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Abstract

Developing satisfactory methodology for the analysis of Markov random field is a very
challenging task. Indeed, due to the Markovian dependence structure, the normalizing con-
stant of the fields cannot be computed using standard analytical or numerical methods.
This forms a central issue for any statistical approach as the likelihood is an integral part of
the procedure. Furthermore, such unobserved fields cannot be integrated out and the like-
lihood evaluation becomes a doubly intractable problem. This report gives an overview of
some of the methods used in the literature to analyse such observed or unobserved random
fields.
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1 Introduction

The problem of developing satisfactory methodology for the analysis of spatial data has been
of a constant interest for more than half a century now. Constructing a joint probability dis-
tribution to describe the global properties of data is somewhat complicated but the difficulty
can be bypassed by specifying the local characteristics via conditional probability instead. This
proposition has become feasible with the introduction of Markov random fields (or Gibbs dis-
tribution) as a family of flexible parametric models for spatial data (the Hammersley-Clifford
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theorem, Besag, 1974). Markov random fields are spatial processes related to lattice structure,
the conditional probability at each nodes of the lattice being dependent only upon its neigh-
bours, that is useful in a wide range of applications. In particular, hidden Markov random fields
offer an appropriate representation for practical settings where the true state is unknown. The
general framework can be described as an observed data y which is a noisy or incomplete ver-
sion of an unobserved discrete latent process x.

Gibbs random fields originally come from physics (see for example, Lanford and Ruelle, 1969)
but have been useful in many other modelling areas, surged by the development in the statisti-
cal community since the 1970’s. Indeed, they have appeared as convenient statistical model to
analyse different types of spatially correlated data. Notable examples are the autologistic model
(Besag, 1974) and its extension the Potts model. Shaped by the development of Geman and
Geman (1984) and Besag (1986), – see for example Alfò et al. (2008) and Moores et al. (2014)
who performed image segmentation with the help of this modelling – and also in other applica-
tions including disease mapping (e.g., Green and Richardson, 2002) and genetic analysis (e.g.,
François et al., 2006, Friel et al., 2009) to name a few. The exponential random graph model or
p∗ model (Wasserman and Pattison, 1996) is another prominent example (Frank and Strauss,
1986) and arguably the most popular statistical model for social network analysis (e.g., Robins
et al., 2007).

Interests in these models is not so much about Markov laws that may govern data but rather
the flexible and stabilizing properties they offer in modelling. Despite its popularity, the Gibbs
distribution suffers from a considerable computational curse since its normalizing constant is
of combinatorial complexity and generally can not be evaluated with standard analytical or nu-
merical methods. This forms a central issue in statistical analysis as the computation of the
likelihood is an integral part of the procedure for both parameter inference and model selec-
tion. Remark the exception of small latices on which we can apply the recursive algorithm of
Reeves and Pettitt (2004), Friel and Rue (2007) and obtain an exact computation of the nor-
malizing constant. However, the complexity in time of the aforementioned algorithm grows
exponentially and is thus helpless on large lattices.. Many deterministic or stochastic approxi-
mations have been proposed for circumventing this difficulty and developing methods that are
computationally efficient and accurate is still an area of active research.

The present survey paper cares about the problem of carrying out statistical inference (mostly
in a Bayesian framework) for Markov random fields. When dealing with hidden random fields,
the focus is solely on hidden data represented by discrete models such as the Ising or the Potts
models. Both are widely used examples and representative of the general level of difficulty. Aims
may be to infer on parameters of the model or on the latent state x. The paper is organised as
follows: it begins by introducing the existence of Markov random fields with some specific ex-
amples (Section 2). The difficulties inherent to the analysis of such a stochastic model are espe-
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cially pointed out in the latter. As befits a survey paper, Section 5 and Section 6 are dedicated to
a state of the art concerning parameter inference and Section 9 is related to model selection.

2 Markov random field and Gibbs distribution

2.1 Gibbs-Markov equivalence

A discrete random field X is a collection of random variables Xi indexed by a finite set S =
{1, . . . ,n}, whose elements are called sites, and taking values in a finite state space Xi . For a
given subset A ⊂S , XA and xA respectively define the random process on A, i.e., {Xi , i ∈ A}, and
a realisation of XA . Denotes S \ A =−A the complement of A in S .

When modelling local interactions, the sites are lying on an undirected graph G which induces
a topology on S : by definition, sites i and j are adjacent or neighbour if and only if i and j are
linked by an edge in G . A random field X is a Markov random field with respect to G , if for all
configuration x and for all sites i

P (Xi = xi | X−i = x−i ) = P
(
Xi = xi

∣∣ XN (i ) = xN (i )
)

, (2.1)

where N (i ) denotes the set of all the adjacent sites to i in G . The property (2.1) is a Markov
property – the random variable at a site i is conditionally independent of all other sites in S ,
given its neighbours values – that extends the notion of Markov chains to spatial data. It is worth
noting that any random field is a Markov random field with respect to the trivial topology, that
is the cliques of G are either the empty set or the entire set of sites S . Recall a clique c in an
undirected graph G is any single vertex or a subset of vertices such that every two vertices in c
are connected by an edge in G . As an example, when modelling a digital image, the lattice is
interpreted as a regular 2D-grid of pixels and the random variables states as shades of grey or
colors. Two widely used adjacency structures are the graph G4 (first order lattice), respectively
G8 (second order lattice), for which the neighbourhood of a site is composed of the four, respec-
tively eight, closest sites on a two-dimensional regular lattice, except on the boundaries of the
lattice, see Figure 1.

The difficulty with the Markov formulation is that one defines a set of conditional distributions
which does not guarantee the existence of a joint distribution. The Hammersley-Clifford the-
orem states that if the distribution of a Markov random field with respect to a graph G is pos-
itive for all configuration x then it admits a Gibbs representation for the same topology (see
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(a) (b)

C4 = c0 = ,c1 = ,c2 =

(c)

C8 =C4∪

c3 = ,c4 = ,c5 =

c6 = ,c7 = ,c8 =

c9 =

(d)

Figure 1: First and second order neighbourhood graphs G with corresponding cliques. (a) The four clos-
est neighbours graph G4. neighbours of the vertex in black are represented by vertices in gray.
(b) The eight closest neighbours graph G8. neighbours of the vertex in black are represented by
vertices in gray. (c) Cliques of graph G4. (d) Cliques of graph G8.

e.g.Grimmett (1973), Besag (1974) and for a historical perspective Clifford (1990)), namely a
probability measure π on the configuration space X = ∏n

i=1 Xi with the following represen-
tation

π
(
x

∣∣ψ,G
)= 1

Z
(
ψ,G

) exp
{−H

(
x

∣∣ψ,G
)}

, (2.2)

where ψ is a vector of parameters, H denotes the energy function or Hamiltonian which can be
written as a sum of potential functions over the cliques c of the graph G ,

H
(
x

∣∣ψ,G
)=∑

c
Vc

(
xc ,ψ

)
, (2.3)

and Z
(
ψ,G

)
designates the normalizing constant, called the partition function,

Z
(
ψ,G

)= ∫
X

exp
{−H

(
x

∣∣ψ,G
)}
µ(dx). (2.4)

where µ is the counting measure (discrete case) or the Lebesgue measure (continuous case).
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The primary interest of Gibbs distributions comes from statistical physics to describe equilib-
rium state of a physical systems which consists of a very large number of interacting particles
such as ferromagnet ideal gases (Lanford and Ruelle, 1969). Gibbs distribution actually repre-
sents disorder system that maximizes the entropy

S(P) =−E
{
logP

}=−
∫
X

logPdP

over the set of probability distribution P on configuration space X with the same expected en-
ergy E

{
H

(
X

∣∣ψ,G
)}= ∫

X H
(· ∣∣ψ,G

)
dP. Ever since, Gibbs random fields have been widely used

to analyse different types of spatially correlated data with a wide range of applications, includ-
ing image analysis (e.g., Hurn et al., 2003, Alfò et al., 2008, Moores et al., 2014), disease mapping
(e.g., Green and Richardson, 2002), genetic analysis (François et al., 2006) among others (e.g.,
Rue and Held, 2005).

Whilst the Gibbs-Markov equivalence provides an explicit form of the joint distribution and thus
a global description of the model, this is marred by major difficulties. Conditional probabilities
can be easily computed from the likelihood (2.2), but the joint and the marginal distribution
are meanwhile unavailable due to the intractable partition function (2.4). For instance in the
discrete case, the normalizing constant is a summation over all the possible configurations x
and thus implies a combinatory complexity. For binary variables Xi , the number of possible
configurations reaches 2n .

2.2 Autologistic model and related distributions

The Hammersley-Clifford theorem provides valid probability distributions associated with the
random variables X1, . . . , Xn by simply specifying local dependency and leads to a class of flex-
ible parametric models for spatial data. In most cases, cliques c0 of size one (singleton) and
cliques C = {c1,c2,c3,c4} of size two (doubleton) are assumed to be satisfactory to model the
spatial dependency and potential functions related to larger cliques are set to zero in (2.3). The
latter are referred as pairwise Markov random fields. When the full-conditional distribution
of each sites belongs to the exponential family, the models deriving from that energy function
are the so-called auto-models of Besag (1974). Examples thereafter correspond to Hamiltonian
which linearly depends on the parameter ψ= {

α,β
} ∈ Rp ×Rq , where α scales the potential on

sites while β set the strength of interaction between neighbouring pairs, that is,

H
(
x

∣∣α,β,G
)=Vc0 (x,α)+ ∑

c∈C
Vc (x,β) =−αT R(x)−βT S(x).
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Autologistic model The autologistic model first proposed by Besag (1972) is a pairwise-interaction
Markov random field for binary (zero-one) spatial process. The joint distribution is given by

π
(
x

∣∣ψ,G
)= 1

Z
(
ψ,G

) exp

α n∑
i=1

xi +
∑
iG∼ j

βi j xi x j

 . (2.5)

The full-conditional probability thus writes

π
(
xi

∣∣ xN (i ),ψ,G
)= exp

{
αxi +∑

iG∼ j
βi j xi x j

}
1+exp

{
α+∑

iG∼ j
βi j x j

} ,

and is like a logistic regression where the explanatory variables are the neighbours and them-
selves observations. The parameter α controls the level of 0− 1 whereas the parameters {βi j }
model the dependency between two neighbouring sites i and j .

One usually prefers to consider variables taking values in {−1,1} instead of {0,1} since it offers
a more parsimonious parametrisation and avoids non-invariance issues when one switches
states 0 and 1 as mentioned by Pettitt et al. (2003). Note the model stays autologistic but the
full-conditional probability turns into

π
(
xi

∣∣ xN (i ),ψ,G
)= exp

{
2αxi +2

∑
iG∼ j

βi j xi x j

}
1+exp

{
2α+2

∑
iG∼ j

βi j x j

} .

A well known example is the general Ising model of ferromagnetism (Ising, 1925) that consists
of discrete variables representing spins of atoms. The Gibbs distribution (2.5) is referred to as
the Boltzmann distribution in statistical physics. The potential on singletons describes local
contributions from external fields to the total energy. Spins most likely line up in the same di-
rection of α, that is, in the positive, respectively negative, direction if α > 0, respectively α < 0.
When α= 0, there is no external influence. Putting differently α adjusts non-equal abundances
of the two state values. The parameters {βi j } represent the interaction strength between neigh-
bours i and j . When βi j > 0 the interaction is called ferromagnetic and adjacent spins tend to
be aligned, that is neighbouring sites with same sign have higher probability. When βi j < 0 the
interaction is called anti-ferromagnetic and adjacent spins tend to have opposite signs. When
βi j = 0, the spins are non-interacting.

Potts model The Potts model (Potts, 1952) is a pairwise Markov random field that extends the
Ising model to K possibles states. The model sets a probability distribution on x parametrized
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by ψ, namely

π
(
x

∣∣ψ,G
)= 1

Z
(
ψ,G

) exp

 n∑
i=1

K−1∑
k=0

αk 1{xi = k}+ ∑
iG∼ j

βi j 1{xi = x j }

 , (2.6)

where 1{A} is the indicator function equal to 1 if A is true and 0 otherwise. For instance, as re-
gards the interaction parameter βi j , the indicator function takes the value 1 if the two lattice
points i and j take the same value, and 0 otherwise. Note that a potential function can be de-
fined up to an additive constant. To ensure that potential functions on singletons are uniquely
determined, one usually imposes the constraint

∑K−1
k=0 αk = 0.

For K = 2, the Potts model is equivalent to the Ising model up to a constant. This is perhaps
more transparent by rewriting the Ising model. Consider x̃ a configuration of the Ising model
and assume now α=α1 =−α0,

(i) for any site i , αx̃i =α01{x̃i =−1}+α11{x̃i = 1},

(ii) for any neighbouring sites i and j , x̃i x̃ j = 21{x̃i = x̃ j }−1.

The transformation x̃ = 2x−1 allows then to conclude. One shall remark here interaction pa-
rameters are slightly different between Potts and Ising model. To obtain the same strength of
interaction in both model, parameters should satisfy βPotts = 2βIsing.

In the literature, one often uses these models in their simplified versions, that is, isotropic (β ∈R)
and without any external field (α= 0). For the sake of clarity, I keep the same convention in what
follows unless otherwise specified, namely

Ising: π
(
x

∣∣β,G
)= 1

Z
(
β,G

) exp

β ∑
iG∼ j

xi x j

 , (2.7)

Potts: π
(
x

∣∣β,G
)= 1

Z
(
β,G

) exp

β ∑
iG∼ j

1{xi = x j }

 . (2.8)

2.3 Phase transition

One major peculiarity of Markov random field is a symmetry breaking for large values of pa-
rameter β due to a discontinuity of the partition function when the number of sites n tends to
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β= 0 β= 0.6 β= 0.8 β= 1

β= 0 β= 0.2 β= 0.4 β= 0.6

Figure 2: Realization of a 2-states Potts model for various interaction parameter β on a 100×100 lattice
with a first-order neighbourhood (first row) or a second-order neighbourhood (second row).

infinity. In physics this is known as phase transition. This transition phenomenon has been
widely study in both physics and probability, see for example Georgii (2011) for further details.
This part gives particular results for Ising and Potts models on a rectangular lattice.

As already mentioned, the parameterβ controls the strength of association between neighbour-
ing sites (see Figure 2). When the parameter β is zero, the random field is a system of indepen-
dent uniform variables and all configurations are equally distributed. Increasing β favours the
variable Xi to be equal to the dominant state among its neighbours and leads to patches of like-
valued variables in the graph, such that once β tends to infinity values xi are all equal. The
distribution thus becomes multi-modal. Mention here, this phenomenon vanishes in the pres-
ence of an external field (i.e., α 6= 0).

In dimension 2, the Ising model is known to have a phase transition at a critical value βc . When
the parameter is above the critical value, βc < β, one moves gradually to a multi-modal distri-
bution, that is, values xi are almost all equal for β sufficiently above the critical value. Onsager
(1944) obtained an exact value of βc for a homogeneous Ising model on the first order square
lattice, namely

βc = 1

2
log

{
1+p

2
}
≈ 0.44.
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The latter extends to a Potts model with K states on the first order lattice

βc = log
{

1+
p

K
}

,

see for instance Matveev and Shrock (1996) for specific results to Potts model on the square
lattice and Wu (1982) for a broader overview.

The transition is more rapid than the number of neighbours increases. To illustrate this point,
Figure 3 gives the average proportion of homogeneous pairs of neighbours, and the correspond-
ing variance, for 2-states Potts model on the first and second order lattices of size 100× 100.
Indeed, phase transition corresponds to

β→ lim
n→∞

1

n
∇ log Z

(
β,G

)
is discontinuous at βc . (2.9)

One can show that

∇ log Z (β,G ) =−E {S(X)} and ∇2 log Z (β,G ) = Var {S(X)} ,

where S(X) =∑
iG∼ j

1{Xi = X j } is the number of homogeneous pairs of a Potts random field X, see

Section 6.1. Condition (2.9) can thus be written as

lim
β→βc

lim
n→∞Var {S(X)} =∞.

Mention this is all theoritical asymptotic considerations and the discontinuity does not show it-
self on finite lattice realizations but the variance becomes increasingly sharper as the size grows.

2.4 Hidden Gibbs random field

The main purpose of this work is to deal with hidden Markov random field, a framework that
has encountered a large interest over the past decade. In hidden Markov random fields, the
latent process is observed indirectly through another field; this permits the modelling of noise
that may happen upon many concrete situations: image analysis, (e.g., Besag, 1986, Stanford
and Raftery, 2002, Celeux et al., 2003, Forbes and Peyrard, 2003, Hurn et al., 2003, Alfò et al.,
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8 neighbors

βc ≈ 0.88

βc ≈ 0.36

(b)

Figure 3: Phase transition for a 2-states Potts model with respect to the first order and second order 100×
100 regular square lattices. (a) Average proportion of homogeneous pairs of neighbours. (b)
Variance of the number of homogeneous pairs of neighbours.

2008, Friel et al., 2009, Moores et al., 2014), disease mapping (e.g., Green and Richardson, 2002),
genetic analysis (François et al., 2006). The aim is to infer some properties of a latent state x
given an observation y. The present part gives a description, in all generality, of the hidden
Markov model framework that encompasses the particular cases of hidden Ising or Potts model
considered throughout this dissertation.

The unobserved data is modelled as a discrete Markov random field X associated to an energy
function H , as defined in (2.2), parametrized by ψ with state space X = {0, . . . ,K −1}n . Given
the realization x of the latent, the observation y is a family of random variables indexed by the
set of sites S , and taking values in a set Y , i.e., y = (

yi ; i ∈S
)
, and are commonly assumed

as independent draws that form a noisy version of the hidden field. Consequently, we set the
conditional distribution of Y knowing X = x, also called emission distribution, as the product

π
(
y

∣∣ x,φ
)= ∏

i∈S

π
(
yi

∣∣ xi ,φ
)

,

where π(yi | xi ,φ) is the marginal noise distribution parametrized by φ, that is given for any site
i . Those marginal distributions are for instance discrete distributions (Everitt, 2012), Gaussian
(e.g., Besag et al., 1991, Qian and Titterington, 1991, Celeux et al., 2003, Forbes and Peyrard,
2003, Friel et al., 2009, Cucala and Marin, 2013) or Poisson distributions (e.g., Besag et al., 1991).
Model of noise that takes into account information of the nearest neighbours have also been
explored (Besag, 1986).
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Assuming that all the marginal distributions π(yi | xi ,φ) are positive, one may write

π
(
y

∣∣ x,φ
)= exp

{ ∑
i∈S

logπ
(
yi

∣∣ xi ,φ
)}

,

and thus the joint distribution of (X,Y), also called the complete likelihood, writes as

π
(
x,y

∣∣φ,ψ,G
)=π(

y
∣∣ x,φ

)
π

(
x

∣∣ψ,G
)

= 1

Z
(
ψ,G

) exp

{
−H

(
x

∣∣ψ,G
)+ ∑

i∈S

logπ
(
yi

∣∣ xi ,φ
)}

.

The latter equality demonstrates the conditional field X given Y = y is a Markov random field
whose energy function satisfies

H
(
x

∣∣ y,φ,ψ,G
)= H

(
x

∣∣ψ,G
)− ∑

i∈S

logπ
(
yi

∣∣ xi ,φ
)

. (2.10)

Then, the noise can be interpreted as a non homogeneous external potential on singleton which
is a bond to the unobserved data.

3 How to simulate a Markov random field

Sampling from a Gibbs distribution can be a daunting task due to the correlation structure on a
high dimensional space, and standard Monte Carlo methods are impracticable except for very
specific cases. In the Bayesian paradigm, Markov chain Monte Carlo (MCMC) methods have
played a dominant role in dealing with such problems, the idea being to generate a Markov
chain whose stationary distribution is the distribution of interest. This section is a reminder of
well known algorithms that I make use of throughout numerical parts of this work.

3.1 Gibbs sampler

The Gibbs sampler is a highly popular MCMC algorithm in Bayesian analysis starting with the
influential development of Geman and Geman (1984). It can be seen as a component-wise
Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings, 1970) where variables are up-
dated one at a time and for which proposal distributions are the full conditionals themselves.
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It is particularly well suited to Markov random field since the intractable joint distribution is
fully determined by the conditional distributions which are easy to compute. Algorithm 1 gives
the corresponding algorithmic representation for a joint distribution π(X | ψ,G ) with a known
parameter ψ.

Algorithm 1: Gibbs sampler

Input: a parameter ψ, a number of iterations T
Output: a sample x from the joint distribution π(· |ψ,G )

Initialization: draw an arbitrary configuration x(0) =
{

x(0)
1 , . . . , x(0)

n

}
;

for t ← 1 to T do
for i ← 1 to n do

draw x(t )
i from the full conditional π

(
X (t )

i

∣∣∣ x(t−1)
N (i )

)
;

end
end
return the configuration x(T )

Geman and Geman (1984, Theorem A) have shown the convergence to the target distribution
π(· | ψ,G ) regardless of the initial configuration x(0). The algorithm obviously maintains the
target distribution. Says X has distribution π(· |ψ,G ), at the t-th iteration components of x(t−1)

are replaced by one sampled from the corresponding full conditional distribution induced by
π(· | ψ,G ) such that for each of the n steps π(X | ψ,G ) is stationary. In other words, if x and x̃
differ at most from one component i , that is x−i = x̃−i , then

∑
xi

π
(
x

∣∣ψ,G
)
π

(
x̃i

∣∣ x−i ,ψ,G
)=π(

x̃i
∣∣ x−i ,ψ,G

)
π

(
x−i

∣∣ψ,G
)=π(

x̃
∣∣ψ,G

)
.

Under the irreducibility assumption, the chain converges to π(X |ψ,G ). Note the order in which
the components are updated in Algorithm 1 does not make much difference as long as every
site is visited. Hence it can be deterministically or randomly modified, especially to avoid pos-
sible bottlenecks when visiting the configuration space. A synchronous version is nonetheless
unavailable since updating the sites merely at the end of cycle t would lead to incorrect limiting
distribution.

We should mention here that Gibbs sampler faces some well known difficulties when it is ap-
plied to the Ising or Potts model. The Markov chain mixes slowly, namely long range interactions
require many iterations to be taken into account, such that switching the color of a large homo-
geneous area is of low probability even if the distribution of the colors is exchangeable. This pe-
culiarity is even worse when the parameter β is above the critical value of the phase transition,
the Gibbs distribution being severely multi-modal (each mode corresponding to a single color
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configuration). Liu (1996) proposed a modification of the Gibbs sampler that overcome these
drawbacks with a faster rate of convergence. Note also that in the context of Gaussian Markov
random field some efficient algorithm have been proposed like the fast sampling procedure of
Rue (2001).

3.2 Auxiliary variables and Swendsen-Wang algorithm

An appealing alternative to bypass slow mixing issues of the Gibbs sampler is the Swendsen-
Wang algorithm (Swendsen and Wang, 1987) originally designed to speed up simulation of Potts
model close to the phase transition. This algorithm makes a use of auxiliary variables in order to
incorporate simultaneous updates of large homogeneous regions (e.g., Besag and Green, 1993).
This part describes the procedure for the Potts model with homogeneous external field (2.6).

Denote x the current configuration of a Markov random field X. Auxiliary random variables aim
at decoupling the complex dependence structure between the component of x. Hence we set
binary (0-1) conditionally independent auxiliary variables Ui j which satisfy

P
(
Ui j = 1

∣∣ x
)={

1−exp
(
βi j 1{xi = x j }

)= pi j if i G∼ j ,
0 otherwise

with βi j ≥ 0 so that pi j takes value between 0 and 1. The latter then represents the probability
to keep an egde between neighbouring sites in G .

The Swendsen-Wang algorithm iterates two steps : a clustering step and a swapping step, see
Algorithm 2. Given the configuration x, auxiliary variables yield a partition of sites into single-
valued clusters or connected components. Consider the subgraph Γ(G ,x) of the graph G in-
duced by Ui j on x, namely the undirected graph made of edges of G for which Ui j = 1, see
Figure 4, two sites belong to the same cluster if and only if there is a path between them in
Γ(G ,x). Then each cluster C is assigned to a new state k with probability

P (XC = k) ∝ exp

{ ∑
i∈C

αk

}
,

where αk is the component of α associated to the state k. We shall note that for the special but
important case where α= 0, new possible states are equally likely. Also for large values of β, the
algorithm manages to switch colors of wide areas, achieving a better cover of the configuration
space.
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(a) (b)

Figure 4: Auxiliary variables and subgraph illustrations for the Swendsen-Wang algorithm. (a) Example
of auxiliary variables Ui j for a 2-states Potts model configuration on the first order square lat-
tice. (b) Subgraph Γ(G4,x) of the first order lattice G4 induced by the auxiliary variables Ui j .

For the original proof of convergence, refer to Swendsen and Wang (1987) and for further discus-
sion see for example Besag and Green (1993). Whilst the ability to change large set of variables in
one step seems to be a significant advantage, this can be marred by a slow mixing time, namely
exponential in n (Gore and Jerrum, 1999). The mixing time of the algorithm is polynomial in n
for Ising or Potts models with respect to the graphs G4 and G8 but only for small enough value of
β (Cooper and Frieze, 1999). This was proved independently by Huber (2003) who also derive a
diagnostic tool for the convergence of the algorithm to its invariant distribution, namely using
a coupling from the past procedure.

It is worth mentioning that the algorithm can be extended to other Markov random field or
models (e.g., Edwards and Sokal, 1988, Wolff, 1989, Higdon, 1998, Barbu and Zhu, 2005) but is
then not necessarily efficient. In particular, it is not well suited for latent process. The bound
to the data corresponds to a non-homogeneous external field that slows down the computation
since the clustering step does not make a use of the data. A solution that might be effective
is the partial decoupling of Higdon (1993, 1998). More recently, Barbu and Zhu (2005) make a
move from the data augmentation interpretation to a Metropolis-Hastings perspective in order
to generalize the algorithm to arbitrary probabilities on graphs. Up to my knowledge, it is not
straightforward to bound the Markov chain of such modifications and mixing properties are still
an open question despite good results in numerical experiments.

Another alternative for lattice models to make large moves in the configuration space is the
slice sampling (e.g., Higdon, 1998) that includes auxiliary variables to sample full conditional
distributions in a Gibbs sampler. The sampler is found to have good theoretical properties
(e.g., Roberts and Rosenthal, 1999, and the references therein) but this possibility has not been
adopted in the present work. Especially I could have used the clever sampler of Mira et al. (2001)
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Algorithm 2: Swendsen-Wang algorithm

Input: a parameter ψ, a number of iterations T
Output: a sample x from the joint distribution π(· |ψ,G )

Initialization: draw an arbitrary configuration x(0) =
{

x(0)
1 , . . . , x(0)

n

}
;

for t ← 1 to T do

Clustering step: turn off edges of G with probability exp
(
βi j 1{x(t )

i = x(t )
j }

)
;

// yields the subgraph Γ
(
G ,x(t )

)
induced by the auxiliary variables,

see Figure 4
Swapping step: assign a new state k to each connected component C of Γ

(
G ,x(t )

)
with probability P

(
X(t )

C
= k

)
∝ exp

{∑
i∈C αk

}
;

end
return the configuration x(T )

that provides exact simulations of Potts models.

4 Recursive algorithm for discrete Markov random field

To answer the difficulty of computing the normalizing constant, generalised recursions for gen-
eral factorisable models such as the autologistic models have been proposed by Reeves and
Pettitt (2004). This method applies to lattices with a small number of rows, up to about 20 for
an Ising model, and is based on an algebraic simplification due to the reduction in dependence
arising from the Markov property. It applies to unnormalized likelihoods that can be expressed
as a product of factors, each of which is dependent on only a subset of the lattice sites.

Denote q(x | ψ,G ) the unnormalized version of a Gibbs distribution π(x | ψ,G ) whose state
space is X = {0, . . . ,K −1}n . We can write q(x |ψ,G ) as

q
(
x

∣∣ψ,G
)= n−r∏

i=1
qi

(
xi :i+r

∣∣ψ,G
)

,

where each factor qi depends on a subset xi :r = {xi , . . . , xi+r } of x, where r is defined to be the
lag of the model. As a result of this factorisation, the summation for the normalizing constant
can be represented as

Z
(
ψ,G

)= ∑
xn−r :n

qn−r
(
xn−r :n

∣∣ψ,G
) · · · ∑

x1:1+r

q1
(
x1:1+r

∣∣ψ,G
)

.
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The latter can be computed much more efficiently than the straightforward summation over the
K n possible lattice realisations using the following steps

Z1 (x2:1+r ) =
∑
x1

q1 (x1:1+r ) ,

Zi (xi+1:i+r ) =
∑
xi

qi (xi :i+r ) Zi−1 (xi :i+r−1) , for all i ∈ {2, . . . ,n − r },

Z
(
ψ,G

)= ∑
xn−r+1:n

Zn−r (xn−r+1:n) .

The complexity of the troublesome summation is significantly cut down since the forward algo-
rithm solely relies on K r possible configurations. Note that the algorithm of Reeves and Pettitt
(2004) was extended in Friel and Rue (2007) to also allow exact draws from π(x |ψ,G ) for small
enough lattices. The reader can find below an example of implementation for the general Potts
model.

Example (Potts model with an external field) Consider a rectangular lattice h×w = n, where h
stands for the height and w for the width of the lattice, with a first order neighbourhood system
G4 (see Figure 1.(a)). The model distribution is defined as

π(x |ψ,G4) = 1

Z (ψ,G4)
exp

 n∑
i=1

K−1∑
k=0

αk 1{xi = k}+ ∑
i
G4∼ j

βi j 1{xi = x j }

 .

The minimum lag representation for a Potts lattice with a first order neighbourhood occurs
for r given by the smaller of the number of rows or columns in the lattice. Without the loss
of generality, assume h ≤ w and lattice points are ordered from top to bottom in each column
and columns from left to right. It is straightforward to write the unnormalized general Potts
distribution as

q
(
x

∣∣ψ,G4
)= n−h∏

i=1
qi

(
xi :i+h

∣∣ψ,G4
)

,

where
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• for all lattice point i except the ones on the last row or last column

qi
(
xi :i+h

∣∣ψ,G4
)= exp

(K−1∑
k=0

αk 1{xi = k}

+β01{xi = xi+1}+β11{xi = xi+h}

)
. (4.1)

• When lattice point i is on the last row xi+1 drops out ot (4.1), that is

qi
(
xi :i+h

∣∣ψ,G4
)= exp

(
K−1∑
k=0

αk 1{xi = k}+β11{xi = xi+h}

)
. (4.2)

• The last factor takes into account all potentials within the last column

qn−h
(
xn−h:n

∣∣ψ,G4
)= exp

( n∑
i=n−h

K−1∑
k=0

αk 1{xi = k}

+β11{xn−h = xn}+β0

n∑
i=n−h+1

1{xi = xi+1}

)
.

Identifying the number of rows with the smaller dimension of the lattice, the computation time
increases by a factor of K for each additional row, but linearly for additional columns.

One shall remark that for a homogeneous random field, factors (4.1) and (4.2) only depend on
the value of the random variables Xi :i+h but not on the actual position of the sites. Hence the
number of factors to be computed is 2K h instead of h(w−1)K h . In term of implementation that
also means factors can be computed for the different possible configurations once upstream
the recursion. Furthermore with a first order neighbourhood, factor at a site merely involves its
neighbour below and on its right, thereby reducing the number of possible factor to K 3 +K 2.

Algorithm 3 presents the scheme I use in my C++ code which is at the core of numerical exper-
iments presented in Chapter ?? and Chapter ??. Each configuration xi+1:i+h corresponds to the
unique representation of an integer j belonging to {0, . . . ,K h −1} in the base-K system, namely

j = xi+1 +xi+2K + . . .+xi+hK h−1.

As already mentioned, it is enough to calculate factors (4.1) and (4.2) on {0, . . . ,K − 1}3 and
{0, . . . ,K −1}2 respectively. Using the previous one-to-one correspondence, the following func-
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Algorithm 3: Recursive algorithm

Output: The normalizing constant Z (ψ,G )

Compute all the possible factors q(·);

for j ← 0 to K h −1 do
compute Z ( j ) ←∑K−1

j=0 q(υ3(k, j )); // Corresponds to the computation of
Z1(x2:1+r )

end
for i ← 2 to n −h do

save Zold ← (
Z (1), . . . , Z (K h −1)

)
;

for j ← 0 to K h −1 do
if i is not on the last row then

compute Z ( j ) ←∑K−1
k=0 q(υ3(k, j ))Zold(υ(k, j ));

else
compute Z ( j ) ←∑K−1

k=0 q(υ2(k, j ))Zold(υ(k, j ));
end

end
end

compute Znorm ←∑K h−1
j=0 q( j )Z ( j );

return the normalizing constant Znorm

tions determine the value of the sites involved in potentials calculation knowing a given state k
and an integer j

υ2 : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K −1}2

(k, j ) 7→ (k, xi+h),

υ3 : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K −1}3

(k, j ) 7→ (k, xi+1, xi+h),

Hence, the recursion steps are based on the following factors stored for all (k, j ) in {0, . . . ,K −1}×
{0, . . . ,K h −1}

q
(
υ2(k, j )

)= q (k, xi+h) = exp
(
αk +β11{xi+h = k}

)
,

q
(
υ3(k, j )

)= q (k, xi+1, xi+h) = exp
(
αk +β01{xi+1 = k}+β11{xi+h = k}

)
.
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To handle the last column instead of computing qn−h(·) upstream the recursion, the following
quantities are stored for all j in {0, . . . ,K h −1}

q( j ) = exp

(
n∑

i=n−h+1

K−1∑
k=0

αk 1{xi = k}+β0

n∑
i=n−h+1

1{xi = xi+1}

)
. (4.3)

Finally, one shall remark that the transition from Zi (xi+1:i+r ) to Zi−1(xi :i+r−1) is based on the
transformation

υ : {0, . . . ,K −1}× {0, . . . ,K h −1} → {0, . . . ,K h −1}
(k, j ) 7→ k +K

(
j (mod K h)

)
,

in Algorithm 3.

It is straightforward to extend this algorithm to hidden Markov random field since as already
mention in Section 2.4 the noise corresponds to a non homogeneous potential on singleton
and hence the model still writes as a general factorisable model. Algorithm 3 remains the same
except for a few details. With the exception of factors (4.3), the potential deriving from the noise
is not saved but is added at each step of the recursion, that is the computation of Z ( j ) turns into

Z ( j ) ←
K−1∑
k=0

q
(
υ3(k, j )

)
π

(
yi

∣∣ xi = k,φ
)

, or

Z ( j ) ←
K−1∑
k=0

q(·)Zold
(
υ(k, j )

)
π

(
yi

∣∣ xi = k,φ
)

.

5 Parameter inference: maximum pseudolikelihood estimator

Parameter estimation in the context of Markov random field is extremely challenging due to the
intractable normalizing constant. Much attention has been paid in the literature to this prob-
lem arising from maximum likelihood estimation as well as Bayesian inference. The present
section presents the solution offered by the pseudolikelihood of Besag (1975) from a maximum
likelihood perspective. Its use in a Bayesian framework is discussed in Chapter ??.
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Maximum likelihood estimator

Consider a noisy or incomplete observation, say y, of a hidden Markov random field x. Under
the statistical model π(x,y | θ,G ), a possible estimate of parameter θ = (ψ,φ) is the maximum
likelihood estimator. It corresponds to the values of model parameters that maximize the prob-
ability of (x,y) for the given statistical model, namely

θ̂MLE = argmax
θ

π
(
x,y

∣∣ θ,G
)

.

Equivalently, one can maximize the log-likelihood function. The maximization of the complete
likelihood is achieved by maximizing independently the marginal distribution of the hidden
process and the conditional distribution of the observation,

φ̂MLE = argmax
φ

logπ
(
y

∣∣ x,φ
)

, (5.1)

ψ̂MLE = argmax
ψ

logπ
(
x

∣∣ψ,G
)

, (5.2)

because π(x,y | θ,G ) = π(y | x,φ)π(x | ψ,G ). The emission distribution π(· | x,φ) has gener-
ally some simple form that can at least be evaluated point-wise and the maximization (5.1) is
straightforward. On the other hand the optimization problem (5.2) cannot be addressed directly
since the gradient has no analytical form and cannot be computed exactly.

Maximum pseudolikelihood estimator

One of the earliest approaches to overcome the intractability of (2.4) is the pseudolikelihood
(Besag, 1975) which approximates the joint distribution of x as the product of full-conditional
distributions for each site i ,

fpseudo
(
x

∣∣ψ,G
)= n∏

i=1
π

(
xi

∣∣ x−i ,ψ,G
)= n∏

i=1

exp

{
− ∑

c|i∈c
Vc

(
xc ,ψ

)}
∑
x̃i

exp

{
− ∑

c|i∈c
Vc

(
x̃c ,ψ

)} , (5.3)

where the sums
∑

c|i∈c and
∑

x̃i
range over the set of cliques containing i and all the possible re-

alization of the random variable Xi respectively. For such a given clique c and a given realization
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x̃i , x̃c denotes the subgraph that differs from xc only at sites i , namely x̃c = {x̃i }∪{
x j , j ∈ c \ {i }

}
.

The property of Markov random fields ensures that each term in the product only involves near-
est neighbours, and so the normalising constant of each full-conditional is straightforward to
compute. It is worth noting that pseudolikelihood methods are closely related to the coding
method (Besag, 1974) but have a lower computational cost. The maximum pseudolikelihood
estimator is computed by maximizing the log-pseudolikelihood

ψ̂MPLE = argmax
ψ

log fpseudo
(
x

∣∣ψ,G
)

.

Similarly to (6.3), one can show that a unique maximum exists which can be estimated with a
simple optimization algorithm.

The pseudolikelihood (5.3) is not a genuine probability distribution, except if the random vari-
ables Xi are independent. Nevertheless it has been used in preference to Monte Carlo methods
since it requires no simulations and provides much faster procedures. Though Geman and Graf-
figne (1986) demonstrate the consistency of the maximum pseudolikelihood estimator when
the lattice size tends to infinity for discrete Markov random field, the result does not imply a
good behavior at finite lattice size. Indeed this approximation has been shown to lead to unre-
liable estimates ofψ especially nearby the phase transition (e.g., Geyer, 1991, Rydén and Titter-
ington, 1998, Friel and Pettitt, 2004, Cucala et al., 2009). Considering it behaves poorly, the much
greater expense of Monte Carlo estimators presented in Section 6.1 is justified to supersede the
maximum pseudolikehood estimate.

6 Parameter inference: computation of the maximum likelihood

Preferably to maximum pseudolikelihood estimates, many solutions have been explored in the
literature to provide approximations of the maximum likelihood estimator. Notable contribu-
tions have been given by Monte Carlo techniques even if they may have the drawback of being
time consuming (e.g., Younes, 1988, Geyer and Thompson, 1992). An alternative broadly ex-
ploited in the context of latent variables is the variational Expectation-Maximization-like algo-
rithms based on an approximation of the Gibbs distribution by product distributions (Celeux
et al., 2003). The present section is the occasion to present both solutions, which are used in
Chapter ?? and Chapter ??.
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6.1 Monte Carlo maximum likelihood estimator

The use of Monte-Carlo techniques in preference to pseudolikelihood to compute maximum
likelihood estimates has been especially highlighted by Geyer and Thompson (1992). Assume
Gibbs distributions are of the exponential form, i.e., the Hamiltonian linearly depends on the
vector of parameters ψ= (ψ1, . . . ,ψd ), that is

H
(
x

∣∣ψ,G
)=−ψT S(x),

where S(x) = (s1(x), . . . , sd (x)) is a vector of sufficient statistics. Such models have a unique max-
imum likelihood. Indeed the score function for ψ writes as

∇ logπ
(
x

∣∣ψ,G
)= S(x)−∇ log Z

(
ψ,G

)
.

It is straightforward to show that the partial derivatives of the normalizing constant Z (ψ,G )
satisfy

∂

∂ψ j
log Z

(
ψ,G

)= ∑
x∈X s j (x)exp

{
ψT S(x)

}∑
x∈X exp

{
ψT S(x)

} = Eψ
{

s j (X)
}

, (6.1)

where Eψ(s j (X)) denotes the expected value of s j (X) with respect to π(· |ψ,G ). Hence the score
function can be written as a sum of moments of s(X), namely

∇ logπ
(
x

∣∣ψ,G
)= S(x)−Eψ {s(X)} . (6.2)

Taking the partial derivatives of the previous expression yields similar identities for the Hessian
matrix of the log-likelihood for ψ,

∇2 logπ(x |ψ,G ) =−Covψ {S(X)} , (6.3)

where Covψ {S(X)} denotes the covariance matrix of S(X) with respect to π(· | ψ,G ). The log-
likelihood is thus a concave function and the maximum likelihood estimator ψ̂MLE is the unique
zero of the score function ∇ logπ(x |ψ,G ), namely

ψ̂MLE = argmax
ψ

logπ
(
x

∣∣ψ,G
)⇐⇒ S(x)−Eψ̂MLE

{S(X)} = 0.
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Hence a solution to solve problem (5.2) is to resort to stochastic approximations on the basis of
equation (6.2) (e.g., Younes, 1988, Descombes et al., 1999). Younes (1988) provides a stochastic
gradient algorithm converging under mild conditions. At each iteration the algorithm takes the
direction of the estimated gradient with a step size small enough. Another approach to compute
the maximum likelihood estimation is to use direct Monte Carlo calculation of the likelihood
such as the MCMC algorithm of Geyer and Thompson (1992). The convergence in probability
of the latter toward the maximum likelihood estimator is proven for a wide range of models
including Markov random fields. Following that work, Descombes et al. (1999) derive also a
stochastic algorithm that, as opposed to Younes (1988), takes into account the distance to the
maximum likelihood estimator using importance sampling.

6.2 Expectation-Maximization algorithm

A method well suited for estimating parameters in the context of latent variables is the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). This iterative procedure has encountered
a great success especially in the context of independent mixture model or hidden Markov mod-
els. When dealing with Gibbs distributions, the method is subject to the inherent difficulties of
the model but several solutions have been proposed in the literature. This section is an oppor-
tunity to introduce the solutions that will be particularly useful in Chapter ??.

The EM algorithm is based on complete-likelihood computation. Consider θ = (ψ,φ) with ψ

the parameter of the hidden process and φ the emission parameter. For the statistical model
π(y | θ) (referred to as incomplete likelihood in what follows), the maximum likelihood estimator
is defined as

θ̂MLE = argmax
θ

π
(
y

∣∣ θ)
. (6.4)

The EM algorithm addresses problem (6.4) by maximizing at iteration t the expected value of
the complete log-likelihood with respect to the conditional distribution of the latent X given
Y = y at the current value θ(t ). In other words

θ(t+1) = argmax
θ

E
{
logπ

(
X,y

∣∣ θ,G
) ∣∣ Y = y,θ(t )}

= argmax
θ

∑
x∈X

π
(
x

∣∣ y,θ,G
)

logπ
(
x,y

∣∣ θ,G
)

:= argmax
θ

Q
(
θ

∣∣ θ(t )) . (6.5)

Proposition 7. The log-likelihood logπ
(
y | θ(t )

)
increases with t .
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Proof. The result relies on a decomposition of the incomplete log-likelihood that takes into ac-
count the latent variables. Given a current value θ(t ), the Bayes theorem allows to write the
log-likelihood for all θ inΘ as

logπ
(
y

∣∣ θ,G
)= logπ

(
y

∣∣ θ) ∑
x∈X

π
(
x

∣∣ y,θ(t ),G
)

= ∑
x∈X

log

{
π

(
x,y

∣∣ θ,G
)

π
(
x

∣∣ y,θ,G
)}
π

(
x

∣∣ y,θ(t ),G
)

= E
[

log

{
π

(
X,y

∣∣ θ,G
)

π
(
X

∣∣ y,θ,G
)}∣∣∣∣Y = y,θ(t )

]
.

Hence, it decomposes into

logπ
(
y

∣∣ θ)=Q
(
θ

∣∣ θ(t ))−R
(
θ

∣∣ θ(t )) ,

where R(θ | θ(t )) = E
{
logπ(X | y,θ,G ) | Y = y,θ(t )

}
and Q(θ | θ(t )) is defined in (6.5). Using Jensen’s

inequality, one can show that R(· | θ(t )) reaches its maximum for θ(t ): for all θ inΘ,

R
(
θ

∣∣ θ(t ))−R
(
θ(t )

∣∣ θ(t ))≤ log

(
E

{
π

(
X

∣∣ y,θ,G
)

π
(
X

∣∣ y,θ(t ),G
) ∣∣∣∣Y = y,θ(t )

})

≤ log

{ ∑
x∈X

π
(
x

∣∣ y,θ,G
)}≤ 0.

It follows from the previous inequality and θ(t+1) = argmaxθQ(θ | θ(t )) that

logπ
(
y

∣∣ θ(t+1))≥ logπ
(
y

∣∣ θ(t )) .

Wu (1983) demonstrated the convergence under regularity conditions of the sequence
{
θ(t )

}
t≥0

of the EM algorithm toward a local maximum ofπ(y | θ) when t →∞. However, as often with op-
timization algorithms, the procedure may be very sensitive to the initial value and may exhibit
slow convergence rate especially if the log-likelihood has saddle points or plateaus. In place
of the genuine EM algorithm, some stochastic versions have been proposed for circumventing
these limitations such as the Stochastic EM (SEM) algorithm (Celeux and Diebolt, 1985). The
latter consists in simulating a configuration x(t+1) from π(x | y,θ(t ),G ) after the E-step of Algo-
rithm 4. In the M-step, the maximization of the conditional expectation is replaced with

φ(t+1) = argmax
φ

logπ
(
y

∣∣ x(t+1),φ
)

,

ψ(t+1) = argmax
ψ

∑
i∈S

logπ
(
x(t+1)

i

∣∣∣ XN (i ) = x(t+1)
N (i ),ψ,G

)
.
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Algorithm 4: Expectation-Maximization algorithm

Input: an observation y, a number of iterations T
Output: an estimate of the complete likelihood maximum θ̂MLE

Initialization: start from an initial guess θ(0) for θ ; // the maximum
pseudolikelihood estimator can be used as an initial value for the
spatial component of θ

for t ← 1 to T do
E-step: compute Q

(
θ

∣∣ θ(t )
)

the expected value of the complete log-likelihood with
respect to the conditional distribution of the latent X given Y = y at the current value
θ(t ) as a function of θ;

M-step: find θ(t+1) that maximizes Q
(· ∣∣ θ(t )

)
, i.e., θ(t+1) = argmaxθQ

(
θ

∣∣ θ(t )
)

;
end
return θ(T )

The EM scheme cannot be applied directly to hidden Markov random fields due to the difficul-
ties inherent to the model. The algorithm yields analytically intractable updates. The function
Q can be written as

Q
(
θ

∣∣ θ(t ))= E
{
logπ

(
X,y

∣∣ θ,G
) ∣∣ Y = y,θ(t )}

= E
{
logπ

(
y

∣∣ X,φ
) ∣∣ Y = y,θ(t )}︸ ︷︷ ︸

=Q1(φ | θ(t ))

+E
{
logπ

(
X

∣∣ψ,G
) ∣∣ Y = y,θ(t )}︸ ︷︷ ︸

=Q2(ψ | θ(t ))

.

The first term of the right hand side only depends on the emission parameter whereas the sec-
ond one solely involves the Gibbs parameter. Both terms can be further developed as

Q1
(
φ

∣∣ θ(t ))= E

{ ∑
i∈S

logπ
(
yi

∣∣ Xi ,φ
) ∣∣∣∣∣ Y = y,θ(t )

}
= ∑

i∈S

∑
xi

π
(
xi

∣∣ y,θ(t ),G
)

logπ
(
yi

∣∣ xi ,φ
)

,

Q2
(
ψ

∣∣ θ(t ))= E
{
− log Z

(
ψ,G

)−∑
c

Vc (Xc ,ψ)

∣∣∣∣ Y = y,θ(t )
}

=− log Z
(
ψ,G

)−∑
c

∑
xc

π
(
xc

∣∣ y,θ(t ),G
)

Vc
(
xc ,ψ

)
. (7.1)

The evaluation of Q presents two major difficulties. Neither the partition function Z (ψ,G ) aris-
ing in Q2 nor the conditional probabilities π(xi | y,θ(t ),G ) and π(xc | y,θ(t ),G ) in Q1 and Q2

respectively can be easily computed. Many stochastic or deterministic schemes have been pro-
posed and an exhaustive state of art could not be presented here. We focus below on variational
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EM-like algorithms that will be used in Chapter ?? for approximating model choice criterion. I
could also have mentioned attempts such as the Gibbsian-EM (Chalmond, 1989), the Monte-
Carlo EM (Wei and Tanner, 1990) or the Restoration-Maximization algorithm (Qian and Titter-
ington, 1991).

Variational EM algorithm

Variational methods refer to a class of deterministic approaches. They consist in introducing a
variational function as an approximation to the likelihood in order to solve a simplified version
of the optimization problem. In practice, this relaxation of the original issue has shown good
performances for approximating the maximum likelihood estimate (Celeux et al., 2003), as well
as for Bayesian inference on hidden Potts model (McGrory et al., 2009).

When dealing with Markov random fields, the mean-field EM is the most popular version of
variational EM (VEM) algorithms. The basis is to replace the complex Gibbs distribution with
a simple tractable model taken from a family of independent distributions. The principle is to
consider the E-step as a functional optimization problem over a set D of probability distribu-
tions on the latent space (e.g., Neal and Hinton, 1998). Similarly to the previous decomposition
of the incomplete log-likelihood, for any probability distribution P in D, one can write

logπ
(
y

∣∣ θ)= ∑
x∈X

log

{
π

(
x,y

∣∣ θ,G
)

P(x)

}
P(x)︸ ︷︷ ︸

=F (P,θ)

+ ∑
x∈X

log

{
P(x)

π
(
x

∣∣ y,θ,G
)}

P(x)︸ ︷︷ ︸
=KL(P, π(·|y,θ,G ))

. (7.2)

The last KL term denotes the Kullback-Leibler divergence between a given probability distri-
bution P and the Gibbs distribution π(· | y,θ,G ). The Kullback-Leibler divergence is a measure
of the information lost when one approximates π(· | y,θ,G ) with P. Although it is not a true
metric, it has the non-negative property with divergence zero if and only if distributions are
equal almost everywhere. The function F introduced in (7.2) is then a lower bound for the log-
likelihood. The aim of the variational approach is to maximize the function F instead of the
function Q by choosing a distribution P easy to compute and close enough to π(· | y,θ,G ). This
shift in the formulation leads to an alternating optimization procedure which can be described
as follows: given a current value (P(t ),θ(t )) in D×Θ, updates with

P(t+1) = argmax
P∈D

F
(
P,θ(t ))= argmin

P∈D

KL
(
P, π

(· ∣∣ y,θ(t ),G
))

, (7.3)

θ(t+1) = argmax
θ

F
(
P(t+1),θ

)= argmax
θ

∑
x∈X

P(t+1)(x) logπ
(
x,y

∣∣ θ,G
)

. (7.4)
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The minimization of the Kullback-Leibler divergence over the whole set of probability distribu-
tions on X has an explicit solution which is the conditional distribution π(· | y,θ,G ). Then the
maximization over Θ corresponds to the maximization of Q and we recover the standard EM
scheme. The proposal of VEM to make the E-step tractable is to solve (7.3) over a restricted set
D̃ of probability distributions: the class of independent probability distributions P that factorize
on sites, namely for all x in X =∏

i∈S Xi ,

P(x) = ∏
i∈S

Pi (xi ), where Pi ∈M+
1 (Xi ) and P ∈M+

1 (X ).

The mean field approximation is the optimal solution in D̃, in the sense that it is the closest
distribution to the Gibbs distribution that factorizes on sites. Despite the introduction of the
relaxation, the M-step remains intractable due to the latent Markovian structure. Indeed func-
tions Q1 and Q2 of equations (??) and (??) are replaced by

QVEM
1

(
φ

∣∣ P(t ))= ∑
i∈S

∑
xi

P(t )(x) logπ
(
yi

∣∣ xi ,φ
)

, (7.5)

QVEM
2

(
ψ

∣∣ P(t ))=− log Z
(
ψ,G

)−∑
c

∑
xc

P(t )(x)Vc (xc ,ψ). (7.6)

The update of the emission parameter φ(t+1), obtained by maximizing QVEM
1 can often be com-

puted analytically. In contrast, the update of Gibbs parameter still presents computational chal-
lenges since it requires either an explicit expression of the partition function or an explicit ex-
pression of its gradient. Further algorithms have been suggested to answer the question. Gen-
eralizing an idea originally introduced by Zhang (1992), Celeux et al. (2003) have designed a
class of VEM-like algorithm that uses mean field-like approximations for both π(· | y,θ,G ) and
π(· | ψ,G ). To put it in simple terms mean field-like approximations refer to distributions for
which neighbours of site i are set to constants. Given a configuration x̃ in X , the Gibbs distri-
bution π(· |ψ,G ) is replaced by

PMF-like (
x

∣∣ψ,G
)= ∏

i∈S

π
(
xi

∣∣ XN (i ) = x̃N (i ),ψ,G
)

.

The main difference with the pseudolikelihood (5.3) is that neighbours are not random any-
more and setting them to constant values leads to a system of independent variables. From this
approximation, the EM path is set up with the corresponding joint distribution approximation

PMF-like (
x,y

∣∣ θ,G
)= ∏

i∈S

π
(
yi

∣∣ xi ,φ
)
π

(
xi

∣∣ XN (i ) = x̃N (i ),ψ,G
)

.
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Algorithm 5: Simulated Field algorithm

Input: an observation y, a number of iterations T
Output: an estimate of the complete likelihood maximum θ̂MLE

Initialization: start from an initial guess θ(0) = (
ψ(0),φ(0)

)
;

for t ← 1 to T do
neighbourhood restoration: draw x̃(t ) from π

(· ∣∣ y,ψ(t−1),G
)
;

E-step: compute

Q̂1(φ) := ∑
i∈S

∑
xi

π
(
xi |XN (i ) = x̃(t )

N (i ), yi ,θ(t−1),G
)

logπ
(
yi

∣∣ xi ,φ
)

;

Q̂2(ψ) := ∑
i∈S

∑
xi

π
(
xi |XN (i ) = x̃(t )

N (i ), yi ,θ(t−1),G
)

logπ
(
xi

∣∣∣ XN (i ) = x̃(t )
N (i ),ψ,G

)
;

M-step: set θ(t ) = (
ψ(t ),φ(t )

)
where

φ(t ) = argmax
φ

Q̂1(φ) and ψ(t ) = argmax
ψ

Q̂2(ψ);

end
return θ(T ) = (

ψ(T ),φ(T )
)

Note that this general procedure corresponds to the so-called point-pseudo-likelihood EM algo-
rithm proposed by Qian and Titterington (1991). The updates ofφ andψ become fully tractable
by replacing π(· | y,θ,G ) with its approximation that derives from the Bayes formula

PMF-like (
x

∣∣ y,θ,G
)= π

(
y

∣∣ x,φ
)

PMF-like
(
x

∣∣ψ,G
)

PMF-like
(
y

∣∣ θ)
= ∏

i∈S

π
(
xi

∣∣ XN (i ) = x̃N (i ), yi ,θ,G
)

.

Then functions QVEM
1 and QVEM

2 of equations (7.5) and (7.6) are replaced with

QMF-like
1

(
φ

∣∣ θ(t ))= ∑
i∈S

∑
xi

π
(
xi |XN (i ) = x̃(t )

N (i ),yi ,θ(t ),G
)

logπ
(
yi

∣∣ xi ,φ
)

,

QMF-like
2

(
ψ

∣∣ θ(t ))= ∑
i∈S

∑
xi

π
(
xi |XN (i ) = x̃(t )

N (i ),yi ,θ(t ),G
)

logπ
(
xi

∣∣∣ XN (i ) = x̃(t )
N (i ),ψ,G

)
.

The flexibility of the approach proposed by Celeux et al. (2003) lies in the choice of the configu-
ration x̃ that is not necessarily a valid configuration for the model. In this case the Hamiltonian
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should be written differently in order to have a proper formulation of the mean-field approxi-
mations. It is unnecessary to introduce this notation here and we refer the reader to Celeux et al.
(2003) for further details. When the neighbours XN (i ) are fixed to their mean value, or more pre-
cisely x̃ is set to the mean field estimate of the complete conditional distribution π(x | y,θ,G ),
this results in the Mean Field algorithm of Zhang (1992). In practice, Celeux et al. (2003) obtain
better performances with their so-called Simulated Field algorithm (see Algorithm 5). In this
stochastic version of the EM-like procedure, x̃ is a realization drawn from the conditional distri-
bution π(· | y,θ(t ),G ) for the current value of the parameter θ(t ). The latter is preferred to other
methods when dealing with maximum-likelihood estimation for hidden Markov random field.

This extension of VEM algorithms suffers from a lack of theoretical support due to the propa-
gation of the approximation to the Gibbs distribution π(· |ψ,G ). One might advocate in favour
of the Monte-Carlo VEM algorithm of Forbes and Fort (2007) for which convergence results are
available. However the Simulated Field algorithm provides better results for the estimation of
the spatial parameter, as illustrated in Forbes and Fort (2007).

8 Parameter inference: computation of posterior distributions

Bayesian inference faces the same difficulties than maximum likelihood estimation since the
computation of the likelihood is integral to the approach. Chapter ?? addresses the problem
of computing the posterior parameter distribution when the Markov random field is directly
observed. To tackle the obstacle of the intractable normalising constant, recent work have pro-
posed simulation based approaches. This part focuses on the single auxiliary variable method
Møller et al. (2006) and the exchange algorithm Murray et al. (2006): a Gibbs-within-Metropolis-
Hastings algorithm. Both solutions may suffer from computational difficulties, either a delicate
calibration or a high computational cost. Alternatives that are computationally efficient have
been proposed by Friel (2012). The author uses composite likelihoods, that generalize the pseu-
dolikelihood introduced in Section 5, within a Bayesian approach. However the approximation
produced has a variability significantly lower than the true posterior. Chapter ?? proposes a
correction of composite likelihoods that leads to an accurate estimate without being time con-
suming.

The current overview is devoted to the Bayesian parameter inference when the Markov random
field is fully observed. Recent works have tackled the issue of hidden Markov random fields but
it would not possible to describe these here. Nevertheless I shall mention only a few like the
exchange marginal particle MCMC of Everitt (2012) or the estimation procedure in Cucala and
Marin (2013) that are both based on the exchange algorithm of Murray et al. (2006). Though
these methods produce accurate results they inherit the drawback of the exchange algorithm.
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Finally, I would add in the toolbox solutions that are computationally more efficient like the
reduced dependence approximation of Friel et al. (2009) or the variational Bayes scheme of Mc-
Grory et al. (2009).

8.0.1 Posterior parameter distribution

From a Bayesian perspective the focus is on the posterior parameter distribution. In Chapter
??, we are solely interested in making Bayesian inference about unknown parameters knowing
an observed discrete Markov random field xobs. The hidden case involves an additional level of
intractability and is not of interest in the present work.

Assume

(i) a prior on the parameter spaceΨ, whose density is π(ψ) and

(ii) the likelihood of the data X, namely π(x |ψ,G ).

The posterior parameter distribution is

π
(
ψ

∣∣∣ xobs,G
)
∝π

(
xobs

∣∣∣ψ,G
)
π(ψ). (8.1)

Posterior parameter estimation is called a doubly-intractable problem because both the likeli-
hood function and the normalizing constant of the posterior distribution are intractable.

8.1 The single auxiliary variable method

The single auxiliary variable method (SAVM) introduced by Møller et al. (2006) is an ingenious
MCMC algorithm targeting the posterior distribution (8.1). The original motivation arises from
the impossibility to implement a standard Metropolis-Hastings for doubly-intractable distri-
butions. Indeed, to draw a sample from the posterior distribution with a Metropolis-Hastings
algorithm one needs to evaluate the ratio

r
(
ψ′ ∣∣ψ)= π

(
ψ′ ∣∣ x,G

)
π

(
ψ

∣∣ x,G
) ν(

ψ
∣∣ψ′)

ν
(
ψ′ ∣∣ψ) = Z

(
ψ,G

)
Z

(
ψ′,G

) π(ψ′)q
(
x

∣∣ψ′,G
)
ν

(
ψ

∣∣ψ′)
π(ψ)q

(
x

∣∣ψ,G
)
ν

(
ψ′ ∣∣ψ) , (8.2)
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where ν(ψ |ψ′) is the proposal density for θ and q(x |ψ,G ) is the unnormalized Gibbs distribu-
tion. A solution, while being time consuming, is to estimate the ratio of the partition functions
using path sampling (Gelman and Meng, 1998). Starting from equation (6.1), the path sampling
identity writes as

log

{
Z

(
ψ0,G

)
Z

(
ψ1,G

)}
=

∫ ψ1

ψ0

Eψ{S(X)}dψ.

Hence the ratio of the two normalizing constants can be evaluated with numerical integration.
For practical purpose, this approach can barely be recommended within a Metropolis-Hastings
scheme since each iteration would require to compute a new ratio.

The proposal of Møller et al. (2006) consists in including an auxiliary variable U which shares
the same state space than X in order to cancel out the cumbersome normalizing constants.
Consider the posterior joint distribution for (ψ,U),

π
(
ψ,u

∣∣ x,G
)∝π

(
u

∣∣ x,ψ
) q

(
x

∣∣ψ,G
)

Z
(
ψ,G

) π(ψ),

whereπ(· | x,ψ) is the conditional distribution for the auxiliary variable. The Metropolis-Hastings
ratio for the posterior joint distribution can be written as

r
(
ψ′,u′ ∣∣ψ,u

)= π
(
ψ′,u′ ∣∣ x,G

)
ν

(
ψ,u

∣∣ψ′,u′,x
)

π
(
ψ,u

∣∣ x,G
)
ν

(
ψ′,u′ ∣∣ψ,u,x

) ,

where ν(ψ′,u′ |ψ,u,x) denotes the proposal density for (ψ,U). Assuming the proposal takes the
form

ν
(
ψ′,u′ ∣∣ψ,u,x

)= ν(
ψ′ ∣∣ψ,x

)
ν

(
u′ ∣∣ψ′) ,

Møller et al. (2006) suggest to pick out the intractable likelihood as proposal for the auxiliary
variable, namely

ν
(
u′ ∣∣ψ′)= 1

Z
(
ψ′,G

) q
(
u′ ∣∣ψ′,G

)
.
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Hence the Metropolis-Hastings acceptance becomes fully tractable,

r
(
ψ′,u′ ∣∣ψ,u

)= ����Z
(
ψ,G

)
�����Z

(
ψ′,G

) q
(
x

∣∣ψ′,G
)
π

(
u′ ∣∣ x,ψ′)π(

ψ′)
q

(
x

∣∣ψ,G
)
π

(
u

∣∣ x,ψ
)
π

(
ψ

)
ν

(
ψ

∣∣ψ′,x
)

q
(
u

∣∣ψ,G
)

ν
(
ψ′ ∣∣ψ,x

)
q

(
u′ ∣∣ψ′,G

)�����Z
(
ψ′,G

)
����Z

(
ψ,G

) .

It follows from the above and (8.2) that the SAVM is based on single point importance sampling
approximations of the partition functions Z (ψ,G ) and Z (ψ′,G ), namely

Ẑ
(
ψ,G

)= q
(
u

∣∣ψ,G
)

π
(
u

∣∣ x,ψ
) and Ẑ

(
ψ′,G

)= q
(
u′ ∣∣ψ′,G

)
π

(
u′ ∣∣ x,ψ′) .

As mentioned by Everitt (2012), any algorithm producing an unbiased estimate of the normaliz-
ing constant can thus be used in place of the importance sampling approximation and will lead
to a valid procedure.

The idea to apply MCMC methods to situation where the target distribution can be estimated
without bias by using an auxiliary variable construction has appeared in the generalized im-
portance Metropolis-Hasting of Beaumont (2003) and has then been extented by Andrieu and
Roberts (2009). This brings another justification to the SAVM and possible improvement with
the use of sequential Monte Carlo samplers (Andrieu et al., 2010).

8.2 The exchange algorithm

Murray et al. (2006) develop this work further with their exchange algorithm. They outline that

SAVM can be improved by directly estimating the ratio Z (ψ,G )
Z (ψ′,G ) instead of using previous sin-

gle point estimates. The scheme is a Metropolis-within-Gibbs algorithm (see Algorithm 6) that
samples from the augmented posterior distribution

π
(
ψ,ψ′,u

∣∣ x,G
)∝π

(
ψ

)
ν

(
ψ′ ∣∣ψ)

π
(
x

∣∣ψ,G
)
π

(
u

∣∣ψ′,G
)

.

Comparing the acceptance ratio of Algorithm 6 with the Metropolis-Hasting ratio (8.2), we re-

mark that the intractable ratio Z (ψ,G )
Z (ψ′,G ) is replaced by q(u|ψ,G )

q(u|ψ′,G ) . The latter can be viewed as a single
point importance sampling estimate as pointed out by Murray et al. (2006).

In comparison with the exchange algorithm, the SAVM faces a major drawback. Indeed, the
method of Møller et al. (2006) depends on the conditional distribution for the auxiliary variable
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Algorithm 6: Exchange algorithm

Input: an initial guess
(
ψ(0),ψ′(0),u(0)

)
for ψ, a number of iterations T

Output: a sample drawn from the augmented distribution π
(
ψ,ψ′,u

∣∣ x,G
)

for t ← 1 to T do
draw ψ′ from ν

(· ∣∣ψ(t−1)
)
;

draw u from π
(· ∣∣ψ′(t ),G

)
;

compute the Metropolis-Hastings acceptance ratio

r
(
ψ′ ∣∣ψ(t−1),u

)= q
(
u

∣∣ψ(t−1),G
)

q
(
u

∣∣ψ′,G
) π

(
ψ′)q

(
x

∣∣ψ′,G
)
ν

(
ψ(t−1)

∣∣ψ′)
π

(
ψ(t−1)

)
q

(
x

∣∣ψ(t−1),G
)
ν

(
ψ′ ∣∣ψ(t−1)

) ;

Exchange move: set
(
ψ(t ),ψ′(t ),u(t )

)= (
ψ′,ψ(t−1),u

)
with probability

min
(
1,r (ψ′ |ψ(t−1),u)

)
, else set

(
ψ(t ),ψ′(t ),u(t )

)= (
ψ(t−1),ψ′(t−1),u(t−1)

)
;

end

return
{(
ψ(t ),ψ′(t ),u(t )

)}T
t=1

U, namely π(· | x,ψ), that makes it difficult to calibrate (see for example Cucala et al., 2009). As
a suitable choice for the conditional distribution, the authors advocate in favour of the Gibbs
distribution taken at a preliminary estimate ψ̂, such as the maximum pseudolikehood, that is

π
(
u

∣∣ x,ψ
)= 1

Z
(
ψ̂,G

) q
(
u

∣∣ ψ̂,G
)

.

By plugging in a particular value ψ̂, the normalizing constant Z (ψ̂,G ) drops out of the accep-
tance ratio r (ψ′,u′ | ψ,u). Nevertheless Cucala et al. (2009) stress out that the choice of ψ̂ is
paramount and may significantly affect the performances of the algorithm. In this sense, the
exchange algorithm is more convenient to implement whilst outperforming the SAVM in Mur-
ray et al. (2006).

A practical difficulty remains to implement the exchange algorithm. An exact draw u from the
likelihood π(· |ψ,G ) is required. This is generally infeasible when dealing with Markov random
fields with the exception of a very few instances. The Ising model is one of these special cases
where u can be drawn exactly using coupling from the past (Propp and Wilson, 1996) but the
perfect simulation may be very expensive especially if the parameter is close to the phase tran-
sition. Alternatively, one can run enough iterations of a suitable MCMC (such as Gibbs sampler,
Swendsen-Wang algorithm) to reach its stationnary distribution π(· |ψ,G ). This approach has
shown good performances in practice (e.g., Cucala et al., 2009, Caimo and Friel, 2011, Everitt,
2012). A theoretical justification is presented by Everitt (2012) who notably pointed out that
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solely few iterations of the MCMC sampler are necessary.

9 Model selection

Selecting the model that best fits an observation among a collection of Markov random fields
is a daunting task. The comparison of stochastic models is usually based on the Bayes factor
(Kass and Raftery, 1995) that is intractable due to a high-dimensional integral. The present dis-
sertation is especially interested in selecting the neighbourhood structure and/or the number
of components of hidden discrete Markov random fields such as the hidden Potts model. Ap-
proximate Bayesian computation introduced in Section 9.2 brings a solution in the Bayesian
paradigm which is explored in Chapter ??. But it suffers from slow execution. The Bayesian
Information Criterion (BIC), which is a simple function of the intractable likelihood at its maxi-
mum, is introduced in Section 9.3 and discussed further in Chapter ??.

9.1 Bayesian model choice

The peculiarity of the Bayesian approach to model selection is to consider the model itself as
an unknown parameter of interest. Assume we are given a set M = {m : 1, . . . , M } of stochas-
tic models with respective parameter spaces Θm embedded into Euclidean spaces of various
dimensions. The joint Bayesian distribution sets

(i) a prior on the model space M , π(1), . . . ,π(M),

(ii) for each model m, a prior on its parameter space Θm , whose density with respect to a
reference measure (often the Lebesgue measure of the Euclidean space) is πm(θm) and

(iii) the likelihood of the data Y within each model, namely πm(y | θm).

Consider the extended parameter spaceΘ=⋃M
m=1{m}×θm , the Bayesian analysis targets poste-

rior model probabilities, that is the marginal in M of the posterior distribution for (m,θ1, . . . ,θM )
given Y = y. By Bayes theorem, the posterior probability of model m is

π(m | y) = e(y | m)π(m)∑M
m′=1 e(y | m′)π(m′)

,
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where e(y | m) is the evidence of model m defined as

e(y | m) =
∫
Θm

πm(y | θm)πm(θm)dθm . (9.1)

When the goal of the Bayesian analysis is the selection of the model that best fits the observed
data yobs, it is performed through the maximum a posteriori (MAP) defined by

m̂MAP(yobs) = argmax
m

π(m | yobs). (9.2)

One faces the usual difficulties of Markov random fields to compute the posterior model dis-
tribution π(m | yobs). In the hidden case the problem is even more complicated than parame-
ter estimation issues and can be termed as a triply-intractable problem. Indeed the stochastic
model for Y is based on the latent process X in X , that is

πm(y | θm) =
∫
X
π(y | x,φm)π(x |ψm ,Gm)µ(dx), (9.3)

with µ the counting measure (discrete case) or the Lebesgue measure (continuous case). Both
the integral and the Gibbs distribution are intractable and consequently so is the posterior dis-
tribution.

9.2 ABC model choice approximation

Approximate Bayesian computation (ABC) is a simulation based approach that offers a way to
circumvent the difficulties of models which are intractable but can be simulated from. Subse-
quently to a work of Tavaré et al. (1997) in population genetics, the method is introduced by
Pritchard et al. (1999) as a genuine acceptance-rejection method (see Algorithm 7). The basis is
to sample from an approximation of the target distribution (8.1), namely

πε

(
ψ

∣∣∣ yobs,G
)
∝

∫
Y
π(ψ)π

(
y

∣∣ψ,G
)

Kε

(
y

∣∣∣ yobs
)

dy,

where Kε(· | yobs) is a probability density on the configuration space Y centered on yobs with a
support defined by ε. In its original version, assuming a metric space (Y ,ρ), this density is set
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to the uniform distribution on the ball B(ε,yobs) of radius ε centered at yobs, that is

Kε

(
y

∣∣∣ yobs
)
∝ 1

{
y ∈B

(
ε,yobs

)}
= 1

{
ρ

(
y,yobs

)
≤ ε

}
.

The use of a kernel function instead of the latter has been studied by Wilkinson (2013). Con-
cerning the calibration of ε, a trade-off has to be found to ensure good performances of the
procedure. If the threshold is small enough, πε(· | yobs,G ) provides an accurate approxima-
tion that may nonetheless suffer from a high computational cost. For the limiting case ε =
0, we recover the true posterior distribution. However decreasing the threshold, while main-
taining the amount of simulations accepted, can be problematic in terms of processing time
since the acceptance probability can be too low, if not zero, i.e., P(ρ(Y,yobs) ≤ ε) = ∫

Y π(y |
ψ,G )1

{
ρ(y,yobs) ≤ ε}dy → 0. Conversely, a large threshold ε leads to a poor approximation of

the posterior distribution since almost all simulated particles are accepted, i.e., limε→∞ P(ρ(Y,yobs) ≤
ε) = 1. The standard solution is to pick out an empirical quantile of the distance (e.g., Beaumont
et al., 2002). We refer the reader to Marin et al. (2012) and the reference therein for an overview
of this calibration question. This point is also discussed further in Chapter ??.

Algorithm 7: Acceptance-rejection algorithm

Input: an observation yobs, summary statistics S, a number of iterations T , an empirical
quantile of the distance Tε

Output: a sample from the approximated target of πε
(· ∣∣ yobs,G

)
for t ← 1 to T do

draw ψ from π(·);
draw y from π

(· ∣∣ψ,G
)
;

compute S(y);
save

{
ψ(t ),S

(
y(t )

)}← {
ψ,S

(
y
)}

;

end

sort the replicates according to the distance ρ
{

S
(
y(t )

)
,S

(
yobs

))
;

keep the Tε first replicates;
return the sample of accepted particles

In practical terms, the data usually lies in a space of high dimension and the algorithm faces
the curse of dimensionality, namely that is almost impossible to sample dataset in the neigh-
bourhood of y. The ABC algorithm performs therefore a (non linear) projection of the observed
and simulated datasets onto some Euclidean space of reasonable dimension d via a function s,
composed of summary statistics. The use of summary statistics in place of the data leads to the
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pseudo-target

πε

(
ψ

∣∣∣ S
(
yobs

)
,G

)
∝

∫
Y
π(ψ)π

(
y

∣∣ψ,G
)

1
{
ρ

(
S(y),S

(
yobs

))
≤ ε

}
dy.

Beyond the seldom situation where s is sufficient, i.e., P
(
ψ | s(yobs)

) = P(ψ | yobs), we cannot
recover better than π

(
ψ | ρ {

s(y), s(yobs)
}≤ ε). Hence the calibration of ABC can become com-

plicated due to the difficulty or even the impossibility to quantify the effect of the different ap-
proximations. Recent articles have proposed automatic schemes to construct these statistics
(rarely from scratch but based on a large set of candidates) for Bayesian parameter inference
and are meticulously reviewed by Blum et al. (2013) who compare their performances in con-
crete examples.

Example (Curse of dimensionality). Consider Y,Y(1), . . . ,Y(N ) a sequence of random variables in
Rd independent and identically distributed according to the uniform distribution on [0,1]d . De-
note d∞(d , N ) the distance function to Y defined as

d∞(d , N ) = E
{

min
i=1,...,N

‖Y−Y(i )‖∞
}

,

where ‖ ·‖∞ stands for the supremum norm on Rd .

d∞(d , N ) =
∫ ∞

0
P

(
min

i=1,...,N
‖Y−Y(i )‖∞ > t

)
dt

=
∫ ∞

0
1−P

(
min

i=1,...,N
‖Y−Y(i )‖∞ ≤ t

)
dt .

Due to the independence assumption, the latter can be written as

P
(

min
i=1,...,N

‖Y−Y(i )‖∞ ≤ t

)
≤ N P

(‖Y−Y(1)‖∞ ≤ t
)

≤ N (2t )d

Starting from 1−N (2t )d ≥ 0 for t ≤ (
2N 1/d

)−1
, we get the following lower bound

d∞(d , N ) ≥
∫ (

2N 1/d
)−1

0
1−N (2t )d dt = d

2(d +1)
N− 1

d .

Table 1 yields the lower bound for various dimension space d and sample sizes N . The latter shows
how paramount the calibration of the threshold ε is. When dealing with discrete Markov random
field, the dimension of Y is K |S | = K n , that is for binary random variables defined on a 10×10
lattice the dimension of the configuration space is 2100 ≈ 1030.
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Table 1: Illustration of the curse of dimensionality for various dimension d and sample sizes N .

d∞(d , N ) N = 100 N = 1000 N = 10000 N = 100000

d∞(1, N ) 0.0025 0.00025 0.000025 0.0000025
d∞(2, N ) ≥ 0.033 ≥ 0.01 ≥ 0.0033 ≥ 0.001

d∞(10, N ) ≥ 0.28 ≥ 0.22 ≥ 0.18 ≥ 0.14
d∞(200, N ) ≥ 0.48 ≥ 0.48 ≥ 0.47 ≥ 0.46

Once the parameter space includes models index M , the ABC model choice follows the same
vein than the above ABC methodology used for Bayesian parameter inference. To approximate
m̂MAP, ABC starts by simulating numerous triplets (m,θm ,y) from the joint Bayesian model. Af-
terwards, the algorithm mimics the Bayes classifier (9.2): it approximates the posterior probabil-
ities by the frequency of each model number associated with simulated y’s in a neighbourhood
of yobs. If required, we can eventually predict the best model with the most frequent model in
the neighbourhood, or, in other words, take the final decision by plugging in (9.2) the approxi-
mations of the posterior probabilities.

At this stage, this first, naive algorithm faces the curse of dimensionality illustrated in Example
9.2. Then the algorithm compares the observed data yobs with numerous simulations y through
summary statistics S(·) = {

s1(·), . . . , sM (·)}, that is the concatenation of the summary statistics of
each models with cancellation of possible replicates.

Algorithm 8: ABC model choice algorithm

Input: an observation yobs, summary statistics S, a number of iterations T , an empirical
quantile of the distance Tε

Output: a sample from the approximated target of πε
(· | S(yobs),G

)
for t ← 1 to T do

draw m from π;
draw θ from πm ;
draw y from πm(· | θ);
compute S(y);
save

{
m(t ),ψ(t ),S

(
y(t )

)}← {
m,ψ,S

(
y
)}

;

end

sort the replicates according to the distance ρ
(
S

(
y(t )

)
,S

(
yobs

))
;

keep the Tε first replicates;
return the sample of accepted particles

The accepted particles (m(t ),y(t )) at the end of Algorithm 8 are distributed according to π(m |
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ρ
(
S(y),S(yobs)

)≤ ε) and the estimate of the posterior model distribution is given by

π̂ε

(
m

∣∣∣ yobs
)
=

∑
1

{
m(t ) = m,ρ

(
S

(
y(t )

)
,S

(
yobs

))≤ ε}∑
1

{
ρ

(
S

(
y(t )

)
,S

(
yobs

))≤ ε} .

The choice of such summary statistics presents major difficulties that have been especially high-
lighted for model choice (Robert et al., 2011, Didelot et al., 2011). When the summary statistics
are not sufficient for the model choice problem, Didelot et al. (2011) and Robert et al. (2011)
found that the above probability can greatly differ from the genuine π(m | yobs).

Model selection between Markov random fields whose energy function is of the form H(y |
θ,G ) = θT s(y), such as the Potts model, is a surprising example for which ABC is consistent.
Indeed Grelaud et al. (2009) have pointed out that the exponential family structure ensures that
the vector of summary statistics S(·) = {

s1(·), . . . , sM (·)} is sufficient for each model but also for
the joint parameter across models (M ,θ1, . . . ,θM ). This allows to sample exactly from the poste-
rior model distribution when ε= 0. However the fact that the concatenated statistic inherits the
sufficiency property from the sufficient statistics of each model is specific to exponential fam-
ilies (Didelot et al., 2011). When dealing with model choice between hidden Markov random
fields, we fall outside of the exponential families due to the bound to the data. Thus we face
the major difficulty outlined by Robert et al. (2011): it is almost impossible to build a sufficient
statistic of reasonable dimension, i.e., of dimension much lower than the dimension of X .

Beyond the seldom situations where sufficient statistics exist and are explicitly known, Marin
et al. (2014) provide conditions which ensure the consistency of ABC model choice. The present
dissertation has thus to answer the absence of available sufficient statistics for hidden Potts
fields as well as the difficulty (if not the impossibility) to check the above theoretical conditions
in practice. If much attention has been devoted to Bayesian parameter inference (e.g., Blum
et al., 2013), very few has been accomplished in the context of ABC model choice apart from the
work of Prangle et al. (2014). The statistics S(y) reconstructed by Prangle et al. (2014) have good
theoretical properties (those are the posterior probabilities of the models in competition) but
are poorly approximated with a pilot ABC run (Robert et al., 2011), which is also time consum-
ing.

9.3 Bayesian Information Criterion approximations

In most cases, we could not design good summary statistics for ABC model choice. The method
thus implies a loss of statistical information and raises many questions from the choice of sum-
mary statistics to the consistency of the algorithm. This makes the implementation of the pro-

39



cedure particularly difficult, the use of the whole dataset being impossible due to the curse of
dimensionality. In place of a fully Bayesian approach, model choice criterion can be used.

As presented in Section 9.1, the Bayesian approach to model selection is based on posterior
model probabilities. Under the assumption of model being equally likely a priori, the posterior
model distribution writes as

π(m | y) = e(y | m)∑M
m′=1 e(y | m′)

.

Hence, the MAP rule (9.2) is equivalent to choose the model with the largest evidence (9.1). The
integral is usually intractable, thus much of the research in model selection area focuses on
evaluating it by numerical methods.

The Bayesian Information Criterion (BIC) is a simple but reliable solution to approximate the
evidence using Laplace method (Schwarz, 1978, Kass and Raftery, 1995). It corresponds to the
maximized log-likelihood with a penalization term, namely

BIC(m) =−2logπm
(
y

∣∣ θ̂MLE
)+dm log(n) ≈−2logπ(y | m), (9.4)

where θ̂MLE is the maximum likelihood estimate for πm(y | θm), dm is the number of free param-
eters of model m (usually the dimension of Θm) and n = |S | is the number of sites. The model
with the highest posterior probability is the one that minimizes BIC. The criterion is closely
related to the Akaike Information Criterion (AIC, Akaike, 1973) that solely differs in the penal-
ization term:

AIC(m) =−2logπm
(
y

∣∣ θ̂MLE
)+2dm .

AIC has been widely compared to BIC (e.g., Burnham and Anderson, 2002). Looking at the pe-
nalization term indicates than BIC tends to favor simpler models than those picked by AIC. We
shall also mention that AIC has been shown to overestimate the number of parameters, even
asymptotically (e.g., Katz, 1981). We refer the reader to Kass and Raftery (1995) and the refer-
ences therein for a more detailed discussion on AIC.

BIC is an asymptotic estimate of the evidence whose error is bounded as the sample size grows
to infinity regardless of the prior πm on the parameter space (Schwarz, 1978), see Chapter ??
for a more detailed presentation. The approximation may seem somewhat crude due to this
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O (1) error. However as observed by Kass and Raftery (1995) the criterion does not appear to be
qualitatively misleading as long as the sample size n is much larger than the number dm of free
parameters in the model.

This dissertation tackles the issue of selecting a number of components from a collection of hid-
den Markov random fields. The use of BIC might be questionable due to the absence of results
on the reliability of the evidence estimate in this context. Though we follow an argument of
Forbes and Peyrard (2003) that arises from the work of Gassiat (2002) in hidden Markov chains.

"The question of the criterion ability to asymptotically choose the correct model can
be addressed independently of the integrated likelihood approximation issue. As
an illustration, Gassiat (2002) has proven that for the more specialized but related
case of hidden Markov chains, under reasonable conditions, the maximum penal-
ized marginal likelihood estimator of the number of hidden states in the chain is
consistent. This estimator is defined for a class of penalization terms that includes the
BIC correction term and involves an approximation of the maximized log-likelihood
which is not necessarily good, namely the maximized log-marginal likelihood. In
particular, this criterion is consistent even if there is no guarantee that it provides
a good approximation of the integrated likelihood. The choice of BIC for hidden
Markov model selection appears then reasonable."

Difficulties in the context of hidden Markov random field are of two kinds and both come from
the maximized log-likelihood term logπm(y | θ̂MLE). Neither the maximum likelihood estimate
θ̂MLE (see Section 6.2 ) nor the incomplete likelihood (9.3) are available since they would require
to integrate a Gibbs distribution over the latent space configuration. As regards the simpler
case of observed Markov random field solutions have been brought by penalized pseudolikeli-
hood (Ji and Seymour, 1996) or MCMC approximation of BIC (Seymour and Ji, 1996). Over the
past decade, only few works have addressed the model choice issue for hidden Markov random
field from that BIC perspective. Arguably the most relevant has been suggested by Forbes and
Peyrard (2003) who, among other things, generalize an earlier approach of Stanford and Raftery
(2002). Their proposal is to use mean field-like approximations introduced in Section 6.2 to esti-
mate BIC. But other attempts based on simulations techniques have been investigated (Newton
and Raftery, 1994). Regarding the question of inferring the number of latent states, one might
avocate in favor of the Integrated Completed Likelihood (ICL, Biernacki et al., 2000). This op-
portunity has been explored by Cucala and Marin (2013) but their complex algorithm cannot be
extended easily to choose the dependency structure.
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Approximations of the Gibbs distribution

The central question is the evaluation of the incomplete likelihood (9.3), that is

πm
(
y | θm

)= ∑
x∈X

π
(
y

∣∣ x,φm
)
π

(
x

∣∣ψm ,Gm
)

.

The most straightforward approach to circumvent the computational burden is to replace the
Gibbs distribution with some simpler distributions such as the mean-field like approximations
(see Section 6.2), namely

π
(
x

∣∣ψm ,G
)≈ PMF-like (

x
∣∣ψm ,G

)= ∏
i∈S

π
(
xi

∣∣ XN (i ) = x̃N (i ),ψm ,G
)

. (9.5)

The latter corresponds to an incomplete likelihood estimate of the form

PMF-like
m

(
y

∣∣ θm
)= ∏

i∈S

∑
xi

π
(
yi

∣∣ xi ,φm
)
π

(
xi

∣∣ XN (i ) = x̃N (i ),ψm ,G
)

.

This results in the following approximation of BIC

BICMF-like(m) =−2logPMF-like
m

(
y

∣∣ θ̂MLE
)+dm log(n). (9.6)

This approach includes the Pseudolikelihood Information Criterion (PLIC) of Stanford and Raftery
(2002) as well as the mean field-like approximations of BIC proposed by Forbes and Peyrard
(2003). For the latter, the authors suggest to use for (x̃, θ̂MLE) the output of the VEM-like algo-
rithm based on the mean-field like approximations described in Section 6.2. As regards neigh-
bourhood restoration step, Forbes and Peyrard (2003) advocate in favor of the simulated field
algorithm (see Algorithm 5).

Stanford and Raftery (2002) suggest to approximate the Gibbs distribution in (9.3) with the pseu-
dolikelihood of Qian and Titterington (1991). Note the latter differs from the pseudolikelihood
of Besag (1975). Instead of integrating over X , the idea is to consider as x̃ a configuration close
to the Iterated Conditional Modes (ICM, Besag, 1986) estimate of x. ICM is an iterative proce-
dure that aims at finding an estimate of

xMAP = argmax
x

π
(
x

∣∣ y,θ,G
)

.
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In its unsupervised version it alternates between a restoration step of the latent states and an
estimation step of the parameter θ. The restoration step corresponds to a sequential update of
the sites, namely given the current configuration x̃(t ) and the current parameter θ(t )

x̃(t+1)
i = argmax

xi

π
(
xi

∣∣∣ XN (i ) = x̃(t )
N (i ),y, θ̂(t ),G

)
.

Afterwards the parameter is updated given the new configuration x̃(t+1), the spatial component
being updated by maximizing the pseudolihood (5.3),

φ(t+1) = argmax
φ

logπ
(
y

∣∣ x̃(t+1),φ
)

,

ψ(t+1) = argmax
ψ

log fpseudo
(
x̃(t+1) |ψ,G

)
.

Denote
(
xICM,θICM

)
the output of the ICM algorithm, PLIC can be written as

PLIC(m) =−2log

{ ∏
i∈S

∑
xi

π
(
yi

∣∣ xi ,φICM
m

)
π

(
xi

∣∣∣ XN (i ) = xICM
N (i ),ψ

ICM
m ,G

)}
+dm log(n). (9.7)

Stanford and Raftery (2002) have also proposed the Marginal Mixture Information Criterion
(MMIC) but for the latter they report less satisfactory results.

Approximation of the partition function

Forbes and Peyrard (2003) have also derived another criterion considering that BIC can express
only in terms of partition functions. Let Z (ψ,G ) and Z (θ,G ) denote the respective normalizing
constants of the latent and the conditional fields (see Section 2.4), namely,

Z
(
ψ,G

)= ∑
x∈X

exp
{−H

(
x

∣∣ψ,G
)}

,

Z (θ,G ) =
∑

x∈X

exp
{−H

(
x

∣∣ y,φ,ψ,G
)}= ∑

x∈X

π
(
y

∣∣ x,φ
)

exp
{−H

(
x

∣∣ψ,G
)}

.

Starting from the Bayes formula, the incomplete likelihood can be written as

π
(
y

∣∣ θ)= π
(
y

∣∣ x,φ
)
π

(
x

∣∣ψ,G
)

π
(
x

∣∣ y,θ,G
) = π

(
y

∣∣ x,φ
)

exp
{−H

(
x

∣∣ψ,G
)}

exp
{−H

(
x

∣∣ y,φ,ψ,G
)} Z (θ,G )

Z
(
ψ,G

)
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which using the definition of the Hamiltonian H(x | y,φ,ψ,G ) simplifies into

π
(
y

∣∣ θ)= Z (θ,G )

Z
(
ψ,G

) .

The expression (9.4) turns into

BIC(m) =−2log Z (θ,G )+2log Z
(
ψ,G

)+dm log(n).

Hence, the problem of estimating the Gibbs distribution becomes a problem of estimating the
normalizing constants. The latter issue could be addressed with Monte Carlo estimator such as
the path sampling (Gelman and Meng, 1998) while being time consuming. Forbes and Peyrard
(2003) propose to use instead a first order approximation of the normalizing constant arising
from mean field theory.

Consider PMF(· | ψ,G ) the mean field approximation of the Gibbs distribution π(· | ψ,G ). The
mean field approximation can be written as follows

PMF (
x

∣∣ψ,G
)= 1

Z MF
(
ψ,G

) exp
{−H MF (

x
∣∣ψ,G

)}
,

where Z MF(ψ,G ) and H MF(x |ψ,G ) are the mean field expressions for the normalizing constant
and the Hamiltonian. It is worth repeating that the mean field approximation is the minimizer
of the Kullback-Leibler divergence over the set of probability distributions that factorize and
hence both quantities are easy to compute. Denote EMF the expectation under the mean field
approximation, the Kullback-Leibler divergence can be written as

KL
(
PMF(· |ψ,G ),π(· |ψ,G )

)= EMF
(
log

{
PMF(X |ψ,G )

π(X |ψ,G )

})
.

It follows from the positivity of the Kullback-Leibler divergence

Z
(
ψ,G

)≥ Z MF (
ψ,G

)
exp

(−EMF {
H

(
X

∣∣ψ,G
)−H MF (

X
∣∣ψ,G

)})
. (9.8)

The mean field approximation yields the optimal lower bound which is used as an estimate of
the normalizing constant. The same applies to the Gibbs distributionπ(· | y,θ,G ) and we denote
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Z MF(θ,G ) and H MF(· | y,θ,G ) the corresponding mean field expressions for the normalizing
constant and the Hamiltonian. It follows another approximation of BIC, namely

BICGBF(m) =−2log
{

Z MF (
θ̂MLE

m ,G
)}+2log

{
Z MF (

ψ̂MLE
m ,G

)}
+2EMF {

H
(
X

∣∣ y, θ̂MLE
m ,G

)−H MF (
X

∣∣ y, θ̂MLE
m ,G

)}
−2EMF {

H
(
X

∣∣ ψ̂MLE
m ,G

)−H MF (
X

∣∣ ψ̂MLE
m ,G

)}
+dm log(n). (9.9)

Forbes and Peyrard (2003) argue that the latter is more satisfactory than BICMF-like(m) in the
sense it is based on a optimal lower bound for the normalizing constants contrary to the mean
field-like approximations. However that does not ensure better results as regards model selec-
tion.

References

H. Akaike. Information theory and an extension of the maximum likelihood principle. In Second
International Symposium on Information Theory, pages 267–281. Akademinai Kiado, 1973.

M. Alfò, L. Nieddu, and D. Vicari. A finite mixture model for image segmentation. Statistics and
Computing, 18(2):137–150, 2008.

C. Andrieu and G. O. Roberts. The Pseudo-Marginal Approach for Efficient Monte Carlo Com-
putations. The Annals of Statistics, 37(2):697–725, 2009.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov Chain Monte Carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior prob-
abilities. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1239–1253,
2005.

M. A. Beaumont. Estimation of Population Growth or Decline in Genetically Monitored Popu-
lations. Genetics, 164(3):1139–1160, 2003.

M. A. Beaumont, W. Zhang, and D. J. Balding. Approximate Bayesian Computation in Population
Genetics. Genetics, 162(4):2025–2035, 2002.

J. E. Besag. Nearest-neighbour Systems and the Auto-Logistic Model for Binary Data. Journal of
the Royal Statistical Society. Series B (Methodological), 34(1):75–83, 1972.

J. E. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion).
Journal of the Royal Statistical Society. Series B (Methodological), 36(2):192–236, 1974.

45



J. E. Besag. Statistical Analysis of Non-Lattice Data. The Statistician, 24:179–195, 1975.

J. E. Besag. On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society.
Series B (Methodological), 48(3):259–302, 1986.

J. E. Besag and P. J. Green. Spatial Statistics and Bayesian Computation. Journal of the Royal
Statistical Society. Series B (Methodological), 55(1):25–37, 1993.

J. E. Besag, J. York, and A. Mollié. Bayesian image restoration, with two applications in spatial
statistics. Annals of the institute of statistical mathematics, 43(1):1–20, 1991.

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the in-
tegrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 22(7):719–725, 2000.

M. G. B. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson. A Comparative Review of Dimension
Reduction Methods in Approximate Bayesian Computation. Statistical Science, 28(2):189–
208, 2013.

K. P. Burnham and D. R. Anderson. Model selection and multimodel inference: a practical
information-theoretic approach. Springer Science & Business Media, 2002.

A. Caimo and N. Friel. Bayesian inference for exponential random graph models. Social Net-
works, 33(1):41–55, 2011.

G. Celeux and J. Diebolt. The SEM algorithm: a probabilistic teacher algorithm derived from the
EM algorithm for the mixture problem. Computational Statistics Quarterly, 2(1):73–82, 1985.

G. Celeux, F. Forbes, and N. Peyrard. EM procedures using mean field-like approximations for
Markov model-based image segmentation. Pattern Recognition, 36(1):131–144, 2003.

B. Chalmond. An iterative Gibbsian technique for reconstruction of m-ary images. Pattern
Recognition, 22(6):747–761, 1989.

P. Clifford. Markov random fields in statistics. Disorder in physical systems: A volume in honour
of John M. Hammersley, pages 19–32, 1990.

C. Cooper and A. M. Frieze. Mixing properties of the Swendsen-Wang process on classes of
graphs. Random Structures and Algorithms, 15(3-4):242–261, 1999.

L. Cucala and J.-M. Marin. Bayesian Inference on a Mixture Model With Spatial Dependence.
Journal of Computational and Graphical Statistics, 22(3):584–597, 2013.

L. Cucala, J.-M. Marin, C. P. Robert, and D. M. Titterington. A Bayesian Reassessment of Nearest-
Neighbor Classification. Journal of the American Statistical Association, 104(485):263–273,
2009.

46



A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38,
1977.

X. Descombes, R. D. Morris, J. Zerubia, and M. Berthod. Estimation of Markov random field
prior parameters using Markov chain Monte Carlo maximum likelihood. Image Processing,
IEEE Transactions on, 8(7):954–963, 1999.

X. Didelot, R. G. Everitt, A. M. Johansen, and D. J. Lawson. Likelihood-free estimation of model
evidence. Bayesian Analysis, 6(1):49–76, 2011.

R. G. Edwards and A. D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang repre-
sentation and Monte Carlo algorithm. Physical review D, 38(6):2009, 1988.

R. G. Everitt. Bayesian Parameter Estimation for Latent Markov Random Fields and Social Net-
works. Journal of Computational and Graphical Statistics, 21(4):940–960, 2012.

F. Forbes and G. Fort. Combining Monte Carlo and Mean Field-Like Methods for Inference in
Hidden Markov Random Fields. Image Processing, IEEE Transactions on, 16(3):824–837, 2007.

F. Forbes and N. Peyrard. Hidden Markov random field model selection criteria based on mean
field-like approximations. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
25(9):1089–1101, 2003.

O. François, S. Ancelet, and G. Guillot. Bayesian Clustering Using Hidden Markov Random
Fields in Spatial Population Genetics. Genetics, 174(2):805–816, 2006.

O. Frank and D. Strauss. Markov graphs. Journal of the American Statistical Association, 81(395):
832–842, 1986.

N. Friel. Bayesian Inference for Gibbs Random Fields Using Composite Likelihoods. In Proceed-
ings of the Winter Simulation Conference, number 28 in WSC ’12, pages 1–8. Winter Simula-
tion Conference, 2012.

N. Friel and A. N. Pettitt. Likelihood Estimation and Inference for the Autologistic Model. Jour-
nal of Computational and Graphical Statistics, 13(1):232–246, 2004.

N. Friel and H. Rue. Recursive computing and simulation-free inference for general factorizable
models. Biometrika, 94(3):661–672, 2007.

N. Friel, A. N. Pettitt, R. Reeves, and E. Wit. Bayesian Inference in Hidden Markov Random Fields
for Binary Data Defined on Large Lattices. Journal of Computational and Graphical Statistics,
18(2):243–261, 2009.

E. Gassiat. Likelihood ratio inequalities with applications to various mixtures. In Annales de
l’IHP Probabilités et statistiques, volume 38, pages 897–906, 2002.

47



A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to
bridge sampling to path sampling. Statistical science, 13(2):163–185, 1998.

S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restora-
tion of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741,
1984.

S. Geman and C. Graffigne. Markov Random Field Image Models and Their Applications to
Computer Vision. In Proceedings of the International Congress of Mathematicians, volume 1,
pages 1496–1517, 1986.

H. Georgii. Gibbs Measures and Phase Transitions. De Gruyter studies in mathematics. De
Gruyter, 2011.

C. J. Geyer. Markov Chain Monte Carlo Maximum Likelihood. 1991.

C. J. Geyer and E. A. Thompson. Constrained Monte Carlo Maximum Likelihood for Dependent
Data. Journal of the Royal Statistical Society. Series B (Methodological), 54(3):657–699, 1992.

V. K. Gore and M. R. Jerrum. The Swendsen–Wang process does not always mix rapidly. Journal
of Statistical Physics, 97(1-2):67–86, 1999.

P. J. Green and S. Richardson. Hidden Markov Models and Disease Mapping. Journal of the
American Statistical Association, 97(460):1055–1070, 2002.

A. Grelaud, C. P. Robert, J.-M. Marin, F. Rodolphe, and J.-F. Taly. ABC likelihood-free methods for
model choice in Gibbs random fields. Bayesian Analysis, 4(2):317–336, 2009.

G. R. Grimmett. A theorem about random fields. Bulletin of the London Mathematical Society,
5(1):81–84, 1973.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

D. M. Higdon. Discussion on the Meeting on the Gibbs Sampler and Other Markov Chain Monte
Carlo Methods. Journal of the Royal Statistical Society. Series B, 55(1):78, 1993.

D. M. Higdon. Auxiliary variable methods for Markov chain Monte Carlo with applications.
Journal of the American Statistical Association, 93(442):585–595, 1998.

M. Huber. A bounding chain for Swendsen-Wang. Random Structures & Algorithms, 22(1):43–
59, 2003.

M. A. Hurn, O. K. Husby, and H. Rue. A Tutorial on Image Analysis. In Spatial Statistics and
Computational Methods, volume 173 of Lecture Notes in Statistics, pages 87–141. Springer
New York, 2003.

48



E. Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, 31:253–258, 1925.

C. Ji and L. Seymour. A consistent model selection procedure for Markov random fields based
on penalized pseudolikelihood. The annals of applied probability, pages 423–443, 1996.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the american statistical association, 90(430):
773–795, 1995.

R. W. Katz. On Some Criteria for Estimating the Order of a Markov Chain. Technometrics, 23(3):
243–249, 1981.

I. Lanford, O.E. and D. Ruelle. Observables at infinity and states with short range correlations in
statistical mechanics. Communications in Mathematical Physics, 13(3):194–215, 1969.

J. S. Liu. Peskun’s theorem and a modified discrete-state gibbs sampler. Biometrika, 83(3):681–
682, 1996.

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian Computational meth-
ods. Statistics and Computing, 22(6):1167–1180, 2012.

J.-M. Marin, N. S. Pillai, C. P. Robert, and J. Rousseau. Relevant statistics for Bayesian model
choice. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(5):833–
859, 2014.

V. Matveev and R. Shrock. Complex-temperature singularities in Potts models on the square
lattice. Physical Review E, 54(6):6174, 1996.

C. A. McGrory, D. M. Titterington, R. Reeves, and A. N. Pettitt. Variational Bayes for estimating
the parameters of a hidden Potts model. Statistics and Computing, 19(3):329–340, 2009.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The journal of Chemical Physics, 21(6):1087–1092,
1953.

A. Mira, J. Møller, and G. O. Roberts. Perfect slice samplers. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 63(3):593–606, 2001.

J. Møller, A. N. Pettitt, R. Reeves, and K. K. Berthelsen. An efficient Markov chain Monte Carlo
method for distributions with intractable normalising constants. Biometrika, 93(2):451–458,
2006.

M. T. Moores, C. E. Hargrave, F. Harden, and K. Mengersen. Segmentation of cone-beam CT
using a hidden Markov random field with informative priors. Journal of Physics : Conference
Series, 489, 2014.

49



I. Murray, Z. Ghahramani, and D. J. C. MacKay. MCMC for doubly-intractable distributions. In
Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06),
pages 359–366. AUAI Press, 2006.

R. Neal and G. Hinton. A View of the EM Algorithm that Justifies Incremental, Sparse, and other
Variants. In M. Jordan, editor, Learning in Graphical Models, volume 89 of NATO ASI Series,
pages 355–368. Springer Netherlands, 1998.

M. A. Newton and A. E. Raftery. Approximate Bayesian inference with the weighted likelihood
bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), pages 3–48, 1994.

L. Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition.
Phys. Rev., 65:117–149, 1944.

A. N. Pettitt, N. Friel, and R. W. Reeves. Efficient calculation of the normalizing constant of the
autologistic and related models on the cylinder and lattice. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 65(1):235–246, 2003.

R. B. Potts. Some generalized order-disorder transformations. In Mathematical proceedings of
the cambridge philosophical society, volume 48, pages 106–109. Cambridge Univ Press, 1952.

D. Prangle, P. Fearnhead, M. P. Cox, P. J. Biggs, and N. P. French. Semi-automatic selection of
summary statistics for ABC model choice. Statistical Applications in Genetics and Molecular
Biology, 13(1):67–82, 2014.

J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. Population Growth of
Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Molecular Biology and
Evolution, 16(12):1791–1798, 1999.

J. G. Propp and D. B. Wilson. Exact Sampling with Coupled Markov chains and Applications to
Statistical Mechanics. Random structures and Algorithms, 9(1-2):223–252, 1996.

W. Qian and D. Titterington. Estimation of parameters in hidden Markov models. Philosophical
Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 337
(1647):407–428, 1991.

R. Reeves and A. N. Pettitt. Efficient recursions for general factorisable models. Biometrika, 91
(3):751–757, 2004.

C. P. Robert, J.-M. Cornuet, J.-M. Marin, and N. S. Pillai. Lack of confidence in approximate
Bayesian computation model choice. Proceedings of the National Academy of Sciences, 108
(37):15112–15117, 2011.

G. O. Roberts and J. S. Rosenthal. Convergence of slice sampler Markov chains. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 61(3):643–660, 1999.

50



G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponential random graph
(p*) models for social networks. Social networks, 29(2):173–191, 2007.

H. Rue. Fast Sampling of Gaussian Markov Random Fields. Journal of the Royal Statistical Soci-
ety. Series B (Statistical Methodology), 63(2):325–338, 2001.

H. Rue and L. Held. Gaussian Markov random fields: theory and applications. CRC Press, 2005.

T. Rydén and D. Titterington. Computational Bayesian analysis of hidden Markov models. Jour-
nal of Computational and Graphical Statistics, 7(2):194–211, 1998.

G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–464, 1978.

L. Seymour and C. Ji. Approximate Bayes model selection procedures for Gibbs-Markov random
fields. Journal of Statistical Planning and Inference, 51(1):75–97, 1996.

D. C. Stanford and A. E. Raftery. Approximate Bayes factors for image segmentation: The pseu-
dolikelihood information criterion (PLIC). Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(11):1517–1520, 2002.

R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations.
Physical Review Letters, 58(2):86–88, 1987.

S. Tavaré, D. J. Balding, R. C. Griffiths, and P. Donnelly. Inferring Coalescence Times From DNA
Sequence Data. Genetics, 145(2):505–518, 1997.

S. Wasserman and P. Pattison. Logit models and logistic regressions for social networks: I. An
introduction to Markov graphs andp. Psychometrika, 61(3):401–425, 1996.

G. C. G. Wei and M. A. Tanner. A Monte Carlo Implementation of the EM Algorithm and the
Poor Man’s Data Augmentation Algorithms. Journal of the American Statistical Association,
85(411):699–704, 1990.

R. D. Wilkinson. Approximate Bayesian computation (ABC) gives exact results under the as-
sumption of model error. Statistical Applications in Genetics and Molecular Biology, 12(2):
129–141, 2013.

U. Wolff. Collective Monte Carlo updating for spin systems. Physical Review Letters, 62(4):361,
1989.

C. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1):
95–103, 1983.

F.-Y. Wu. The Potts model. Reviews of modern physics, 54(1):235, 1982.

L. Younes. Estimation and annealing for Gibbsian fields. Annales de l’Institut Henri Poincaré,
24:269–294, 1988.

51



J. Zhang. The mean field theory in EM procedures for Markov random fields. Signal Processing,
IEEE Transactions on, 40(10):2570–2583, 1992.

52


	Introduction
	Markov random field and Gibbs distribution
	Gibbs-Markov equivalence
	Autologistic model and related distributions
	Phase transition
	Hidden Gibbs random field

	How to simulate a Markov random field
	Gibbs sampler
	Auxiliary variables and Swendsen-Wang algorithm

	Recursive algorithm for discrete Markov random field
	Parameter inference: maximum pseudolikelihood estimator
	Parameter inference: computation of the maximum likelihood
	Monte Carlo maximum likelihood estimator
	Expectation-Maximization algorithm

	Parameter inference: computation of posterior distributions
	Posterior parameter distribution
	The single auxiliary variable method
	The exchange algorithm

	Model selection
	Bayesian model choice
	ABC model choice approximation
	Bayesian Information Criterion approximations


