finie, plus précisément si K/k est de taille finie et d'exposant non borné, il en est de même de K/lm(K/k). Cependant, si la taille de K/k est infinie, il se peut fort bien qu'on perd cette propriété en obtenant m = K. Dans la suite, on dira que K/k est lq-modulaire (respectivement uqmodulaire) si lm(K/k)/k (respectivement um(K/k)/K) est d'exposant fini. Il est clair dans la cas de taille finie, la q-modularité est synonyme de la modularité à une extension finie prés. D'autre part, sachant qu'une première étude de ces deux notions consacrée aux extensions de taille finie se trouve dans [START_REF] Chellali | Extension presque modulaire[END_REF], [START_REF] Chellali | Théorème de la clôture lq-modulaire et applications[END_REF] et [START_REF] Chellali | Extensions i-Modulaires[END_REF], l'objet de ce travail consiste à généraliser les résultats de taille finie à une extension quelconque. En particulier, on traite les questions de stabilité de la lq-modularité et la uq-modularité par rapport à l'inclusion, l'intersection, et le produit. Egalement, on s'intéresse aux questions d'existence des plus petites extensions qui conservent ces deux notions soit dans le sens ascendant ou descendant. Ainsi, qu'aux questions d'existence des plus grandes sous-extensions (les clôtures). Dans ce contexte, on montre que :

(1) La lq-modularité est respectée si on change le corps de base à une extension d'exposant finie près, et la uq-modularité est stable à une extension d'exposant finie près.

(2) La lq-modularité est stable par une intersection finie. Il est a signalé que la condition de finitude est essentielle uniquement aux extensions de taille non bornée. Toutefois, on donne une condition nécessaire et suffisante d'existence de la plus petite sous-extension qui respecte la lq-modularité. (3) Contrairement aux extensions de taille finie, le produit ne respecte pas la lq-modularité. (4) Contrairement aux extensions de taille finie, une extension peut ne pas avoir de clôture uq-modulaire. Toutefois, on donne une condition nécessaire et suffisante d'existence de la clôture uq-modulaire d'une extension donnée.

Enfin, il est à noter qu'au cours de cette note, on reprend, les notations et les résultats élémentaires de [START_REF] Fliouet | Extensions absolument lq-modulaires[END_REF], puisqu'ils sont utilisés avec toute leur force ici.

Généralité

D'abord, nous commencerons par donner une liste préliminaire des notations le plus souvent utilisées tout le long de ce travail :

k désigne toujours un corps commutatif de caractéristique p > 0, et Ω une clôture algébrique de k. k p -∞ indique la clôture purement inséparable de Ω/k.

-Pour tout a ∈ Ω, pour tout n ∈ N * , on symbolise la racine du polynôme X p na dans Ω par a p -n . En outre, on pose k(a p -∞ ) = k(a p -1 , . . . , a p -n , . . .)

= n∈N * k(a p -n ) et k p -n = {a ∈ Ω | , a p n ∈ k}.
-Pour toute famille B = (a i ) i∈I d'éléments de Ω, on note k(B p -∞ ) = k((a i p -∞ ) i∈I ). -Enfin, |.| sera employé au lieu du terme cardinal.

Il est à signaler aussi que toutes les extensions qui interviennent dans ce papier sont des sous-extensions purement inséparables de Ω, et il est commode de noter [k, K] l'ensemble des corps intermédiaires d'une extension K/k.

r-base, r-générateur

Définition 2.1 Soit K/k une extension. Une partie G de K est dite r-générateur de K/k, si K = k(G) ; et si de plus pour tout x ∈ G, x ∈ k(G\x), G sera appelée r-générateur minimal de K/k. Définition 2.2 Etant données une extension K/k de caractéristique p > 0 et une partie B de K. On dit que B est une r-base de K/k, si B est un r-générateur minimal de K/k(K p ). Dans le même ordre d'idées, on dit que B est r-libre sur k, si B est une r-base de k(B)/k ; dans le cas contraire B est dite r-liée sur k.

Voici quelques cas particuliers :

-Toute r-base de k/k p s'appelle p-base de k.

-Egalement, toute partie d'éléments de k, r-libre sur k p sera appelée pindépendante (ou p-libre) sur k p .

Ici B désigne une partie d'un corps commutatif k de caractéristique p > 0. Comme conséqueces immédiates on a :

(1) B est p-base de k si et seulement si pour tout n ∈ Z, B p n l'est également de k p n . (2) B est r-libre sur k p si et seulement si pour tout n ∈ Z, B p n l'est auusi sur k p n+1 . (3) B est p-base de k si et seulement si B est un r-générateur minimal de k/k p . (4) B est p-base de k si et seulement si pour tout n ∈ N * , k p -n = ⊗ k (⊗ k k( a p -n )) a∈B et pour tout a ∈ B, a ∈ k p . En particulier, B est p-base

de k si et seulement si k p -∞ = ⊗ k (⊗ k k(a p -∞ )) a∈B et pour tout a ∈ B, a ∈ k p .
Il est à noter que le produit tensoriel est utilisé conformément à la définition 5 (cf. [START_REF] Bourbaki | Algèbre, Chapitre 1 à 3[END_REF], III, p. 42). Il est vu comme limite inductive du produit tensoriel d'une famille finie de k-algèbre. Toutefois, la proposition ci-dessous permet de ramener l'étude des propriétés des systèmes r-libres des extensions de haureur ≤ 1, (K p ⊆ k) au cas fini. Plus précisément, on a : Proposition 2.1 Soit K/k une extension de caractéristique p > 0. Une partie B de K est r-libre sur k(K p ) si et seulement s'il en est de même pour toute sous-partie finie de B.

Preuve. Immédiat.

⊓ ⊔ Proposition 2.2 Soit K/k une extension de caractéristique p > 0. Toute partie finie B de K satisfait [k(K p )(B) : k(K p )] ≤ p |B| , et il y'a égalité si et seulement si B est r-libre sur k(K p ).

Preuve. Notons B = {x 1 , . . . , x n }, comme pour tout i ∈ {1, . . . , n}, on a x p i ∈ k(K p ) ⊆ k(K p )(x 1 , . . . , x i-1 ), alors [k(K p )(x 1 , . . . , x i ) : k(K p )(x 1 , . . . , x i-1 )] ≤ p, et il y'a égalité si et seulement si x i ∈ k(K p )(x 1 , . . . , x i-1 ). Compte tenu de la transitivité de la finitude, on a

[k(K p )(x 1 , . . . , x n ) : k(K p )] = n i=1 [k(K p )(x 1 , . . . , x i ) : k(K p )(x 1 , . . . , x i-1 )] ≤ p n , et il y'a égalité si et seulement si B est r-libre sur k(K p ). ⊓ ⊔ Corollaire 2.3 Soit K/k une extension de caractéristique p > 0. Une partie B de K est r-libre sur k(K p ) si et seulement si pour toute sous-partie finie B ′ de B, on a [k(K p )(B ′ ) : k(K p )] = p |B ′ | .
Comme application, le résultat ci-dessous montre que la r-indépendance est transitive dans le cas des extensions de hauteurs 1. Autrement dit : Théorème 2.7 [théorème de la r-base incomplète] Etant données une extension K/k de caractéristique p > 0, et une partie B de K, r-libre sur k(K p ). Pour tout r-générateur G de K/k(K p ), il existe un sous-ensemble

G 1 de G tel que B ∪ G 1 est une r-base de K/k. Preuve. Le cas où k(K p )(B) = K est trivialement évident. Si k(K p )(B) = K, il existe x ∈ G tel que x ∈ k(K p )(B). En effet, si pour tout x ∈ G, x ∈ k(K p )(B), comme G est un r-générateur de K/k(K p ), on aura k(K p )(G) = K ⊆ k(K p )(B), absurde. D'après le lemme précédent, B ∪ {x} est une partie r-libre sur k(K p ). Posons ensuite H = {L ⊂ G tel que B ∪ L est r-libre sur k(K p )}. IL est clair que H est inductif, et donc d'après le lemme de Zorn, H admet un élément maximal que l'on note M . Soit B 1 = M ∪ B, nécessairement K = k(K p )(B 1 ), si K = k(K p )(B 1 ), il existe également un élément y de G tel que y ∈ k(K p )(B 1 ), et donc B 1 ∪ {y} serait r-libre sur k(K p ) ; c'est une contradiction avec le fait que M est maximal. ⊓ ⊔
Voici quelques conséquences immédiates :

(1) De tout r-générateur de K/k(K p ) on peut en extraire une r-base de K/k.

(2) Toute partie r-libre sur k(K p ) peut être complétée en une r-base de K/k. En particulier, toute partie p-indépendante sur k p peut être étendue en une p-base de k. Pour la preuve de ce théorème on se sérvira des résultats suivants. Lemme 2.9 [Lemme d'échange] Sous les conditions du théorème précédent, pour tout x ∈ B 2 , il existe

x 1 ∈ B 1 tel que (B 1 \{x 1 }) ∪ {x} est une r-base de K/k.
Preuve. Choisissons un élément arbitraire x de B 2 , comme B 2 est une r-base de K/k, il en résulte que {x} est r-libre sur k(K p ). Compte tenu du théorème 2.7, il existe Preuve. Immédiat, puisque tout r-générateur peut se réduire (respectivement toute famille r-libre peut se compléter) en une r-base.

B ′ 1 ⊂ B 1 tel que B ′ 1 ∪ {x} est une r-base de K/k. D'où, p = [k(K p )(B ′ 1 )({x}) : k(K p )(B ′ 1 )] = [K : k(K p )(B ′ 1 )] = [k(K p )(B ′ 1 )(B 1 \B ′ 1 ) : k(K p )(B ′ 1 )], et comme B 1 \B ′ 1 est r-libre sur k(K p )(B ′ 1 ), on en déduit que |B 1 \B ′ 1 | = 1, c'est-à-dire B 1 \B ′ 1 est réduit à un singleton. ⊓ ⊔ Proposition 2.
(x) de B 1 telle que x ∈ k(K p )(D(x)), et par suite K = k(K p )(B 2 ) ⊆ k(K p )( x∈B2 ( 

⊓ ⊔

Dans le cas où K/k(K p ) est finie, compte tenu du théorème de la r-base incomplète, un r-générateur G de K/k(K p ) est une r-base de

K/k si et seulement si |G| = Log p ([K : k(K p )]). En particulier, si B est une r-base de K/k et G un r-générateur de K/k(K p ) tels que |B| = |G| < +∞, alors G est une r-base de K/k.
Soit K/k une extension purement inséparable de caractéristique p > 0. On rappelle que K est dit d'exposant fini sur k, s'il existe e ∈ N tel que K p e ⊆ k, et le plus petit entier qui satisfait cette relation sera appelé exposant (ou hauteur) de K/k. Certes, la proposition suivante permet de ramener l'étude des propriétés des r-générateurs minimals des extensions d'exposant fini au cas des extensions de hauteur 1, lesquelles sont plus riches. Proposition 2.12 Soit K/k une extension purement inséparable d'exposant fini. Pour qu'une partie de K soit une r-base de K/k il faut et il suffit que elle soit r-générateur minimal de K/k.

Preuve. Soit G une r-base de K/k, donc K = k(K p )(G) = . . . = k(K p e )(G) = k(G), et s'il existe x ∈ G tel que x ∈ k(G\{x}), on aura x ∈ k(K p )(G\{x}), c'est une contradiction avec le fait que G est une r-base de K/k. Inversement, pour tout r-générateur minimal G de K/k, on a K = k(G) = k(K p )(G), et s'il existe x ∈ G tel que x ∈ K = k(K p )(G\x) = . . . = k(K p e )(G\{x} = k(G\{x}),
on aura une contradiction avec le fait que G est un r-générateur minimal de

K/k. ⊓ ⊔ Théorème 2.13 Soit L/k une sous extension d'une extension purement insé- parable d'exposant fini K/k. Pour toutes r-bases B L et B K respectivement de L/k et K/k, on a |B L | ≤ |B K |.
Preuve. On distingue deux cas : 

1-ier cas. Si K/k est d'exposant 1, c'est-à-dire K p ⊆ k, donc L p ⊆ k. D'après le théorème 2.7, il existe B 1 ⊆ B K tel que B L ∪ B 1 est une r-base de K/k, et par suite |B L | ≤ |B L ∪ B 1 | = |B K |.
(K p ) ⊆ L(K p ) ⊆ K, et donc il existe B 1 ⊆ B L et B 2 ⊆ B K telles que B 1 et B 2 sont deux r-bases respectivement de L(K p )/k(K p ) et K/L(K p ). D'après la transitivité de la r-indépendance, B 1 ∪ B 2 est une r-base de K/k(K p ). Posons ensuite k 1 = k(B 1 ) et B ′ L = B L \ B 1 ; on vérifie aussitôt que L ⊆ k 1 (K p ) = k 1 (B 2 p ), et k 1 (K p )/k 1 est d'exposant < e.
Par application de la propriété de récurrence et du corollaire 2.11, on obtient

|B ′ L | ≤ |B 2 p | = |B 2 |. Comme B 1 ∩ B ′ L = ∅ et B 1 ∩ B 2 = ∅, alors |B 1 ∪ B ′ L | ≤ |B 1 ∪ B 2 |, et par suite |B L | ≤ |B K |. ⊓ ⊔ 3 Degré d'irrationalité
Soit K/k une extension purement inséparable. Désormais, et sauf mention expresse du contraire, pour tout n ∈ N * , on note Toutefois, on vérifie aussitôt que :

k n = k p -n ∩ K, on obtient ainsi k ⊆ k 1 ⊆ . . . ⊆ k n ⊆ . . . ⊆ K, et k n /k
-di(K/K) = 0. -Pour tout n ∈ Z, di(k) = di(k p n ) = di(k p -∞ /k).
-Compte tenu du corollaire 2.5, pour toute sous-extension

L/k de K/k, on a di(K/k(K p )) = di(K/L(K p )) + di(L(K p )/k(K p )). Plus généralement, si K/k est d'exposant 1, on a di(K/k) = di(K/L) + di(L/k). -En vertu de la proposition 2.2, pour toute extension purement inséparable d'exposant fini K/k, on a di(K/k) = di(K/k(K p )). Théorème 3.1 Soient k ⊆ L ⊆ K des extensions purement inséparables, on a di(L/k) ≤ di(K/k). En outre, di(K/k) = sup(di(L/k)) L∈[k,K] .
Preuve. D'après le théorème 2.13, il suffit de remarquer que pour tout n ≥ 1, on a di(k

p -n ∩L/k) ≤ di(k n /k), et donc sup(di(k p -n ∩L/k)) n≥1 ≤ sup(di(k n /k)) n≥1 ; ou encore di(L/k) ≤ di(K/k). ⊓ ⊔
Une conséquence type est le résultat suivant :

Théorème 3.2 Pour toute extension purement inséparable K/k, on a di(K/k) ≤ di(k).
Preuve. Il suffit de remarquer qu'une partie B de k est une p-base de k si et seulement si B p -n est une r-base

de k p -n /k pour tout n ≥ 1. Comme k p -∞ = n≥1 k p -n , on a pour tout n ≥ 1, k p -n ∩K ⊆ k p -∞ , et par suite di(K/k) ≤ di(k p -∞ /k) = di(k).
⊓ ⊔ Proposition 3.3 Soit (K n /k) n∈N une famille croissante de sous-extensions purement inséparables d'une extension Ω/k. On a :

di( n∈N (K n )/k) = sup n∈N (di(K n /k)).
Preuve.

Notons K = n∈N K n , et soit j un entier naturel non nul. Il est immédiat que k j = k p -j ∩ K = n∈N (k p -j ∩ K n ).
Dans la suite on distingue deux cas :

1-ier cas : si di(k j /k) est fini, ou encore 

k j /k est finie. Comme pour tout n ∈ N , on a k p -j ∩ K n ⊆ k p -j ∩ K n+1 ⊆ k p -j ∩ K, alors la suite d'entiers ([k p -j ∩ K n : k]) n∈N est croissante et bornée, donc stationnaire à partir d'un rang n 0 ; et par conséquent pour tout n ≥ n 0 , k p -j ∩ K n = k p -j ∩ K n+1 . En outre, di(k p -j ∩ K/k) = di(k p -j ∩ K n0 /k) = sup n∈N (di(k p -j ∩ K n /k)). 2-ième cas : si di(k p -j ∩ K/k) est infini, ou encore sup n∈N (di(k p -j ∩ K n /k)) n'est pas fini. Comme k p -j ∩ K = n∈N (k p -j ∩ K n ), donc si B j n est une r-base de k p -j ∩ K n /k,
B j n | ≤ sup n∈N (|B j n |) = sup n∈N (di(k p -j ∩ K n /k)).
Compte tenu de ces deux cas, on en déduit que di

(K/k) ≤ sup n∈N (di(K n /k)). Mais comme K n ⊆ K pour tout n ≥ 1, d'après le théoréme 3.1 on obtient sup n∈N (di(K n /k)) ≤ di(K/k), et par suite di(K/k) = sup n∈N (di(K n /k)). ⊓ ⊔
Le résultat suivant qui est une conséquence bien connue de la linéarité disjointe intervient souvent dans le reste de ce papier.

Proposition 3.4 Soient K 1 /k et K 2 /k deux sous-extensions d'une même ex- tension K/k, k-linéairement disjointes. Pour touts corps intermédiaires L 1 et L 2 respectivement de K 1 et K 2 , on a L 2 (K 1 ) et L 1 (K 1 ) sont k(L 1 , L 2 )-linéairement- disjointes. En particulier, L 2 (K 1 ) ∩ L 1 (K 2 ) = k(L 1 , L 2 ).
Une famille (F i /k) i∈J d'extensions est dites k-linéairement disjointes, si pour toute partie G d'éléments finis de J, (F n /k) n∈G sont k-linéairement disjointes (cf. [START_REF] Michael | Regional Center for the Professions of Education and Training[END_REF], p. 36). Il est trivialement évident que k((

F i ) i∈J ) = i∈J F i ≃ ⊗ k (⊗ k F i ) i∈J si et seulement si (F i /k) i∈J sont k-linéairement disjointes.
De plus, les propriétés de la linéarité disjointe du cas fini se prolonge naturellement à une famille quelconques d'extensions k-linéairement disjointes. En particulier, pour tout i ∈ J, soit L i un sous-corps de F i , si (F i /k) i∈J sont k-linéairement disjointes, compte tenu de la transitivité de la linéarité disjointe,

(L i /k) i∈J (resp. (( n∈J L n )F i /k) i∈J ) sont k-linéairement (resp. n∈J L n -linéairement) disjointes.
Considérons maintenant deux sous-extensions

K 1 /k et K 2 /k d'exposant fini d'une même extension purement inséparable K/k. On vérifie aussitôt que si B 1 et B 2 sont deux r-bases respectivement de K 1 /k et K 2 /k, alors B 1 et B 1 ∪ B 2 sont deux r-générateurs respectivement de K 1 (K 2 )/K 2 et K 1 (K 2 )/k. En outre, di(K 1 (K 2 )/K 2 ) ≤ di(K 1 /k) et di(K 1 (K 2 )/k) ≤ di(K 1 /k) + di(K 2 /k
). D'une façon plus précise, on a : Proposition 3.5 Sous les conditions ci-dessus, et si de plus

K 1 /k et K 2 /k sont k-linéairement disjointes, on a : (i) B 1 ∪ B 2 est une r-base de K 1 (K 2 )/k. (ii) B 1 est une r-base de K 1 (K 2 )/K 2 .
Preuve. Ici, on se contente de présenter uniquement la preuve du premier item, puisque les deux assertions utilisent les mêmes techniques de raisonnement. Il est clair que K 1 (K 2 ) = k(B 1 ∪B 2 ), il suffit donc de montrer que B 1 ∪B 2 est minimal. Pour cela, on suppose par exemple l'existence d'un élément x dans 

B 1 tel que x ∈ k((B 1 \{x})∪B 2 ) = K. Comme K 1 /k et K 2 /k sont k-linéairement disjointes, par transitivité, on a k(B 1 ) = K 1 et K 2 (B 1 \{x}) = K sont k(B 1 \{x})-linéairement disjoints, et donc K 1 = K ∩ K 1 = k(B 1 \ {x}), c
(i) di(K 1 (K 2 )/k) ≤ di(K 1 /k) + di(K 2 /k), et il y'a égalité si K 1 et K 2 sont k-linéairement disjoints. (ii) di(K 1 (K 2 )/K 2 ) ≤ di(K 1 /k), et il y'a égalité si K 1 et K 2 sont k-linéair- ement disjoints.
Preuve. Il suffit de remarquer que

K 1 (K 2 ) = j∈N (k p -j ∩ K 1 )(k p -j ∩ K 2 ) = j∈N K 2 (k p -j ∩ K 1 ), et si K 1 et K 2 sont k-linéairement disjoints, d'après la tran- sitivité de la linéarité disjoint, k p -j ∩ K 1 et k p -j ∩ K 2 sont aussi k-linéairement disjoints pour tout j ≥ 1.
On se ramène ainsi au cas où K 1 /k et K 2 /k sont d'exposant fini auquel cas le résultat découle immédiatement de la proposition précédente.

⊓ ⊔

Comme conséquence immédiate, on a :

Corollaire 3.7 Pour toute sous-extension L/k d'une extension purement insé- parable K/k, on a di(L(K p ) /k(K p )) ≤ di(L/k(L p )), et il y'a égalité si k(K p ) et L sont k(L p )-linéairement disjointes.
Preuve. Due au corollaire 3.6.

⊓ ⊔

Le résultat suivant améliore naturelement les conditions du théorème 3.1

Théorème 3.8 Pour toute famille d'extensions purement inséparables k ⊆ L ⊆ L ′ ⊆ K, on a di(L/L ′ ) ≤ di(K/k). Preuve. Il est clair que K = j∈N L(k j ), et d'après la proposition 3.3, et le théorème 3.1, on a di(L ′ /L) ≤ di(K/L) = sup j∈N (di(L(k j )/k)) ≤ sup j∈N (di(k j /k)) = di(K/k). ⊓ ⊔
Comme conséquence immédiate, on a :

Corollaire 3.9 Pour toute extension purement inséparable K/k, on a di(K) ≤ di(k).
Preuve. Il suffit de remarque que

K ⊆ k p -∞ , et di(K) = di(K/K p ) ≤ di(k p -∞ /k p ) = di(k). ⊓ ⊔

Extensions relativement parfaites

Au cours de cette section, on reprend, en les améliorant, quelques notions et résultats de [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], puisqu'ils sont utilisés fréquemment ici.

Un corps k de caractéristique p est dit parfait si k p = k ; dans le même ordre d'idées, on dit que K/k est relativement parfaite si k(K p ) = K. On vérifie aisément que :

-La relation "être relativement parfaite" est transitive, c'est-à-dire si K/L et L/k sont relativement parfaites, alors K/k l'est aussi. -Si K/k est relativement parfaite, il en est de même de L(K)/k(L).

-La propriété "être relativement parfaite" est stable par un produit quelconque portant sur k. Autrement dit, pour toute famille

(K i /k) i∈I d'ext- ensions relativement parfaites, on a alors i K i /k est aussi relativement parfaite.
Par suite, il existe une plus grande sous-extension relativement parfaite de K/k appelée clôture relativement parfaite de K/k, et se note rp(K/k). On a les relations d'associativité-transitivité suivantes.

Proposition 3.10 Soit L un corps intermédiaire de K/k. Alors

rp(rp(K/L)/k) = rp(K/k) et rp(K/rp(L/k)) = rp(K/k).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 50, proposition 5.2.

⊓ ⊔ Corollaire 3.11 Pour tout L ∈ [k, K], on a K/L finie =⇒ rp(K/k) ⊂ L. En particulier, si K/k est relativement parfaite, on a K/L f inie =⇒ L = K. Schématiquement on a un trou k -→ K; ↑ trou et ce trou caractérise le fait que K/k est relativement parfaite. En effet, suppo- sons que K/k vérifie le trou et soit B une r-base de K/k. Supposons B = ∅ ; soit x ∈ B et L = k(K p )(B \ {x}) ; on a K/L est finie, donc K = L ce qui est absurde.
Proposition 3.12 Soit K/k une extension purement inséparable telle que [K : k(K p )] est fini. Alors on a :

(i) K est relativement parfaite sur une extension finie de k. (ii) La suite décroissante (k(K p n )) n∈N est stationnaire sur k(K p n 0 ) = rp(K / k).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 51, lemme 2.1.

⊓ ⊔

Comme conséquence de la proposition précédente, on a :

Proposition 3.13 Soit K/k une extension purement inséparable telle que [K : k(K p )] est fini. Pour tout L ∈ [k, K], on a rp(K/L) = L(rp(K/k)).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 51, proposition 6.2.

⊓ ⊔

En utilisant le lemme 1.16 qui se trouve dans ( [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], p. 10), on peut affirmer que la condition de finitude de [K : k(K p ] est nécéssaire, et par suite, le résultat précédent peut tomber en défaut si K/k(K p ) n'est pas finie. Par ailleurs, on vérifie aussitôt que k(K p ) = rp(K/k)(K p ), et donc pour qu'une partie G de K soit r-base de K/k il faut et il suffit qu'elle en soit de même de K/rp(K/k). De plus, comme 2-ième conséquence de la proposition 3.12, le résultat suivant exprime une condition nécessaire et suffisant pour que K/rp(K/k) soit finie. Plus précisément, on a : Proposition 3.14 Soit K/k une extension purement inséparable, alors K/rp( K/ k) est finie si est seulement il en est de même de K/k(K p ).

Preuve. Résulte de la proposition 3.12.

⊓ ⊔

4 Extensions q-finies Définition 4.1 Toute extension de degré d'irrationalité fini s'appelle extension q-finie.

En d'autres sens, la q-finitude est synonyme de la finitude horizontale. Toutefois, la finitude se traduit par la finitude horizontale et verticale, il s'agit de la finitude au point de vue taille et hauteur. Autrement dit, K/k est finie si et seulement si K/k est q-finie d'exposant borné. Par ailleurs, on vérifie que le degré d'irrationalité d'une extension K/k vaut 1 si est seulement si l'ensemble de corps intermédiaires de K/k est totalement ordonné. Ensuite, on appelle extension q-simple toute extension qui satisfait l'affirmation précédente.

Remarque 4.1 On rappelle que lorsque di(k) est fini, et après avoir montré dans [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF] 

que K/k(K p ) est finie et di(K) ≤ di(k), le degré d'irrationalité d'une extension purement inséparable K/k a été défini par l'entier di(K/k) = di(k) -di(K) + di(K/k(K p )).
En outre, toute extension est q-finie si di(k) est fini. Avec quelques modifications légères, on peut toujours prolonger cette définition au cas où di(k) est non borné. Commençons par le choix d'une extension

K/k relativement parfaite et q-finie. Etant donnée une p-base B de k, donc k = k p (B), et par suite k(K p ) = K p (B). Comme K/k est relativement parfaite, alors K = k(K p ) = K p (B). D'après le théorème 2.7, il existe B 1 ⊆ B telle que B 1 est une p-base de K. Ainsi, on aura k p -∞ = k(B p -∞ ) = k(B 1 p -∞ ) ⊗ k k((B \ B 1 ) p -∞ ) ≃ K p -∞ ≃ K ⊗ k k(B 1 p -∞ ). En particulier, d'après le corollaire 3.6, di(K/k) = di(K ⊗ k k(B 1 p -∞ )/k(B 1 p -∞ )) = di(k p -∞ /k(B 1 p -∞ )) = di(k((B \ B 1 ) p -∞ )/k) = |B\B 1 |. Si on interprète (par abus de langage) |B\B 1 | comme dif- férence de degré d'imperfection de k et K en écrivant |B\B 1 | = di(k)-di(K), on obtiendra di(K/k) = di(k) -di(K). Dans le cas général, supposons que K/k est q-finie quelconque, donc K/rp(K/k) est finie, d'où di(K) = di(rp(K/k)) ; et par suite di(K/k) = di(rp(K/k)/k) + di(K/k(K p )) = di(k) -di(K) + di(K/k(K p )) (cf. proposition 4.4 ci-dessous).
Il est à signaler en tenant compte de cette considération que tous les résultats des articles [START_REF] Chellali | Extension presque modulaire[END_REF], [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], [START_REF] Chellali | Théorème de la clôture lq-modulaire et applications[END_REF], [START_REF] Chellali | Extensions i-Modulaires[END_REF] se généralisent naturellement par translation à une extension q-finie quelconque.

Soient L/k une sous-extension d'une extension q-finie K/k, pour tout n ∈ N, on note toujours k n = k p -n ∩ K. On vérifie aussitôt que :

(i) La q-finitude est transitive, en particulier, pour tout n ∈ N, K/k(K p n ) et k n /k sont finies. (ii) Il existe n 0 ∈ N, pour tout n ≥ n 0 , di(k n /k) = di(K/k).
Par ailleurs, voici quelques applications immédiates des propositions 3.12 et 3.14. Proposition 4.1 Soit K/k une extension q-finie. La suite (k(K p n )) n∈N s'arrête sur rp(K/k) à partir d'un n 0 . En particulier, K/rp(K/k) est finie.

Comme conséquence, on a : Corollaire 4.2 La clôture relativement parfaite d'une extension q-finie K/k n'est pas triviale. Plus précisément, rp(K/k)/k est d'exposant non borné si K/k l'est.

Preuve. Immédiat. ⊓ ⊔ Proposition 4.3 Pour toute extension q-finie K/k, il existe n ∈ N tel que K/k n est relativement parfaite. En outre, k n (rp(K/k)) = K. Preuve. Immédiat. ⊓ ⊔ Proposition 4.4 Le degré d'irrationalité d'une extension q-finie K/k vérifie l'égalité suivante : di(K/k) = di(rp(K/k)/k) + di(K/k(K p )) = di(K/rp(K/k)) +di(rp(K/k)/k). Preuve. Soient G une r-base de K/k et K r = rp(K/k), donc k(G)/k ad- met un exposant fini noté m et, K = K r (G). En paticulier, pour tout n ≥ m, k(G) ⊆ k n . Compte tenu de la r-indépendance de G sur k(K p ) et vu que k(k n p ) est un sous-ensemble de k(K p ), on en déduit que G est r-libre sur k(k n p ) pour tout n ≥ m. Complétons G en une r-base de k n /k par une partie G n de k n .
Dans ces conditions, pour n suffisamment grand, on aura

|G|+|G n | = sup j≥m (|G|+ |G j |) = di(K/k) = di(K r (G)/k) ≤ di(K r /k) + di(k(G)/k) = di(K r /k) + |G|, et donc |G n | ≤ di(K r /k). Toutefois, comme n≥m k(k n p m ) = n≥m k(G n p m , G p m ) = n≥m k(G n p m ) = k(K p m ) = K r (K p m ), d'après le théorème 3.1, pour n suffisam- ment grand, on aura également di(K r / k) ≤ di(K r (K p m )/k) = di(k(k n p m )/k) ≤ |G n p m | = |G n |. D'où, |G n | = di(K r /k) pour n assez grand, et par suite di(K/k) = di(K r /k) + di(K/k(K p )). ⊓ ⊔
Comme conséquence immédiate, on a :

Corollaire 4.5 Pour qu'une extension q-finie K/k soit finie il faut et il suffit que di(K/k) = di(K/k(K p )).

Théorème 4.6 Pour toutes extensions q-finies k

⊆ L ⊆ K, on a di(K/k) ≤ di(K/L) + di(L/k), avec l'égalité si et seulement si L/k(L p ) et k(K p )/k(L p ) sont k(L p )-linéairement disjointes. Preuve. Comme K = n∈N L p -n ∩ K et K/k est q-finie, d'après le théorème 3.1, pour n assez grand, on a di(K/k) = di(L p -n ∩ K/k) ; donc on est amené au cas où K/L est finie, ou encore rp(K/k) = rp(L/k). Dans la suite, on posera L r = K r = rp(K/k). D'après la proposition 4.4 ci-dessus, on aura di(K/k) = di(K r /k) + di(K/k(K p )) = di(L r /k) + di(K/L(K p )) + di(L(K p )/k(K p )) = di(L r /k) + di(K/L) + di(L(K p )/k(K p )). Compte tenu du corollaire 3.7, on aura di(L( K p ) /k(K p )) ≤ di(L/k(L p )), et donc di(K/k) ≤ di(L r /k) + di(K/L) + di(L/k(L p )) = di(L/k) + di(K/L), toutefois il y'a égalité si et seulement si di(L/k(L p )) = di(L(K p )/k( K p )), ou encore [L : k(L p )] = [L(K p ) : k(K p )], c'est-à-dire L/k(L p ) et k(K p )/k( L p ) sont k(L p )-linéairement disjointes. ⊓ ⊔ Remarque 4.
2 La condition de la linéarité disjointe qui figure dans la proposition ci-dessus se traduit en terme de r-indépendance par toute r-base de L/k se complète en une r-base de K/k.

Comme application immédiate, on a :

Corollaire 4.7 Toute sous-extension relativement parfaite L/k d'une extension q-finie K/k vérifie di(K/k) = di(K/L) + di(L/k).
D'une façon assez générale, on a :

Proposition 4.8 Pour toute suite de sous-extensions relativement parfaites

k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n d'une extension q-finie K/k, on a di(K/k) = n-1 i=0 di(K n+1 /K n ) + di(K/K n ).
Preuve. Résulte immédiatement du corollaire précédent.

⊓ ⊔

Dans la suite on va étudier de plus près les propriétés des exposants d'une extension q-finie.

Exposants d'une extension q-finie

Dans cette section nous distinguons deux cas : [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 138, lemme 1.3). On en déduit aussitôt le résultat de ( [START_REF] Pickert | Inseparable Körperweiterungen[END_REF], p. 90, satz 14) qui confirme l'indépendance des entiers o(a i /k(a 1 , . . . , a i-1 )), (1 

Cas où K/k est purement inséparable finie. Soit x ∈ K, posons o(x/k) = inf{ m ∈ N| x p m ∈ k} et o 1 (K/k) = inf{m ∈ N| K p m ⊂ k}. Une r- base B = {a 1 , a 2 , . . . , a n } de K/k est dite canoniquement ordonnée si pour j = 1, 2, . . . , n, on a o(a j /k(a 1 , a 2 , . . . , a j-1 )) = o 1 (K/k(a 1 , a 2 , . . . , a j-1 )). Ainsi, l'entier o(a j /k(a 1 , . . . , a j-1 )) défini ci-dessus vérifie o(a j /k(a 1 , . . . , a j-1 )) = inf{m ∈ N| di(k(K p m )/k) ≤ j -1} (cf.
≤ i ≤ n), vis-à-vis au choix des r-bases canonique- ment ordonnées {a 1 , . . . , a n } de K/k. Par suite, on pose o i (K/k) = o(a i /k(a 1 , . . . , a i-1 )) si 1 ≤ i ≤ n, et o i (K/k) = 0 si i > n, où {a 1 , . . . , a n } est une r-base canoniquement ordonnée de K/k. L'invariant o i (K/k) ci
(1) k(K p m j ) = k(α p m j 1 , . . . , α p m j j-1 ). (2) Soit Λ j = {(i 1 , . . . , i j-1 ) tel que 0 ≤ i 1 < p m1-mj , . . . , 0 ≤ i j-1 < p mj-1-mj }, alors {(α 1 , . . . , α j-1 ) p m j ξ tel que ξ ∈ Λ j } est une base de k(K p m j ) sur k. (3) Soient n ∈ N et j le plus grand entier tel que m j > n. Alors {α p n 1 , . . . , α p n j } est une r-base canoniquement ordonnée de k(K p n )/k, et sa liste des exposants est (m 1 -n, . . . , m j -n). Preuve. cf. [2], p. 140, proposition 5.3. ⊓ ⊔ Proposition 4.12 Soient K 1 /k et K 2 /k deux sous-extensions purement insép- arables de K/k. K 1 et K 2 sont k-linéairement disjointes si et seulement si o j (K 1 (K 2 )/K 2 ) = o j (K 1 /k) pour tout j ∈ N.
Preuve. cf. [START_REF] Chellali | Sur les extensions purement inséparable[END_REF] Définition 4.2 Soient K/k une extension q-finie et j un entier naturel non nul. On appelle le j-ième exposant de

K/k l'invariant o j (K/k) = lim n→+∞ (o j (k n /k)).
Lemme 4.14 Soit K/k une extension q-finie, alors o s (K/k) est fini si et seulement s'il existe un entier naturel n tel que di(k

(K p n )/k) < s, et on a o s (K/k) = inf{m ∈ N | di(k(K p m )/k) < s}. En particulier, o s (K/k) est infini si et seule- ment si pour tout m ∈ N, di(k(K p m )/k) ≥ s.
Preuve. Pour simplifier l'écriture, on note e t = o t (K/k) si o t (K/k) est fini. Compte tenu du [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 138, lemme 1.3, on vérifie aussitôt que o s (K/k) est infini si et seulement si pour tout m ∈ N, di(k(K p m )/k) ≥ s, donc on se ramène au cas où o s (K/k) est fini. Par suite, il existe un entier n 0 , pour tout

n ≥ n 0 , e s = o s (k n /k). D'après [2] p. 138, lemme 1.3, di(k(k n p es )/k) < s et di(k(k n p es -1 )/k) ≥ s. En vertu du théorème 3.1, di(k(K p es )/k) < s et di(k(K p es -1 )/k) ≥ s. Autrement dit, o s (K/k) = inf{m ∈ N | di(k(K p m )/k) < s}. ⊓ ⊔
Le résultat ci-dessous permet de ramener l'étude des propriétés des exposants des extensions q-finies aux extensions finies par le biais des clôtures relativement parfaites.

Théorème 4.15 Soit K r /k la clôture relativement parfaite de degré d'irrationalité s d'une extension q-finie K/k, alors on a :

(i) Pour tout t ≤ s, o t (K/k) = +∞. (ii) Pour tout t > s, o t (K/k) = o t-s (K/K r ).
En outre, o t (K/k) est fini si et seulement si t > s.

Preuve. Pour tout t ∈ N * , notons e t = o t (K/K r ). Comme pour tout entier e, on a k(K 

p e ) = K r (K pe ) = n∈N k(k n p e ), donc s = di(K r /k) ≤ di(k(K p e )/k) = di(k(k n p e )/
> s, di(K r (K p e n-s )/k) = di(K r /k) + di(K r (K p e n-s )/K r ) < s + n -s = n et di(K r (K p e n-s -1 )/k) = di(K r /k) + di(K r (K p e n-s -1 )/K r ) ≥ n. Notamment, pour tout n > s, o n (K/k) = o n-s (K/K r ). Toutefois, o n (K/k) est fini si et seulement si n ≤ s. ⊓ ⊔
Voici une liste de conséquences immédiates :

Proposition 4.16 Soient K et L deux corps intermédiaires d'une extension q-finie M/k. Pour tout j ∈ N * , on a o j (L(K)/L) ≤ o j (K/k).
Preuve. Due au lemme 4.14, et à l'inégalité suivante résultant du corllaire 3.6 :

di(L(L p n , K p n )/L) = di(L(K p n )/L) ≤ di(k(K p n )/k) pour tout n ∈ N. ⊓ ⊔ Proposition 4.17 Etant données des extensions q-finies k ⊆ L ⊆ K. Pour tout j ∈ N * , on a o j (L/k) ≤ o j (K/k).
Preuve. Application immédiate du lemme 4.14, et de l'inégalité suivante résultant du théorème 3.

1 : di(k(L p n )/k) ≤ di(k(K p n )/k) pour tout n ∈ N.
Par ailleurs la taille d'une extension relativement parfaite reste invariant, à une extension finie près comme l'indique le résultat suivant. 

o t (k n /k) > e + 1, en outre L ⊆ k n et di(k n /k) = di(K/k). Soit {α 1 , . . . , α t } une r-base canoniquement ordonnée de k n /k, s'il existe s ∈ {1, . . . , t} tel que α s ∈ L(k n p )(α 1 , . . . , α s-1 ), d'après la proposition 4.10, on aura e < o t (k n /k) ≤ o s (k n /k) = o(α s , k(α 1 , . . . , α s-1 )) ≤ o 1 (L(k n p )(α 1 , . . . , α s-1 )/ k(α 1 , . . . , α s-1 )) ≤ sup(o 1 (L/k), o s (k n /k) -1) = o s (k n /k) -1, et donc o s (k n /k) ≤ o s (k n /k) -1, contradiction. D'où, {α 1 , . . . , α t } est une r-base de L(k n )/L, et par suite, t = di(K/k) = di(L(k n )/L) ≤ di(L(K)/L).
⊓ ⊔

Extensions modulaires

On rappelle qu'une extension K/k est dite modulaire si et seulement si pour tout n ∈ N, K p n et k sont K p n ∩ k-linéairement disjointes. Cette notion a été définie pour la première fois par Swedleer dans [START_REF] Sweedler | Structure of inseparable extensions[END_REF], elle caractérise les extensions purement inséparables, qui sont produit tensoriel sur k d'extensions simples sur k. Par ailleurs, toute r-base B de K/k telle que K ≃ ⊗ k (⊗ k k(a)) a∈B sera appelée r-base modulaire. En particulier, d'après le théorème de Swedleer, si K/k est d'exposant borné, il est équivalent de dire que :

(i) K/k admet une r-modulaire. (ii) K/k est modulaire.
Soient m j le j-ième exposant d'une extension purement inséparable finie K/k et {α 1 , . . . , α n } une r-base canoniquement ordonnée de K/k, donc d'après la proposition 4.11, pour tout j ∈ {2, . . . , n}, il existe des constantes uniques

C ε ∈ k telles que α j p m j = ε∈Λj C ε (α 1 , . . . , α j-1 ) p m j ε , où Λ j = {(i 1 , . . . , i j-1 ) tel que 0 ≤ i 1 < p m1-mj , . . . , 0 ≤ i j-1 < p mj-1-mj }.
Ces relations s'appellent les équations de définition de K/k.

Le critère ci-dessous permet de tester la modularité d'une extension.

Théorème 5.1 [Critère de modularité] Sous les notations ci-dessus, les propriétés suivantes sont équivalentes :

(1) K/k est modulaire.

(2) Pour toute r-base canoniquement ordonnée {α 1 , . . . , α n } de K/k, les C ε ∈ k ∩ K p m j pour tout j ∈ {2, . . . , n}. (3) Il existe une r-base canoniquement ordonnée {α 1 , . . . , α n } de K/k telle que les C ε ∈ k ∩ K p m j pour tout j ∈ {2, . . . , n}.

Preuve. cf. [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 142, proposition 1.4. ⊓ ⊔ Exemple 5.2 Soient Q un corps parfait de caractéristique p > 0, k = Q(X, Y, Z) le corps des fractions rationnelles aux indéterminées X, Y, Z, et

K = k(α 1 , α 2 ) avec α 1 = X p -2 et α 2 = X p -2 Y p -1 + Z p -1 .
On vérifie aussitôt que

• o 1 (K/k) = 2 et o 2 (K/k) = 1, • α p 2 = Y α p 1 + Z. Si K/k est modulaire, d'après le critère du modularité, on aura Y ∈ k ∩ K p et Z ∈ k ∩ K p , et donc Y p -1 et Z p -1 ∈ K. D'où k(X p -2 , Y p -1 , Z p -1 ) ⊂ K, et par suite, di(k(X p -2 , Y p -1 , Z p -1 )/k) = 3 < di(K/k) = 2, contradiction.
Le résultat suivant est conséquence immédiate de la modularité.

Proposition 5.3 Soient m, n ∈ Z avec n ≥ m. Si K/k est modulaire, alors K p m /k p n est modulaire. La condition n ≥ m assure k p n ⊂ K p m .
Proposition 5.4 Soit K/k une extension purement inséparable finie (respectivement, et modulaire), et soit L/k une sous-extension de K/k (respectivement, et modulaire) avec di(L/k) = s. Si K p ⊆ L, il existe une r-base canoniquement ordonnée (respectivement, et modulaire) (α 1 , α 2 , . . . , α n ) de K/k, et e 1 , e 2 , . . . , e s ∈ {1, p} tels que (α 1 e1 , α 2 e2 , . . . , α s es ) soit une r-base canoniquement ordonnée (respectivement, et modulaire) de L/k. De plus, pour tout j ∈ {1, . . . , s}, on a o j (K/k) = o j (L/k), auquel cas e j = 1, ou o j (K/k) = o j (L/k) + 1, auquel cas e j = p.

Preuve. Cf. [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 146, proposition 8.4.

⊓ ⊔

Le théorème suivant de Waterhouse joue un rôle important dans l'étude des extensions modulaires (cf. [START_REF] Waterhouse | The structure of inseparable field extensions[END_REF] Théorème 1.1). Théorème 5.5 Soient (K j ) j∈I une famille de sous-corps d'un corps commutatif Ω, et K un autre sous-corps de Ω. Si pour tout j ∈ I, K et

K j sont K ∩ K j -linéairement disjoints, alors K et j K j sont K ∩ ( j K j )-linéairement disjoint.
Comme conséquence, la modularité est stable par une intersection quelconque portant soit au dessus ou en dessous d'un corps commutatif. Plus précisément, on a : Corollaire 5.6 Sous les mêmes hypothèses du théorème ci-dessus, on a :

(i) Si pour tout j ∈ I, K j /k est modulaire, il en est de même de j K j /k.

(ii) Si pour tout j ∈ I, K/K j est modulaire, il en est de même de K/ j K j . D'après le théorème de Waterhouse, il existe une plus petite sous-extension m/k de K/k (respectivement une plus petite extension M/K) telle que K/m (respectivement M/k) est modulaire. Désormais, on note m = lm(K/k) et M = um(K/k). Toutefois, l'extension um(K/k) sera appelée clôture modulaire de K/k.

Comme 

B 1 = {a ∈ B | n a > j}, B 2 = B \ B 1 = {a ∈ B | n a ≤ j}, (j étant un entier ne dépassant pas o(K/k)).
Comme Application de la proposition précédente, on a : Théorème 5.8 Sous les conditions précisées ci-dessus, pour tout entier j < o(K/k), on a k j = k((a na-j ) a∈B1 , B 2 ).

Preuve. Comme K/k est réunion inductive d'extentions modulaires engendrées par des parties finies de B, et compte tenu de la distributivité de l'intersection par rapport à la réunion, on peut supposer sans perdre de généralité que K/k est finie d'exposant noté e. Soient {α 1 , • • • , α n } une r-base modulaire et canoniquement ordonnée de K/k, et m j le j-ième exposant de K/k. Désignons par s le plus grand entier tel que m s > j, et L = k(α p m 1 -j 1 , . . . , α p ms -j s , α s+1 , . . . , α n ). On vérifie aussitôt que :

(i) L ⊆ k j , (ii) K ≃ k(α 1 ) ⊗ k . . . ⊗ k k(α n ) ≃ L(α 1 ) ⊗ L . . . ⊗ L L(α s ). Ainsi, pour tout x ∈ K, il existe des constantes uniques C ε ∈ L telles que x = ε∈Λ C ε (α 1 , . . . , α s ) ε , où Λ = {(i 1 , . . . , i s ) tel que 0 ≤ i 1 < p m1-j , . . . , 0 ≤ i s < p ms-j }, et donc x p j = ε∈Λ C ε p j (α 1 p j , . . . , α s p j ) ε
. Compte tenu de la proposition 4.11, x p j ∈ k (c'est-à-dire x ∈ k j ) si et seulement si x p j = C (0,...,0) p j , ou encore x = C (0,...,0) . Par suite x ∈ k j si et seulement si x ∈ L, autrement dit k j = L.

Comme conséquence immédiate, dans le cas de modulaire le résultat suivant exprime une propriété de stabilité de la taille d'un certains corps intermédiaires. Plus précisément, Corollaire 5.9 Pour toute extension modulaire K/k, pour tout n ∈ N, on a

di(k n /k) = di(k 1 /k). En particulier, di(K/k) = di(k 1 /k).
Le résultat suivant est bien connu (cf. [START_REF] Kime | Purely inseparable modular extensions of unbounded exponent[END_REF]).

Proposition 5.10 Soit K/k une extension purement inséparable et modulaire ; soit pour tout n ∈ N,

K n = k(K p n ). Alors k n /k, K/k n , K n /k et K/K n sont modulaires. Proposition 5.11 Soient K 1 et K 2 deux sous-extensions de K/k telles que K ≃ K 1 ⊗ K 2 .
Si pour tout i ∈ {1, 2}, K i /k est modulaire, il en est de même de K/k. Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 55, lemme 3.4.

⊓ ⊔

Le résultat suivant étend trivialement les hypothèses de la proposition 3.3, [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], p. 94, ainsi que le théorème 3.2, [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF], p. 289. Il utilise plus particulièrement les propriétés du système canoniquement générateur (pour plus d'information cf. [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], définition 1.32, p. 29). Proposition 5.12 Soient K 1 et K 2 deux sous-extensions de K/k telles que

K ≃ K 1 ⊗ K 2 . Si K/K 1 est modulaire, et K 2 /k est d'exposant borné, il existe une partie B de K telle que K ≃ K 1 ⊗ k (⊗ k (k(α) α∈B ). Preuve. D'abord, comme K ≃ K 1 ⊗ k K 2 , alors pour tout i ∈ N, pour toute r-base C de k(K 2 p i )/k, C est aussi une r-base de K 1 (K 2 p i )/K 1 . Choisissons ensuite une r-base B de K 2 /k, comme K 2 /k est d'exposant fini, alors B est un r-générateur minimal de K 2 /k. Soit B 1 , . . . , B n une partition de B vérifiant B 1 = {x ∈ B| o(x, k) = o 1 (K 2 /k) = e 1 } et, pour tout 1 < i ≤ n, B i = {x ∈ B| o(x, k(B 1 , . . . , B i-1 )) = o 1 (K 2 /k(B 1 , . . . , B i-1 )) = e i }.
Il est clair que e 1 > . . . > e n , et en vertu de la linéarité disjointe, pour tout i ∈ {1 . . . , n}, pour tout

x ∈ B i , on a également o(x, K 1 (B 1 , . . . , B i-1 )) = o 1 (K/K 1 (B 1 , . . . , B i-1 ))} = e i . En particulier, pour tout i ∈ {2, . . . , n}, ( α (G) αp e i ) G , où G est une partie finie d'éléments de B 1 ∪ . . . ∪ B i-1 et les α sont convenablement choisis, est une base respectivement de k(K 2 p e i ) sur k et K 1 (K 2 p e i ) = K 1 (K p e i ) sur K 1 . Notons M i cette base, et soit x ∈ B i , il existe des c α ∈ k uniques tels que x = α c α y α , (y α ∈ M i )
, en outre les c α sont aussi uniques dans K 1 . D'autre part, en vertu de la modularité, pour tout i ∈ {1, . . . , n}, K

p e i et K 1 sont K 1 ∩ K p e i -linéairement disjointes. Comme K 1 (K 2 p e i ) = K 1 (K p e i ) et M i ⊆ K p e i
, alors M i est aussi une base de K p e i sur K 1 ∩ K p e i . En tenant compte de l'unicité de l'écriture de x dans la base M i , on en déduit par identification que les c α ∈ k ∩ K p e i , et donc B i p e i ⊆ k ∩ K p e i (K 1 p e i (B 1 p e i , . . . , B i-1 p e i )) pour tout i ∈ {1 . . . , n}. Par application du ( [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], proposition 3.3, p. 94), il existe une sous-extension modulaire J/k d'exposant fini de K/k telle que K ≃ K 1 ⊗ k J. Ainsi, le résultat découle immédiatement du théorème de Swedleer.

⊓ ⊔ Dans le cas fini, le résultat suivant généralise la proposion ci-dessus.

Proposition 5.13 Soient K 1 et K 2 deux corps intermédiaires ; k-linéairement disjoints d'une extension purement inséparable finie L/k avec di(L/K 1 ) = di(K 2 /k) = n. Soit s le plus petit entier tel que o s (K 2 /k) = o n (K 2 /k). Si L/K 1 est modulaire, il existe une r-base {α 1 , . . . , α n } canoniquement ordonnée de K 1 (K 2 )/K 1 vérifiant K 1 (K 2 ) ≃ K 1 ⊗ k(α 1 , . . . , α s ) ⊗ k k(α s+1 ) ⊗ k . . . ⊗ k k(α n ).
Preuve. Pour simplifier l'écriture, pour tout j ∈ {1, . . . , n}, on note 

o j (K 2 /k) = e j , et K = K 1 (K 2 ) . Soit
(C i ε ) p -en ∈ L. Posons ensuite, F = k((C i ε ) p -en ) où (i, ε) parcourt l'ensemble {s, . . . , n} × Λ s-1 , et H = K 1 (F )(α 1 , . . . , α s-1 ). Il est clair que o 1 (F/k) ≤ e n ,
• Pour tout i ∈ {1, . . . , s-1}, e i = o i (H/K 1 ) = o i (K 1 (α 1 , . . . , α s-1 )/K 1 ) = o i (k(α 1 , . . . , α s-1 )/k). • Pour tout j ∈ {s, . . . , n}, e n = o j (H/K 1 ) = o(b j , K 1 (α 1 . . . , α s-1 , b s , . . . , b j-1 )) ≤ o(b j , k(b s , . . . , b j-1 )/k) ≤ o 1 (F/k) ≤ e n , et donc e n = o j (H/K 1 ) = o j (k(b s , . . . , b n )/k). D'où, H = K ≃ K 1 ⊗ k(α 1 , . . . , α s-1 ) ⊗ k k(b s ) ⊗ k . . . ⊗ k k(b n ). ⊓ ⊔
6 Extensions équiexponentielles Proposition 6.1 Soit K/k une extension purement inséparable d'exposant e.

Les assertions suivantes sont équivalentes :

(1)

Il existe une r-base G de K/k vérifiant K ≃ ⊗ k (k(a)) a∈G , et pour tout a ∈ G, o(a, k) = e. (2) Toute r-base G de K/k satisfait K ≃ ⊗ k (k(a)) a∈G , et o 1 (K/k) = e. (3) Il existe une r-base G de K/k telle que pour tout a ∈ G, o(a, k(G\{a})) = o(a, k) = e. (4) Pour toute r-base G de K/k, pour tout a ∈ G, o(a, k(G \ {a})) = o(a, k) = e.
Preuve. D'après le théorème de la r-base incomplète, on se ramène au cas où K/k est finie auquel cas Preuve. D'après le théorème 5.8, il suffit de montrer que k(k n p ) = k n-1 . Compte tenu de la modularité de K/k, K p n et k sont k ∩ K p n -linéairement disjointes pour tout n ≥ 1, et en vertu de la transitivité de la linéarité disjointe,

[K : k] = p en , où e = o 1 (K/k) et n = di(K/k),
k p n-1 (K p n ) et k sont k p n-1 (k ∩ K p n )-linéairement disjointes. Or K/k est relativement parfaite, donc k p n-1 (K p n ) = K p n-1 , et par suite k ∩ K p n-1 = k p n-1 (k ∩ K p n ), ou encore k(k n p ) = k n-1 . ⊓ ⊔
Le résultat suivant, rapporte plus de précision à la proposition 6.2 dans le cas des extensions q-finies, notamment aux extensions finies. Proposition 6.3 Soit K/k une extension purement inséparable de degré d'irrationalité t, relativement parfaite et modulaire (respectivement finie et équiexponentielle). Soient n et m deux entiers naturels tels que n < m (respectivement, n < o 1 (K/k)). Les propriétés suivantes sont vérifiées :

(1) di(k m /k n ) = t. (2) k m /k n est équiexponentielle d'exposant m -n ; (3) k p -(m-n) n ∩ K = k m et k(k p m-n m ) = k n . En particulier, pour tout n ∈ N, on a [k n , k] = p nt .
Preuve. cf. [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF], p. 147, proposition 9.4.

⊓ ⊔

Comme conséquence immédiate, on a : Corollaire 6.4 Si K/k est une extension équiexponentielle d'exposant e, alors :

(i) Pour tout i ∈ {1, . . . , e}, k i /k et K/k i sont équiexponentielles d'exposant respectivement i et e -i. (ii) Pour tout i ∈ {1, . . . , e}, k(K p i )/k et K/k(K p i ) sont équiexponentielles d'exposant respectivement e -i et i. Preuve. Immédiat. ⊓ ⊔
Le théorème ci-dessus reproduit dans un cadre plus étendu le corollaire 4.5 qui se trouve dans [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF], p. 292, et pour plus d'information au sujet d'extraction des r-bases modulaires, on se réfère aux [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF] et [START_REF] Deveney | Invariance in inseparable Galois theory[END_REF]. 

, • • • , a n } d'éléments de B 1 , L(a 1 , . . . , a n ) ≃ L(a 1 ) ⊗ L . . . ⊗ L L(a n ) et M (a 1 , . . . , a n ) ≃ M (a 1 ) ⊗ M . . . ⊗ M M (a n ).
Par application de la proposition 4.12, on a succes-

sivement [L(a 1 , . . . , a n ) : L] = n i=1 p ea i et [M (a 1 , . . . , a n ) : M ] = n i=1 p ea i , ou encore L et K sont M -linéairement disjointes. D'où L = L ∩ K = M . ⊓ ⊔
7 q-finitude et modularité Soit K/k une extension q-finie d'exposant non borné. Dans tout ce qui suit, nous utilisons les notations suivantes :

k j = k p -j ∩ K, U j s (K/k) = j -o s (k j /k), et Ilqm(K/k)
désigne le premier entier i 0 pour lequel la suite (U j i0 (K/k)) j∈N est non bornée. Le résultat ci-dessus est une application immédiate de la proposition 4.10.

Proposition 7.1 Etant donnée une extension q-finie K/k. Pour tout entier s, la suite (U j s (K/k)) j∈N est croissante. Preuve. Comme k n+1 p ⊆ k n , il est clair que o s (k n /k) ≤ o s (k n+1 /k) ≤ o s (k n /k) + 1, et donc n + 1 -o s (k n+1 /k) ≥ n -o s (K n /k) ; c'est-à-dire la suite (U j s (K/k)) j∈N est croissante. ⊓ ⊔
En outre, on vérifie aussitôt que :

(i) Pour tout s ≥ Ilqm(K/k), lim n→+∞ (U n s (K/k)) = +∞. (ii) Pour tout s < Ilqm(K/k), la suite (U j s (K/k)) j∈N est bornée ; et par suite, pour tout n ≥ sup j∈N (sup(U j s (K/ k ))) s<Ilqm(K/k) , on a U n s (K/k) = U n+1 s (K/k). Autrement dit, o s (k n+1 /k) = o s (k n /k) + 1.
Dans toute la suite, on pose e(K/k) = sup

j∈N (sup(U j s (K/k))) s<Ilqm(K/k) , et pour tout (s, j) ∈ N * × N * , e j s = o s (k j /k) Théorème 7.2 Soit K/k une extension q-finie, avec t = di(rp(K/k)/k).
Les affirmations suivantes sont équivalentes ;

(1) K/k est modulaire sur une extension finie de k.

(2) Pour tout s ∈ {1, 2, . . . , t}, la suite (U j s (K/k)) j∈N est bornée.

(3) Ilqm(K/k) = t + 1.
Preuve. Il est clair que (2) ⇔ (3). Par ailleurs, compte tenu de la proposition 4.3, il existe un entier j 0 tel que K/k j0 est relativement parfaite et k j0 (rp(K/k)) = K, et d'après la proposition 4.18, on aura di(K/k j0 ) = di(rp(K/ k)/k) = t. Supposons ensuite que la condition (1) est vérifiée. On distingue deux cas :

Si K/k est modulaire, en vertu de la proposition 6.3, pour tout j ≥ j 0 , on a

k j /k j0 est équiexponentielle d'exposant j -j 0 et di(k j /k j0 ) = t. D'où pour tout s ∈ {1, . . . , t}, on a U j s (K/k) = U j+1 s (K/k).
Si K est modulaire sur une extension finie L de k, compte tenu de la finitude de L/k, il existe un entier naturel n tel que L ⊆ k n . Par suite, L p -j ∩ K ⊆ k n+j , et donc U n+j s (K/k) ≤ n + U j s (K/L). D'où, la suite (U j s (K/k)) j est stationnaire pour tout s ∈ {1, . . . , t}.

Inversement, si la condition (2) est vérifiée, il existe m 0 ≥ sup(e(K/k), j 0 ), pour tout j ≥ m 0 , pour tout s ∈ {1, . . . , t}, on a o s (k j+1 /k) = o s (k j /k) + 1 (et di(k j /k m0 ) = t). Par suite, k j /k j0 est équiexponentielle, donc modulaire. D'où K = j>m0 k j est modulaire sur k j0 .

⊓ ⊔ Théorème 7.3 La plus petite sous-extension M/k d'une extension q-finie K/k telle que K/M est modulaire n'est pas triviale (M = K). Plus précisément, si K/k est d'exposant non borné, il en est de même de K/M .

Preuve. Le cas où K/k n'est pas relativement parfaite (en particulier le cas fini) est trivialement évident, puisque K/k(K p ) est modulaire. Ainsi, on est amené à considérer que K/k est relativement parfaite d'exposant non borné. On emploiera ensuite un raisonnement par récurrence sur di(K/k) = t. Si t = 1, ou encore si K/k est q-simple, il est immédiat que K/k est modulaire. Supposons maintenant que t > 1, si Ilqm(K/k) = t + 1, en vertu du théorème 7.2, M/k est finie, et donc K/M est d'exposant non borné. Si Ilqm(K/k) ≤ t, pour tout j > e(K/k), pour tout s ∈ [1; i -1] où i = Ilqm(K/k), on a e j+1 s = e j s + 1. Comme k p j+1 ⊆ k j , d'après la proposition 5.4, il existe une rbase canoniquement ordonnée (α 1 , . . . , α n ) de k j+1 /k, il existe ε i , . . . , ε t ∈ {1, p} tels que (α p 1 , . . . , α p i-1 , α εi i . . . , α εt t ) est une r-base canoniquement ordonnée de k j /k. Dans la suite, pour tout j > e(K/k), notons K j = k(k p e j i j ). D'une part,

K j = k(α p e j i +1 1 , . . . , α p e j i +1 i-1 ) et K j+1 = k(α p e j+1 i 1
, . . . , α p e j+1 i i-1 ). D'autre part, on a e j+1 i = e j i + ε, avec ε = 0 ou 1, cela conduit à K j ⊆ K j+1 . Toutefois, par définition de Ilqm(K/k), on a 1 + e j i > e j+1 i (c'est-à-dire e j i = e j+1 i ) pour une infinité de valeurs de j. Pour ces valeurs, on a di(K j+1 /k) = i -1, sinon d'après le lemme 4.14, e j+1 i = e j+1 i-1 = 1 + e j i-1 = e j i , et donc e j i > e j i-1 , ce qui contredit la définition des exposants. Comme (di(K j /k)) j>e(K/k) est une suite croissante d'entiers bornée par di(K/k), donc elle stationne sur Ilqm(K/k) -1. De plus, 

K j = K j+1 , en effet si K j = K j+1 = k(K p j+1 ), comme K j+1 /k

⊓ ⊔

Une version équivalente de ce résultat se trouve dans [START_REF] Chellali | Extensions purement inséparables d'exposant non borné[END_REF]. Toutefois, le théorème ci-dessus peut tomber en défaut lorsque l'hypothèse de la q-finitude n'est pas vérifiée comme le montre le contre-exemple ci-dessus Exemple 7.4 Soient Q un corps parfait de caractéristique p > 0, et (X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ) une famille algébriquement indépendante sur Q. Soit k = Q(X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ) le corps des fractions rationnelles aux indéterminées (X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ). Posons ensuite :

K 1 = n≥1 k(θ 1,n ), avec θ 1,1 = X p -1 et θ 1,n = θ 1,n-1 p -1 pour tout entier n > 1. K 2 = n≥1 K 1 (θ 2,n ), où θ 2,1 = Z 1 p -1 θ 1,2 + Z 2 p -1 , et pour tout n > 1, θ 2,n = Z 1 p -1 θ 1,2n + θ 2,n-1 p -1 .
Par récurrence, on pose

K j = n≥1 K j-1 (θ j,n ), où θ j,1 = Z j-1 p -1 θ j-1,2 +Z j p -1 , et pour tout n > 1, θ j,n = Z j-1 p -1 θ j-1,2n +θ j,n-1 p -1 .
Enfin, on note K = j∈N * K j , et par conventient on pose K 0 = k, et pout tout i ∈ N, θ i,0 = 0. Comme pour tout j ∈ N * , K j ⊆ K j+1 , alors K est un corps commutatif.

Théorème 7.5 Sous les conditions ci-dessus, la plus petite sous-extension m telle que K/m est modulaire est triviale, c'est-à-dire lm(K/k) = K Pour la preuve de ce théorème, on se servira des résultats suivants :

Lemme 7.6 Sous les mêmes conditions ci-dessus, pour tout

(j, n) ∈ N × N * , K j (θ j+1,n ) = K j (θ j+1,n+1 p ) et θ j+1,1 ∈ K j . En particulier, o(θ j+1,n , K j ) = n.
Preuve. Il est trivialement évident que K j (θ j+1,n ) = K j (θ j+1,n+1 p ) pour tout (j, n) ∈ N×N * . Pour achever la preuve, il suffit de remarquer que

K j ⊆ k(X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ) et k(θ j+1,n , X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ) = k(Z j+1 p -n , X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ), et donc, pour tout n ∈ N * , n = o(θ j+1,n , k(X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ )) ≤ o(θ j+1,n , K j ) ≤ n. ⊓ ⊔
Comme conséquence immédiate, pour tout j ∈ N * , K j /K j-1 est q-simple d'exposant non borné. En particulier, di(K j /k) = j. Lemme 7.7 Pour tout i ∈ N * , la famille (Z i , (S j ) j∈N * ) est r-libre sur K p . 

Preuve. Puisque pour tout

i ≥ 1, S i p -1 ∈ k(X p -∞ , (Z j p -∞ ) j≥1 )(S 1 p -1 , . . . , S i-1 p -1 ) = K(Z 1 p -∞ )(S 1 p -1 , . . . , S i-1 p -1 ), il suffit de montrer que Z i ∈ K p ; ou encore Z i p -1 ∈ K. Par construction, pour tout j ∈ {1, . . . , n}, on a θ j,1 = Z j-1 p -1 θ j-1,2 +Z j p -1 avec K n contient θ j,1 et θ j-1,2 , et donc s'il existe n > i tel que Z i p -1 ∈ K n , par itération, on aura Z i-1 p -1 , . . . , Z 1 p -1 ∈ K n et Z i+1 p -1 , . . . , Z n p -1 ∈ K n . Par suite, d'après le théorème 3.1, di(k(X p -1 , Z 1 p -1 , . . . , Z n p -1 )/k) ≤ di(K n /k),
θ i+2,n+1 = Z i+1 p -1 θ i+1,2(n+1) + θ i+2,n p -1 , donc θ i+2,n+1 p n+1 = Z i+1 p n θ i+1,2(n+1) p n+1 + θ i+2,n p n , avec θ i+2,n p n = Z i+1 p n-1 θ i+1,2n p n + • • • + Z i+1 θ i+1,2 p + Z i+2 ∈ m. Par identification, Z i+1 p n ∈ m ∩ K p n+1 ⊆ K p n+1 , et donc Z i+1 p -1 ∈ K, absurde. D'où pour tout n ∈ N * , θ i+1,n ∈ m, ou encore K i+1 ⊆ m. D'où m = K. ⊓ ⊔ 8 
⊆ k 2 ⊆ K 1 ⊆ K 2 des sous-extensions purement inséparables. (i) Si k 1 ∼ k 2 , alors lm(K 1 /k 1 ) ∼ lm(K 1 /k 2 ). (ii) Si K 1 ∼ K 2 , alors um(K 1 /k) ∼ um(K 2 /k).
Preuve. La démonstration résulte des considérations suivantes :

• lm(K 1 /k 1 ) ⊆ lm(K 1 /k 2 ), et si de plus o 1 (k 2 /k 1 ) = e 1 , alors lm(K 1 / k 2 ) ⊆ (lm(K 1 / k 1 ))
p -e 1 ∩K 1 , avec K 1 /(lm(K 1 /k 1 ))

p -e 1 ∩ K 1 est modulaire, (cf. la proposition 5.10).

• Egalement, um(K 1 /k) ⊆ um(K 2 /k), et si de plus o 1 (K 2 /K 1 ) = e 2 , alors um(K 2 /k) ⊆ (um(K 1 /k)) p -e 2 , et (um(K 1 /k))
p -e 2 /k est modulaire, (cf. proposition 5.3).

⊓ ⊔

Soit P/k la clôture purement inséparable d'une clôture algébrique Ω de k, la proposition ci-dessus peut s'interpréter en terme de correspondance de la façon suivante : "l'application de modularité inférieure : 

lm : [k : K 1 ] -→ [k : K 1 ] L -→ lm(K 1 /L), et celle de modularité supérieure : um : [k : P ] -→ [k : P ] L -→ um(L/k),
= k 0 (X, (Y i , Z i ) i≥1 ) le corps des fractions rationnelles aux indéterminées (X, (Y i , Z i ) i≥1 ). Pour tous i ∈ N * , on note θ i = Y i p -1 X p -i-1 + Z i p -1 , et K = k(X p -∞ , (θ i ) i≥1 ). Posons ensuite K ′ = k(X p -∞ , (Y i p -1 , Z i p -1 ) i≥1 ).
On vérifie aussitôt que :

• K ′ ≃ k(X p -∞ )⊗ k (k(Y i p -1 )⊗ k k(Z i p -1 )) i≥1 , et donc K ′ /k est modulaire.
• En utilisant le critère de modularité, on montre que lm(K/k) = k(X p -∞ ) ; et donc K/k n'est pas lq-modulaire.

Or, pour tous

i ≥ 1, on a θ i = Y i p -1 X p -i-1 + Z i p -1 ; il en résulte que θ i ∈ k(X p -i-1 , Y i p -1 , Z i p -1 ) ⊆ K ′ . D'où K ⊆ K ′ , avec o 1 (K ′ /K) = 1 ; donc K ∼ K ′ ,
mais ∼ ne respecte pas lq-modularité. Toutefois, si on ajoute la condition "être relativement parfaite" à l'une des extensions, la lq-modularité sera respectée comme l'indique le résultat suivant. 

(L/k) = 1, soit G une partie de L telle que G est une r-base de L(K)/K, donc L(K) ≃ K ⊗ k (⊗ k (k(a)) a∈G ) ≃ K ⊗ m0 (⊗ m0 (m 0 (a)) a∈G ).
((L(K)) p ) = m 1 (K p ) est modulaire sur m 1 . Or, K/k est relativement parfaite et m 1 ⊆ m 0 ⊆ K, donc K = m 1 (K p ) est modulaire sur m 1 , et par suite m 0 ⊆ m 1 . D'où m 1 = m 0 , et
= k 0 ((X i , Y i , Z i ) i∈N * ) le corps des fractions rationnelles aux indéterminées (X i , Y i , Z i ) i∈N * . Pour tout i ≥ 1, notons α i = X i p -i-1 et θ i = Y i p -1 α i + Z i p -1 . Ega- lement, posons K = k((α i , θ i ) i∈N * ), m = lm(K/k), S = k((α i p ) i∈N * ), et pour tout r ∈ N * , L r = k((X j p -∞ , Y j p -∞ , Z j p -∞ ) j∈N * \{r} ) et F r = k(α 1 p , . . . , α r p ). Comme θ i = Y i p -1 α i + Z i p -1 pour tout i ∈ N * , on vérifie aussitôt que θ i ∈ k(Y i p -1 , α i , Z i p -1 ) ⊆ k(Y i p -∞ , X i p -∞ , Z i p -∞ ), et donc pour tout r ∈ N * , K ⊆ k((X j p -∞ , Y j p -∞ , Z j p -∞ ) j∈N * \{r} , θ r ) = L r (θ r ).
On vérifie également en utilisant le critère de modularité que m = S. En effet, s'il existe r ≥ 1 tel que α r p ∈ m, le système (1, α r p ) sera m-libre, en particulier il sera m ∩ K p -libre. Complétons ce système en une base B de K p sur m ∩ K p . Comme K p et m sont m ∩ K p -linéairement disjoints (K/m est modulaire), on en déduit que B est aussi une base de m(K p ) sur m. Or, l'équation de définition de θ r sur m s'écrit :

θ r p = Y r α r p + Z r , par identification on en déduit que Y r , Z r ∈ m ∩ K p ⊆ K p . En outre, Y r p -1 , Z r p -1 ∈ K ⊆ L r (θ r ), et d'après le théorème 3.1, on aura 2 = di(L r (Y r p -1 , Z r p -1 )/L r ) ≤ di(L r (θ r )/L r ) = 1. Il en résulte que 2 ≤ 1, contradiction. D'où, pour tout r ∈ N * , α r p ∈ m, ou encore S ⊆ m. D'autre part, K/S est modulaire, donc m = S.
Dans la suite, on note k i = k((α j p ) j≥i ). On montre aussitôt que : Par suite, K/ k i n'est pas lq-modulaire, (puisque m/k est d'exposant non borné), même si K/k i est lq-modulaire pour tout i ∈ N * . Remarque 8.2 Sous l'hypothèse de la q-finitude une intersection quelconque portant sur k respecte la lq-modularité cf. [START_REF] Chellali | Extensions i-Modulaires[END_REF], p. 16, théorème 3.22. En outre, toute extension q-finie K/k admet une plus petite sous-extension m tel que K/m est lq-modulaire. Toutefois, cette propriété peut tomber en défaut sans la condition de q-finitude comme l'indique l'exemple ci-dessus.

• Pour tout i ∈ N * , K/k i est lq-modulaire. • i∈N * k i = k, en effet, soit θ ∈ k i ,
Le résultat qui suit donne une condition nécessaire et suffisante d'existence de la plus petite sous-extension qui respecte la lq-modularité comme corps de base pour une extension donnée. Plus précisément, on a : Exemple 8.9 On reprend les notations de l'exemple 8.7 ci-dessus, k 0 désigne toujours un corps parfait de caractéristique p > 0 et k = k 0 ((X i , Y i , Z i ) i∈N * ) le corps des fractions rationnelles aux indéterminées (X i , Y i , Z i ) i∈N * . On rappelle que pour tout i ∈ N * , α i = X i p

-i-1 et θ i = Y i p -1 α i + Z i p -1 . Notons également, K 1 = k((α i ) i∈N * ) et K 2 = k((θ i ) i∈N * ).
Il est immédiat que K 1 /k et K 2 /k sont modulaires, donc lq-modulaires. Egalement, on a lm(K 1 (K 2 )/k) = k(K 1 p ), et donc K 1 (K 2 )/k n'est pas lqmodulaire. Soit K/k une extension purement inséparable, la plus petite extension M/K telle que M/k est uq-modulaire lorsqu'elle existe sera appelée la clôture uqmodulaire de K/k, et sera notée uqm(K/k). Certes d'après la proposition 5.10, K((uqm(K/k))

Extensions uq-modulaires

p )/k est aussi uq-modulaire, et donc uqm(K/k) = rp(uqm(K/k) /K). Remarque 9.1 Contrairement aux extensions q-finies, une extension peut ne pas avoir de clôture uq-modulaire, comme le montre l'exemple suivant. Exemple 9.4 Soient k 0 un corps parfait de caractéristique p > 0 et k = k 0 ((X i , Y i , Z i ) i∈N * ) le corps des fractions rationnelles aux indéterminées (X i , Y i , Z i ) i∈N * . Pour tout i ∈ N * , notons α i = X i p -i-1 , θ i = Y i p -i α i + Z i p -i , K = k((α i , θ i ) i∈N * ), et pour tout j ∈ N * , F j = k(Y 1 p -1 , . . . , Y j p -j ).

On vérifie aussitôt que :

um(K/k) = K((Y i p -i , Z i p -i ) i∈N * ). En outre, K/k n'est pas uq-modulaire, (um(K/k)/K est d'exposant non borné).

-

um(K/k) = K((Y i p -i ) i∈N * ) = K((Z i p -i ) i∈N * ) ≃ K ⊗ k (⊗ k k(Z i p -i ) i∈N * )) ≃ K ⊗ k (⊗ k k((Y i p -i ) i∈N * )). -um(K/k) = k((α i , Y i p -i , Z i p -i ) i∈N * ) ≃ (⊗ k k((α i ) i∈N * )) ⊗ (⊗ k k((Y i p -i ) i∈N * )) ⊗ k (⊗ k k(( Z i p -i ) i∈N * ))
De même, on note pour tout i ∈ N * , M i = K((Y j p -j ) j≥i ). On vérifie également que :

-Pour tout i ∈ N * , M i /k est uq-modulaire. - ). Or, ⊓ ⊔

M 1 = K((Y i p -i ) i∈N * ) ≃ K ⊗ k (⊗ k k(Y i p -i ) i∈N * )) ≃ M j+1 ⊗ k F j , d'où β ∈ F j ∩ M j+1 = K.

( 3 )

 3 Toute extension K/k admet une r-base. En outre, tout corps commutatif de caractéristique p > 0 admet une p-base. Par ailleurs, toutes les r-bases d'une même extension ont même cardinal comme le précise le résultat suivant. Théorème 2.8 Soit K/k une extension de caractéristique p > 0. Si B 1 et B 2 sont deux r-bases de K/k, alors |B 1 | = |B 2 |.

  D(x))). Il en résulte que x∈B2 (D(x)) = B 1 , et en vertu du ([16], III, p. 49, cor 3), on obtient |B 1 | ≤ |B 2 |.|N| = |B 2 |. De la même façon on montre que |B 2 | ≤ |B 1 | ; d'où |B 1 | = |B 2 |. ⊓ ⊔ Comme conséquence, on a : Corollaire 2.11 Pour toute partie B 1 de K, r-libre sur k(K p ), et tout rgénérateur G de K/k, on a |B 1 | ≤ |G|.

Remarque 3 . 1

 31 di(K/k) permet de mesurer la taille de l'extension K/k, et di(k) la longueur de k.

Proposition 4 . 18

 418 Etant donnée une sous-extension K/k relativement parfaite d'une extension q-finie M/k. Pour toute sous-extension finieL/k de M/k, on a di(L(K)/L) = di(K/k).Preuve. En vertu du corollaire 3.6, il suffit de montrer que di(L(K)/L) ≥ di(K/k). Pour cela, on pose d'abord e = o 1 (L/k) et t = di(K/k). D'après le théorème 4.15, pour tout s ∈ {1, . . . , t}, o s (K/k) = +∞, donc pour n assez grand, on aura

  et K ⊆ H ⊆ L. De plus, d'après le théorème 3.1 et la proposition 4.10, n = di(K/K 1 ) ≤ di(H/K 1 ) ≤ di(L/K 1 ) = n, et pour tout i ∈ {s, . . . , n}, e n = o i (K/K 1 ) ≤ o i (H/K 1 ) ≤ e n . Il en résulte que di(H/K 1 ) = n, et pour tout i ∈ {s, . . . , n}, e n = o i (H/K 1 ). Comme e s-1 > e s = e n , d'après l'algorithme de la complétion des r-bases, il existe des éléments b s , . . . , b n ∈ F tels que {α 1 . . . , α s-1 , b s , . . . , b n } soit une r-base canoniquement ordonnée de H/K 1 . En particulier, on aura :

Théorème 6 . 5

 65 Soient k ⊆ L ⊆ K des extensions purement inséparables telles que K/k est équiexponentielle d'exposant e. Si K/L est modulaire, il existe une r-base G de K/k telle que {a p o(a,L) | a ∈ G et o(a, L) < e} est une r-base modulaire de L/k. Preuve. Comme K/L est modulaire d'exposant fini, il existe une r-base B 1 de K/L telle que K ≃ ⊗ L (⊗ L L(a)) a∈B1 ), (*). Pour des raisons d'écriture, pour tout a ∈ B 1 , on pose e a = o(a, L) et C = (a p ea ) a∈B1 . Soit B 2 une partie de L telle que B 2 est une r-base de L(K p )/k(K p ). Compte tenu de la transitivité de r-indépendance, B 1 ∪ B 2 est aussi une r-base de K/k. Dans la suite, notons M = k(C, B 2 ). Il est clair que M ⊆ L, de plus, comme K/k est équiexponentielle, on aura K ≃ ⊗ k (⊗ k k(a)) a∈B1∪B2 . En vertu de la transitivité de la linéarité disjointe, K ≃ ⊗ M (⊗ M M (a)) a∈B1 , (**). En particulier, d'après les relations (*) et (**), pour toute famille finie {a 1

Proposition 8 . 5

 85 Soit K/k une extension purement inséparable et relativement parfaite. K/k est lq-modulaire si et seulement si il en est de même de L(K)/k pour toute extension L/k telle que k ∼ L.Preuve. Notons m 0 = lm(K/k) et m 1 = lm(L(K)/k). On va utiliser un raisonnement par récurrence. Commençons par le cas o 1

  D'une part, d'après la proposition 5.11, on aura L(K)/m 0 est modulaire, et donc m 1 ⊆ m 0 . D'autre part, compte tenu de la proposition 5.10, on aura aussi m 1

  en particulier θ ∈ k 1 = m, donc il existe j ≥ 1 tel que θ ∈ k(α 1 p , . . . , α j p ) = F j . De même θ ∈ k j+1 , mais comme m ≃ ⊗ k (k(α i p )) i≥1 ≃ F j ⊗ k k j+1 , donc F j ∩ k j+1 = k ; d'où θ ∈ k.

Proposition 8 . 8 Remarque 8 . 3

 8883 Soient K/k une extension purement inséparable et lm(K/k) = m. Alors, K/k admet une plus petite sous-extension m 1 /k telle que K/m 1 est lq-modulaire si et seulement si m/rp(m/k) est finie. En outre si m 1 existe, on a m 1 = rp(m/k).Preuve. La condition nécessaire est évidente, il suffit de remarque queK/k( m 1 p ) est aussi lq-modulaire, et que m 1 ≤ m ≤ lm(K/m 1 ), avec lm(K/m 1 )/m 1 est finie. Inversement, supposons que m/rp(m/k) est finie, donc K/rp(m/k) est lq-modulaire. Soit L/k une sous-extension de K/k telle que K/L est lqmodulaire, et soit L 1 = lm(K/L), donc il existe e ∈ N tel que L 1 ⊆ L p -e ∩ K. Comme m = lm(K/k), alors m ⊆ L 1 ; et donc rp(m/k) = i∈N k(m p i ) ⊆ i∈N k(L 1 p i ) ⊆ L.⊓ ⊔ Contrairement aux extensions q-finies, le produit ne respecte pas la lq-modularité comme l'indique l'exemple suivant.

Définition 9 . 1 Proposition 9 . 1 Corollaire 9 . 3

 919193 Une extension purement inséparable K/k est dite uq-modulaire s'il existe une extension K ′ /K d'exposant fini telle que K ′ /k est modulaire.Comme conséquences immédiates, on a :-K/kest uq-modulaire si et seulement si [um(K/k) : K] est d'exposant fini. -Compte tenu de l'exemple 8.4, et contrairement aux extensions q-fnies, la uq-modularité n'entraîne pas généralement la lq-modularité. -La uq-modularité est compatible avec la relation ∼. En outre, la uqmodularité est stable à une extension d'exposant finie près. Plus précisément on a : Soient K et K ′ deux sous-extensions purement inséparables d'une même extension Ω/k. Si K ∼ K ′ , alors K/k est uq-modulaire si et seulement si il en est de même de K ′ /k. Preuve. Résulte immédiatement de la proposition 8.1. ⊓ ⊔ En particulier, Corollaire 9.2 Soit n une entier naturel. Alors, on a : (i) K/k est uq-modulaire si et seulement si il en est de même de k(K p e )/k. (ii) K/k est uq-modulaire si et seulement si il en est de même de K p -e /k. Si k ∼ L, alors K/k est uq-modulaire si et seulement si il en est de même de L(K)/k.

  i∈N * M i /k n'est pas uq-modulaire, il suffit de montrer quei∈N * M i = K. Soit β ∈ i∈N * M i , en particulier β ∈ M 1 , donc il existe j ∈ N * tel que β ∈ k(Y 1 p -1 , . . . , Y j p -j ) = F j . On a aussi, β ∈ M j+1 = K((Y i p -i ) i≥j+1

  Le résultat qui suit donne une condition nécessaire et suffisante d'existence de la clôture uq-modulaire d'une extension donnée. Plus précisément, on a :Proposition 9.5 Soient K/k une extension purement inséparable et um(K/k) = M . Alors, K/k admet une clôture uq-modulaire si et seulement si M/rp(M/ K) est d'exposant fini. En outre lorsque ulqm(K/k) existe, alors ulqm(K/k) = rp(M/K).Preuve. Il est immédiat que rp(M/K)/k est uq-modulaire si M/rp(M/K) est d'exposant fini. Soit S/K une extension purement inséparable telle que S/k est uq-modulaire, donc la clôture modulaire de S/k que l'on note S 1 est d'exposant fini e sur S. Il en résulte que M ⊆ S 1 , en particulierK(M p e ) ⊆ k(S 1 p e ) ⊆ S, et par suite rp(M/k) ⊆ S. D'où ulqm(K/k) = rp(M/K). Inversement, notons N = uqlm(K/k) et M 1 = um(N/k). Il est clair que N ⊆ M ⊆ M 1 et M 1 ⊆ N p -spour un certain entier naturel s, de plus N/K et relativement parfaite puisque K(N p )/k est aussi uq-modulaire, donc K(M p s ) ⊆ N . Comme K(M p s )/k est uq-modulaire, on en déduit que K(M p s ) = N ; et par suite rp(M/K) = N .

  Preuve du théorème 2.8. D'après la prroposition 2.1, on se ramène au cas où |B 1 | et |B 2 | sont infinies. Comme B 1 est une r-base de K/k, pour tout x ∈ B 2 , il existe une partie finie D

	Preuve. Immédiat, il suffit d'appliquer la proposition 2.2.	⊓ ⊔

10 Soit K/k une extension de caractéristique p > 0. Si K/k admet au moins une r-base finie, alors toutes les r-bases de K/k sont finies et ont même cardinal.

  2-ième cas. Etant donné un entier naturel e distinct de 0 et 1. Raisonnons par récurrence en supposant que le théorème est vérifié pour toute extension d'exposant < e, et soit K/k une extension purement inséprable d'exposant e. Il est clair que k

  est d'exposant fini. Soit B n une r-base de k n /k, d'après le théorème 2.13, |B n | ≤ |B n+1 |. Ensuite, on pose di(K/k) = sup

	n∈N *	(|B n |), on rappelle que le sup est utilisé ici au sens du ([16], III,
	p. 25, proposition 2).
	Définition 3.1 L'invariant di(K/k) défini ci-dessus s'appelle le degré d'irrat-
	ionalité de K/k.
	En particulier, et pour des raisons de différenciation, le degré d'irrationalité
	de k/k p sera appelé degré d'imperfection de k et sera noté di(k).

  alors

	B j n est un r-générateur de k p -j ∩ K/k. En vertu du
	n∈N	
	corollaire 2.11, di(k p -j ∩ K/k) ≤ |	B j n |, et d'après ([16], III, p.49, corollaire
	n∈N	
	3), |	
	n∈N	

'est une contradiction avec le fait que B 1 est une r-base de K 1 /k.

  

	⊓ ⊔
	Comme conséquence immédiate, on a
	Corollaire 3.6 Soient K 1 et K 2 deux corps intermédiaires d'une même exten-
	sion purement inséparable Ω/k. Alors :

  -dessus s'appelle le ième exposant de K/k. Voici les principales relations dont on aura besoin, et qui font intervenir les exposants. Proposition 4.9 Soient K et L deux corps intermédiaires d'une extension Ω/k, avec K/k purement inséparable finie. Alors pour tout entier j, on a o j (K( L)/k(L)) ≤ o j (K/k). Proposition 4.10 Soit K/k une extension purement inséparable finie. Pour toute sous-extension L/L ′ de K/k, et pour tout j ∈ N, on a o j (L/L ′ ) ≤ o j (K/k). Proposition 4.11 Soient {α 1 , . . . , α n } une r-base canoniquement ordonnée de K/k, et m j le j-ième exposant de K/k, 1 ≤ j ≤ n. On a :

	Preuve. Cf. [4], p. 373, proposition 5.	⊓ ⊔
	Preuve. cf. [4], p. 374, proposition 6.	⊓ ⊔

  Cas où K/k est q-finie d'exposant non borné. Soit K/k une extension q-finie. Rappelons que pour tout n ∈ N * , k n désigne toujours k p -n ∩ K. En vertu de la proposition 4.10, pour tout j ∈ N * , la suite des entiers naturels(o j (k n /k)) n≥1 est croissante, et donc (o j (k n /k)) n≥1 converge vers +∞, ou (o j (k n /k))n≥1 est stationnaire à partir d'un certain rang. Lorsque (o j (k n /k)) n≥1 est bornée, par construction, pour tout t ≥ j, (o t (k n /k)) n≥1 est aussi bornée (et donc stationnaire).

	Preuve. Cf. [2], p. 139, proposition 1.3.	⊓ ⊔

, p. 374, proposition 7. ⊓ ⊔ Proposition 4.13 (Algorithme de la complétion des r-bases) Soient K/k une extension purement inséparable finie, G un r-générateur de K/k, et {α 1 , . . . , α s } un système de K tel que pour tout j ∈ {1, . . . , s}, o(α j , k( α 1 , . . . , α j-1 )) = o j (K/k). Pour toute suite α s+1 , α s+2 , . . . , d'éléments de G vérifiant o(α m , k( α 1 , . . . , α m-1 )) = sup a∈G (o(a, k( α 1 , . . . , α m-1 ))), la suite (α i ) i∈N * s'arrête sur un plus grand entier n tel que o(α n , k(α 1 , . . . , α n-1 )) > 0. En particulier, {α 1 , . . . , α n } est une r-base canoniquement ordonnée de K/k.

  k) pour n suffisament grand. D'après le lemme 4.14, on aura d'une part o t (K/k) = +∞ pour tout t ≤ s, et d'autrs part pour tout n

  application immédiate de la proposition 3.4, on a Proposition 5.7 Etant données une r-base modulaire B d'une extension modulaire K/k et une famille (e a ) a∈B d'entiers tels que 0 ≤ e

a ≤ o(a, k). Soit L = k((a p ea ) a∈B ), alors L/k et K/L sont modulaires, et (B \ L), ((a p ea ) a∈B \ L) sont deux r-bases modulaires respectivement de K/L et L/k. En outre, pour tout a ∈ B, o(a, L) = e a .

Preuve. On se ramène au cas fini auquel le résultat découle de la transitivité de la linéarité disjointe. En outre, pour toute partie {a 1 , . . . , a n } d'élément de

B, [L(a 1 , . . . , a n ) : L] = n i=1 p ea i . ⊓ ⊔

Dans la suite, pour tout a ∈ B, on pose n a = o(a, k). Considérons maintenant les sous-ensembles B 1 et B 2 de B définis par

  {α 1 , . . . , α n } une r-base canoniquement ordonnée de K 2 /k. Compte tenu de la proposition 4.12, {α 1 , . . . , α n } est aussi une r-base canoniquement ordonnée de K/K 1 , et pour tout j ∈ {1, . . . , n}, o j (K/K 1 ) = e j . D'après la proposition 4.11, pour tout i ∈ {s, . . . , n}, il existe des constantes uniques C i ε ∈ k telles que α i p en =

	C i ε (α 1 . . . α s-1 )
	ε∈Λs-1

p ε ( * ). En vertu de la proposition 4.12, pour tout i ∈ {s . . . , n}, l'équation de définition de α i par rapport à K 1 (α 1 , . . . , α s-1 ) est aussi définie par la relation ( * ) ci-dessus. Comme L/K 1 est modulaire, en se servant du critère de modularité, pour tout (i, ε) ∈ {s, . . . , n} × Λ s-1 , on aura

  Une extension qui vérifie l'une des conditions de la proposition ci-dessus est dite équiexponentielle d'exposant e.Il est clair que toute extension équiexponentielle est modulaire. De plus, on vérifie aussitôt qu'il est équivalent de dire que :(1) K/k est équiexponentielle d'exposant e.(2) Il existe une r-base G de K/k, pour toute partie finie G 1 de G, on a k(G 1 )/k est équiexponentielle d'exposant e.

		et en
	vertu de la proposition 4.12, le résultat est immédiat.	⊓ ⊔
	Définition 6.1	

(3) Pour toute r-base G de K/k, pour toute partie finie G 1 de G, on a k(G 1 )/k est équiexponentielle d'exposant e. Proposition 6.2 Pour toute extension K/k relativement parfaite et modulaire, pour tout entier n, k n /k est équiexponentielle d'exposant n.

  est d'exposant borné, on aura K j+1 = k, ce qui est absurde. Posons ensuite H = On vérifie aussitôt que H/k est d'exposant non borné et di(H/k) = i -1, de plus H/k est relativement parfaite car k(K p j+1 ) = K j pour une infinité de j. Par ailleurs, d'après les corollaires 4.5 et 4.7, di(K/H) < t et K/H est d'exposant non borné. Compte tenu de l'hypothèse de récurrence appliquée à K/H, on aura K est modulaire sur une extension M ′ de H avec K/M ′ est d'exposant non borné ; comme M ⊆ M ′ , alors K/M est aussi d'exposant non borné.

	K j .
	j>e(K/k)

  ou encore n + 1 ≤ n, absurde. D'où pour tout n ∈ N * , Z i p -1 ∈ K n , et comme K est réunion de la famille croissante d'exten-Posons m = lm(K/k). En utilisant un raisonnement par récurrence on va montrer que K i ⊆ m pour tout i ∈ N, et par suite obtenir K = m. Il est immédiat que K 0 = k ⊆ m, donc le résultat est vérifié pour le rang 0. Soit i ∈ N * , supposons par application de l'hypothèse de récurrrence que K i ⊆ m. S'il existe un entier naturel s tel que θ i+1,s ∈ m, désignons par n le plus grant entier tel que θ i+1,n ∈ m. D'où pour tout t ∈ {0, . . . , n}, θ i+1,t ∈ m et θ i+1,n+1 ∈ m, en outre θ p n i+1,2n ∈ m, et θ i+1,2(n+1) p n+1 ∈ m.Il en résulte que le système (θ i+1,2(n+1) p n+1 , 1) est libre sur m, en particulier, il en est de même sur m ∩ K p n+1 . Complétons ce système en une base B deK p n+1 sur m ∩ K p n+1 . Comme K p n+1 et m sont m ∩ K p n+1 -linéairement disjointes (K/m est modulaire), B est aussi une base de m(K p n+1 ) sur m. Or, par construction,

	sions (K n ) n∈N * , alors Z i	p -1 ∈ K.	⊓ ⊔
	Preuve du théorème 7.5.	

  Généralisation d'extensions lq-modulaires Définition 8.1 Une extension purement inséparable K/k est dite lq-modulaire si K/k est modulaire à une extension d'exposant fini près. Autrement dit, s'il existe une sous-extension L/k d'exposant fini de K/k telle que K/L est modulaire. • K/k est lq-modulaire si et seulement si lm(K/k)/k est d'exposant fini. • K/k est lq-modulaire si et seulement si il en est de même de K/L pour toute sous-extension d'exposant fini L/k de K/k. Soient k un corps commutatif de caractéristique p > 0 et Ω une clôture algébrique de k. Dans [k : Ω] on définit la relation ∼ de la façon suivante :k 1 ∼ k 2 si et seulement si k 1 ⊆ k 2 et k 2 /k 1 est finie ou k 2 ⊆ k 1 et k 1 /k 2 estfinie. On vérifie aussitôt que ∼ est réflexive, symétrique, cependant ∼ est généralement non transitive. De plus, la relation ∼ est compatible avec la modularité inférieure et supérieure. Plus précisément, on a Proposition 8.1 Soient k 1

	Comme conséquences immédiates, on a :

  Comme conséquence, la lq-modularité est compatible avec la relation ∼. En outre, la lq-modularité est stable à une extension d'exposant fini près du choix du corps de base. Plus précisément, on a :Proposition 8.2 Soient k 1 /k et k 2 /k deux sous-extensions d'une même extension purement inséparable K/k. Si k 1 ∼ k 2 ,alors K/k 1 est lq-modulaire si et seulement si il en est de même de K/k 2 . Soit n un entier naturel. Alors :(i) K/k est lq-modulaire si et seulement si il en est de même de K/k p -n ∩K.(ii) K/k est lq-modulaire si et seulement si il en est de même de K/k p n .Par ailleurs, et contrairement aux extensions q-finies, la lq-modularité est généralement ni étendue ni réduite. Autrement dit, K ∼ K ′ n'implique pas nécessairement lm(K/k) ∼ lm(K ′ /k), comme le montre l'exemple suivant : Exemple 8.4 Soient k 0 un corps parfait de caractéristique p > 0 et k

	Preuve. Résulte immédiatement de la proposition 8.1.	⊓ ⊔
	En particulier, on a :	
	Corollaire 8.3	
	sont compatibles avec la relation ∼."	

  par conséquent, K/k est lq-modulaire si et seulement si il en est de même de L(K)/k.Si L/k est d'exposant e + 1, alors k(L p )/k est d'exposant e. D'après la propriété de récurrence, K/k est lq-modudaire si et seulement si il en est de même de k(L p )(K)/k. Comme o 1 (L/k(L p )) = 1, d'après le premier cas, K/k est lq-modulaire si et seulement si il en est de même de L(K)/k(L p ), ou encore il en est de même de L(K)/k. Soit (k j ) j∈I une famille finie de sous-extensions purement inséparables d'une même extension K/k. Si pour tout j ∈ I, K/k j est lqmodulaire, il en est de même de K/ Preuve. On se ramène au cas où I = {1, 2}. Pour tout j = 1, 2, on note m j = lm(K/k j ). Compte tenu de la lq-modularité, il existe e ∈ N tel que m j ⊆ k j p -e ∩K pour j = 1, 2 ; et doncm 1 ∩m 2 ⊆ k 1 p -e ∩k 2 p -e ∩K = (k 1 ∩ k 2 )Il en résulte que m 1 ∩m 2 /k est d'exposant fini. Par ailleurs, en vertu du corollaire 5.6, K/m 1 ∩ m 2 est modulaire, donc K/k 1 ∩ k 2 est lq-modulaire. La condition de finitude qui figure dans la proposition ci-dessus est essentielle, puisque une intersection quelconque portant sur k peut ne pas respectée la lq-modularité, comme le montre l'exemple suivant :

			⊓ ⊔
	La lq-modularité est respectée par une intersection finie portant sur k. Plus
	précisément, on a :	
	Proposition 8.6 j∈I	k j .
		p -e	∩K.
			⊓ ⊔
	Remarque 8.1	

Exemple 8.7 Soient k 0 un corps parfait de caractéristique p > 0 et k