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Extended finite element method for cohesive crack growth
Nicolas Moe€es *, Ted Belytschko *

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

The extended finite element method allows one to model displacement discontinuities which do not conform to
interelement surfaces. This method is applied to modeling growth of arbitrary cohesive cracks. The growth of the
cohesive zone is governed by requiring the stress intensity factors at the tip of the cohesive zone to vanish. This energetic
approach avoids the evaluation of stresses at the mathematical tip of the crack. The effectiveness of the proposed
approach is demonstrated by simulations of cohesive crack growth in concrete.
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1. Introduction

Linear elastic fracture mechanics (LEFM) is only applicable when the size of the fracture process zone

(FPZ) at the crack tip is small compared to the size of the crack and the size of the specimen [1]. Other

models must be used to take into account the FPZ. The cohesive crack model is the simplest of such models.

In a cohesive crack, the propagation is governed by a traction–displacement relation across the crack faces

near the tip. This model was introduced in the early sixties for metals by Dugdale [2] and Barenblatt [3]. In

the late seventies, Hillerborg et al. [4] introduced the concept of fracture energy into the cohesive crack

model and proposed a number of traction–displacement relationships for concrete.

The numerical simulation of cohesive crack growth may be carried out with several different approaches.

Petersson [5] exploits a boundary integral formulation and uses an a priori discretization of the kernels

relying on elastic finite element computations. More recently, a boundary element formulation was also

used by Yand and Ravi-Chandar [6]. In the work of Belytschko et al. [7], a meshless approach (element-free

galerkin) is used to model cohesive crack growth under dynamic loading.

In the modeling of cohesive fracture with the finite element method, two main strategies may be found in

the literature: discrete interelement cracks and discrete intraelement cracks. In the first approach, the crack

extends between elements and remeshing is necessary when the crack path is not known in advance. This

approach has been used to model cohesive crack growth in concrete in Refs. [8–11] and to model crack
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growth in ductile materials in Refs. [12,13]. In the work of Xu and Needleman [14] and Ortiz and Camacho

[15], a cohesive zone is placed as an interelement in between each pair of neighboring elements in the mesh,

see also Ref. [16]. Crack growth, crack branching or fragmentation is then a natural outcome of the initial

boundary-value problem. The intraelement approach includes the incorporation of a discontinuous mode

on an element level. It was used in Refs. [17–19] to model shear bands and in Refs. [20,21] to model cracks.

A comparative study of such finite elements with embedded discontinuities may be found in Ref. [22]. The

use of embedded discontinuities avoids remeshing as the crack (or shear band) propagates and belongs to

the family of assumed strain methods. Stability issues need to be considered with these methods [22].

Recently, an extension of the finite element method called the extended finite element method (X-FEM)

[23,24] has been developed to model arbitrary discontinuities in meshes (see also Ref. [25]). This extension

exploits the partition of unity property of finite elements [26], which allows local enrichment functions to be

easily incorporated into a finite element approximation while preserving the classical displacement varia-

tional setting.

The X-FEMmodels the discontinuity in a displacement field along the crack path, wherever this path may

be located with respect to the mesh. This flexibility enables the method to simulate crack growth without

remeshing. In the papers by Belytschko and Black [24] and Mo€ees et al. [23], the crack surfaces were con-

sidered free of tractions. In the paper byDolbow et al. [27] contact and friction was incorporated on the crack

faces to simulate crack growth under compression. In the present paper, we extend the method to the case of

crack growth involving a cohesive law on the crack faces and study its performance. The modeling of co-

hesive cracks using the partition of unity property of finite elements was also considered recently in Ref. [28].

2. Description of the problem

The description of the cohesive crack model will be decomposed into two parts. In the first part, the

static, kinematic and constitutive equations characterizing the displacement and stress fields for a given

location of the crack path are presented. In the second part, we express the conditions for crack growth and

discuss the selection of the crack growth direction.

2.1. Variational formulation

Consider a domain X as shown in Fig. 1, containing a crack Cc. The part of the crack on which a co-

hesive law is active is denoted by Ccoh and called the FPZ. Prescribed tractions, F, are imposed on the

boundary CF whereas prescribed displacements (assumed to be zero for simplicity) are imposed on Cu. The

stress field inside the domain, r, is related to the external loading F and the closing tractions t
þ, t� in

the cohesive zone through the equilibrium equations:

Fig. 1. Notations for a specimen with a crack involving a cohesive zone.
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$ � r ¼ 0 on X; r � n ¼ F on CF ð1Þ

r � nþ ¼ �r � n� ¼ t
þ ¼ �t

� ¼ t on Ccoh ð2Þ

The orientation of the normals nþ and n
� are shown in Fig. 2.

The kinematic equations include the strain–displacement relationship, the prescribed displacement

boundary conditions and the definition of the separation, w, in the cohesive law. Under the assumptions of

small strains and displacements, the kinematic equations read

� ¼ 1
2
ð$uþ ð$uÞTÞ � �ðuÞ on X; u ¼ 0 on Cu

w ¼ ðu� � u
þÞ on Ccoh

Finally, we need to give a constitutive law relating the cohesive tractions, t ¼ t
þ ¼ �t

�, to the separation

w in the cohesive zone and a constitutive law for the domain surrounding the crack. The latter law is as-

sumed linear elastic and isotropic. The constitutive laws may thus be formally written

t ¼ tðwÞ on Ccoh; r ¼ C : � on X ð3Þ

where C is Hooke’s tensor.

We now transform the strong form of the problem into a weak form better suited for finite element

computations. The displacement umust belong to the set U of kinematically admissible displacement fields:

u 2 U ¼ fv 2 V : v ¼ 0 on Cug ð4Þ

The exact mathematical nature of the space V is related to the regularity of the solution. The V space

allows for discontinuous displacements across the boundary Cc of the crack. The weak form of the equi-

librium equations is
Z

X

r : �ðvÞ dx ¼
Z

CF

F � vdsþ
Z

Cþ
coh

t
þ � vdsþ

Z

C�
coh

t
� � vds 8v 2 U ð5Þ

or, in a more compact form, owing to t ¼ t
þ ¼ �t

�,

Fig. 2. Zoom in the region of the cohesive zone.
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Z

X

r : �ðvÞdxþ
Z

Ccoh

t � wðvÞds ¼
Z

CF

F � vds 8v 2 U ð6Þ

where wðvÞ ¼ v
� � v

þ.
In the numerical studies, we shall consider cohesive crack growth in concrete. We neglect the shear

component of the cohesive tractions as in Ref. [29] although this is not an intrinsic limitation of the method.

In fact, we could have implemented a coupled (tension/shear) cohesive zone constitutive model (that of

Tvergaard and Hutchinson [30] or that of Xu and Needleman [14]). Furthermore, we shall consider linear

and rectangular cohesive laws, shown in Fig. 3 for which the cohesive law reads

f ¼ fu � kw ð7Þ
where f ¼ t � n and wðvÞ ¼ wðvÞ � n is the normal separation. The slope of the cohesive law is the constant

�k (k > 0) for the linear profile and 0 (k ¼ 0) for the rectangular case. Owing to two simplifications above,

the variational principle (6) may be rewritten as
Z

X

C�ðuÞ : �ðvÞdx�
Z

Ccoh

kwðuÞwðvÞds ¼
Z

CF

F � vds�
Z

Ccoh

fuwðvÞds 8v 2 U ð8Þ

2.2. Cohesive crack growth

At any given time tn the location of the FPZ is characterized by two tips: a mathematical tip where the

crack opening is zero and a physical tip where the cohesive tractions are zero as shown in Fig. 4. Before any

loading is applied to the specimen, these two tips coincide. As the loading is imposed, the FPZ develops.

The cohesive traction at the mathematical tip is fu whereas the crack opening at the physical tip is wc.

In cohesive crack growth, snap-back may occur. The snap-back branch can be captured numerically

only if the loading process is controlled by a monotonically increasing function of the crack length. Bocca

et al. [9] suggest to use the crack length itself as the increasing function and call it a ‘‘crack length control

scheme’’. This scheme is used here. Let us assume that the imposed tractions F depend linearly on a scalar

parameter (load factor) k: F ¼ kF0. The problem to be solved is then stated as follows: given a cohesive

zone extent Ccoh, (Fig. 1) and the direction of extension (we shall discuss the crack growth direction sub-

sequently) find the load factor k such that f ¼ fu at the tip (meaning that A (Fig. 1) is indeed the math-

ematical tip). If the loading is too small, the cohesive zone will close before point A, if the loading is too

high, the traction at the tip A will be lower than fu. In finite element methods with cohesive zone discretely

modeled by element edges, the value of f at the tip may be obtained from the nodal forces at the mathe-

Fig. 3. Two cohesive laws with the same cohesive strength and fracture energy.
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matical tip or using elastic ‘‘dummy’’ (penalty) interface stiffness and calculating the stress at the integration

points near the tip.

The previous paragraph describes one way to formulate the problem. The shortcoming of this formu-

lation is that it involves quantities close to the tip A whose accuracy in the finite element context may be

questionable. Instead of evaluating pointwise quantities, we prefer to rely on energetic considerations. The

load factor is found such that the Mode I stress intensity factor (SIF) vanishes at the mathematical tip of

the cohesive zone. Indeed, an important motivation behind the introduction of a cohesive zone in fracture

mechanics is to avoid the non-physical, singular stress fields at the crack tip.

We restate the problem as follows: given a cohesive zone Ccoh find the load factor k such that the SIF KI

at the tip A is zero. The evaluation of KI is carried out with a domain integral recalled in Appendix A. Note

that the idea of using K1 ¼ 0 as a crack tip stability criterion was also previously proposed in Ref. [10].

Let us now formalize the preceding idea and discuss the direction of propagation. Let h be the direction

of propagation of the mathematical tip in between the times tn and tnþ1 as shown in Fig. 5. The location

of the mathematical tip at times tn and tnþ1 is denoted by x
tip
n and x

tip
nþ1, respectively. The load factor k at

time tn þ 1 is determined so that the mode I SIF is zero at the tip x
tip
nþ1. Since the bulk of the material is

linearly elastic, this SIF is the sum of the SIF caused by the external loading Kext
I and the cohesive forces

Kcoh
I :

KIðkÞ ¼ Kext
I ðkÞ þ Kcoh

I ðkÞ ¼ 0 ð9Þ

or

Kext
I ðkÞ ¼ �Kcoh

I ðkÞ ð10Þ

Fig. 4. The extent of the cohesive zone at time tn.

Fig. 5. Notations for a step of growth of the cohesive crack.
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Note that in LEFM for a brittle material the right-hand side of Eq. (10) is replaced by the critical SIF KIc,

which is a material property characterizing the toughness of the material:

Kext
I ðkÞ ¼ KIc ð11Þ

Note also that the external SIF, Kext
I , is linear in the loading factor k whereas the cohesive SIF, Kcoh

I , is non-

linear in k.

To determine the direction of crack propagation, we rely on LEFM. The use of LEFM criterion to

predict trajectory of cohesive crack has been promoted in Refs. [31–33]. The LEFM theory introduces at

least two criteria: the ‘‘principle of local symmetry’’ [34] and the ‘‘maximum hoop stress criterion’’ [35]. The

principle of local symmetry requires that the angle h be such that the second SIF is zero at the new tip x
tip
nþ1.

It is thus an implicit criterion. A way to implement it is to iterate on the crack growth direction until the

second stress is close to zero. Note that these iterations would not require any remeshing since the mesh

does not need to conform to the crack.

The maximum hoop stress criterion on the other hand is an explicit criterion which defines the direction

of propagation to be along a direction normal to the maximum hoop stress. Using the work of Amestoy

and Leblond [36], the maximum hoop stress and principle of local symmetry criteria may be compared for

an infinitesimal crack growth. They are very close for small K2=K1 ratios and differ by at most 7� in the

growth angle as K2=K1 becomes large.

Using the maximum hoop stress criteria, the angle of crack growth h is expressed in terms of the external

SIFs at the current tip x
tip
n through the formula:

h ¼ 2 arctan 1
4

Kext
I =Kext

II

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKext
I =Kext

II Þ
2 þ 8

q

�

ð12Þ

where the sign in Eq. (12) is chosen so that the hoop stress rhh is positive. Note the ratio of the SIFs ap-

pearing in Eq. (12) does not depend on the load factor. The use of Eq. (12) with residual (near, but ar-

bitrarily non-zero) values of KI and KII as a basis for trajectory prediction in arbitrary cohesive crack

growth can also be found in Ref. [31].

In the numerical studies, the cohesive crack growth direction at each step will be determined by Eq. (12)

as in Refs. [9,32,33], i.e. the crack path is determined by linear fracture theory, whereas the global load–

deflection curve for the structure as the crack grows will be determined by the cohesive model. This as-

sumption is in accordance with experiments on concrete in which it was observed that the size effect in

concrete affects the load–deflection curves whereas the crack path is much less sensitive to the structure size.

3. The extended finite element discretization

The discretization of the displacement set U is accomplished by the extended finite element method

which allows the crack location to be arbitrary with respect to the mesh. We shall here summarize the main

idea of this extension. For a complete presentation see Ref. [23]. Fig. 6 shows a discontinuity (cohesive

crack) placed on a structured and on an unstructured mesh. The classical finite element approximation on

these meshes reads

u
h ¼

X

i2I
ui/i ð13Þ

where I is the set of all nodes in the mesh; ui is the classical (vectorial) displacement degree of freedom at

node i and /i is the shape function associated with node i. Each shape function /i has compact support xi

given by the union of the elements connected to node i. In the numerical studies the shape functions /i are

linear (three-node triangle shape functions).
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In order to model the presence of the discontinuity, the finite element approximation (13) is enriched by

two additional terms

u
h ¼

X

i2I
ui/i þ

X

j2J
bj/jHðf ðxÞÞ þ

X

k2K
/k

X

l¼1

c
l
kFlðxÞ

!

ð14Þ

The first additional term involves the jump function Hð�Þ:

HðxÞ ¼ �1 if x > 0

þ1 if x < 0

	

ð15Þ

and f ðxÞ is the signed distance function to the crack (the sign determining whether x is on one side or the

other of the crack). The nodes ‘‘enriched’’ by the function H are such that their support (we mean the

support of the nodal shape function) is bisected (cut into two separate pieces) by the crack. These nodes

form the ‘‘J’’ set and are depicted with circles in Fig. 6.

The second additional term in Eq. (14) involve a set of branch functions FlðxÞ to model the displacement

field around the tip of the discontinuity. In LEFM these functions are chosen based on the asymptotic

features of the displacement field at the crack tip:

fFlðr; hÞg �
ffiffi

r
p

sin
h

2

� �

;
ffiffi

r
p

cos
h

2

� �

;
ffiffi

r
p

sin
h

2

� �

sinðhÞ;
ffiffi

r
p

cos
h

2

� �

sinðhÞ
	 


ð16Þ

where ðr; hÞ are the local polar coordinates at the tip. To model a cohesive crack tip, we need alternative

functions since the stresses at the tip are not singular. An asymptotic analysis of the mechanical fields in a

cohesive zone for very large structure has been carried out in Refs. [37,38]. We shall consider the following

branch functions:

fFlðr; hÞg � r sin
h

2

� �

or r3=2 sin
h

2

� �

or r2 sin
h

2

� �

ð17Þ

Note that the use of non-singular branch functions within the X-FEM framework was already introduced

in Ref. [39] and also suggested in Ref. [25]. The nodes enriched by the branch function form the set K and

are shown as squares in Fig. 6. The support of these nodes contain the cohesive tip.

Fig. 6. Discontinuity on a structured mesh (a) and on an unstructured mesh (b). The circled nodes are enriched by the jump function H

whereas the squared nodes are enriched by the branch tip functions Fl.
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Finally, introducing the X-FEM approximation (14) in the displacement variational principle (8), we

obtain the discrete variational principle: find u
h 2 U

h such that
Z

X

C�ðuhÞ : �ðvÞdx�
Z

Ccoh

kwðuhÞwðvÞds ¼ k

Z

CF

F0 � vds�
Z

Ccoh

fuwðvÞds 8v 2 U
h ð18Þ

In Eq. (18), the load factor k appears explicitly. The dimension of the discrete displacement space, Uh,

depends on the number of nodes in the mesh and the number of additional degrees of freedom to model the

presence of the crack (bj and c
l
k in Eq. (14)).

The left hand side of the discrete displacement variational principle (18) involves an integration over the

domain and an integration over the cohesive zone. The integration over the domain is performed element

by element. For the element cut by the discontinuity, the integration is performed on each side of the

discontinuity separately [23]. For the integration over the cohesive zone, the zone is geometrically repre-

sented by a sequence of 1D segments. The integration is thus performed by looping over these segments

[27]. Four Gauss points are used on each segment for an accurate integration of the branch functions. Fig. 7

shows a mesh and a sequence of 1D segments representing the cohesive zone on the mesh.

The flowchart for the cohesive crack growth simulation is as follows:

• Step 0: Initially, a mesh and the location of the crack (or possibly no crack at all) are given.

• Step 1: The direction of propagation is obtained using Eq. (12) and a segment of length da (user defined)

is added to the cohesive zone. An initial guess for the load factor (user defined) is also provided. In the

case where no crack is initially present, the first segment starts at a point and with an orientation deter-

mined by the location and plane on which the tensile strength fu is reached first.

• Step 2: Given a load factor solve for the displacement field using Eq. (18). Note that this equation is

linear.

• Step 3: If on the last 1D segment (away from the tip) the crack opening at all integration points is bigger

than the critical opening remove this 1D segment from the cohesive zone and repeat Step 2. The critical

opening is wc1 or wc2 depending on the cohesive law considered; see Fig. 3.

• Step 4: Compute the KI SIF at the tip.

• Step 5: If KI is zero within some user defined tolerance go to Step 1. If not, update the load factor k (a

secant method is used) and go to Step 2.

Fig. 7. A zoom on the mathematical tip of a cohesive zone showing the 1D segments delimited with dots.
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Concerning the implementation of the X-FEM, at least two aspects need to be taken care of. The first

one deals with the existence of enriched nodes and the second one is the integration on elements cut by the

crack or close to the crack tip. Concerning the existence of enriched nodes, our finite element object (Cþþ
implementation) may have an arbitrary number of degrees of freedom (dof) and each dof is aware of the

nature of its shape function. The expression of the stiffness matrix at the element level is detailed in Ref.

[40]. On the elements cut by the crack, we integrate separately the stiffness matrix on each side of the crack

using a strategy introduced in Ref. [23]. On the elements close to the crack tip, a higher order quadrature

rule is used [23].

4. Numerical studies

In the numerical experiments, we consider two different concrete specimens: a three-point bending beam

in which the cohesive crack propagates in a straight line and a four-point shear bending in which the crack

path is curved.

4.1. A three-point bending specimen

Consider the beam in three-point bending shown in Fig. 8. The growth of a cohesive crack in such a

specimen has been studied extensively by Carpinteri and Colombo [41] using finite element analysis and the

node release technique. This load–deflection curve is shown in Fig. 10 for the following geometrical pa-

rameters

b ¼ 0:15 m; l ¼ 4b; t ¼ b; a ¼ 0 ð19Þ
(t is the specimen thickness) and the following material properties

E ¼ 36; 500 MPa; m ¼ 0:1; fu ¼ 3:19 MPa ð20Þ
where E is the Young’s modulus, m the Poisson’s ratio and fu the cohesive strength. The fracture energy is

GF ¼ 50 Nm�1 and the cohesive profile is linear (see Fig. 3). To eliminate rigid body motion in the x di-

rection, the point ð0; b=2Þ is allowed to move only in the y direction. Note that a ¼ 0 in the geometric

description of the problem, (Eq. (19)), indicates that there is initially no crack in the beam. As the load

increases the cohesive zone starts developing at the bottom midpoint of the beam when the cohesive

strength, fu, is reached.

Fig. 8. A three-point bending specimen.
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The load–deflection points obtained with X-FEM are shown in Fig. 10. Two different meshes, shown in

Fig. 9, are considered: a mesh matching the cohesive zone and a mesh not matching the cohesive zone. Fig.

10 also compares the influence of the choice of the branch functions (17). We observe that the X-FEM

results are consistent whether or not the mesh matches the cohesive crack path and are quite close for three

different choices of the branch function. In the remainder of this paper, only the branch function r sin h=2
will be considered. The X-FEM results are also very close to the results in Ref. [41]. Note that our nu-

merical simulation was carried out under the plane strain assumption whereas the results in Ref. [41] were

obtained under a plane stress assumption. We believe these two assumptions are close for a Poisson’s ratio

Fig. 9. A mesh matching (above) and non-matching (below) the crack path.

Fig. 10. Non-dimensional load–deflection curves for the three-point bending specimen (GF ¼ 50 Nm�1).
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of 0:1. Also, we have distributed the load over a length of d ¼ 0:01 m, (see Fig. 8), whereas a concentrated

load was considered in Ref. [41].

Fig. 11 shows another comparison between X-FEM and the numerical simulation of Carpinteri and

Colombo [41] for a sharper snap-back (the fracture energy is now GF ¼ 5 Nm�1).

We now use X-FEM to analyze the size effect phenomenon. Fig. 12 shows the non-dimensional load–

deflection curve for different brittleness number, sE

Fig. 11. Non-dimensional load–deflection curves for the three-point bending specimen (GF ¼ 5 Nm�1).

Fig. 12. Non-dimensional load–deflection curves to analyze the size effect in the three-point bending specimen.
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sE ¼ GF

fub
ð21Þ

This non-dimensional number has been introduced by Carpinteri [42] to compare the brittleness of

different specimens with the same ratio fu=E. The higher sE, the more ductile the specimen is as observed in

Fig. 12 (sE should thus better be called a ductility number as noted by Ba�zzant and Planas [1]: the smaller the

specimen, the more ductile it is). A higher sE means a smaller structure size b or a higher fracture energy GF.

Fig. 13 shows the evolution of the size of the cohesive zone (relative to the beam depth) as the mathe-

matical tip travels through the beam. The time 1.0 on the abscissa corresponds to the time at which the tip

has reached the top surface of the beam. We observe that the ductile specimens tend to develop a very long

cohesive zone (in the extreme case, sE ¼ 2:09e�2, the full extent of the beam depth) whereas the cohesive

zone is quite small for brittle specimens. At the limit of sE ! 0, the cohesive zone reduces to a ‘‘point’’ (the

crack tip) and linear fracture mechanics is recovered.

Carpinteri and Colombo [41] carried out a numerical study to determine the influence of the mesh re-

finement on the quality of the results for different brittleness number sE. They used meshes of four-node

quadrilaterals and three-node triangles. For the three-point bending problem, they found that the element

size h must satisfy Eq. (22) to obtain reasonable load–deflection curves:

h6 600wc ð22Þ

where wc if the critical opening for the linear cohesive law. We may rewrite the condition (22) as a condition

on the number of element, Nc, needed per characteristic length lch of the material:

Nc � lch=hP 10 ð23Þ

The material characteristic length is defined by

lch ¼
GFE

ð1� m2Þf 2
u

Fig. 13. Evolution of the size of the cohesive zone length as the mathematical tip travels through the beam (normalized by the depth of

the beam b).
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and is of the order of the size of the cohesive zone. Thus, in the finite element approach with node release, at

least 10 elements are needed to cover the characteristic length of the material.

We carried out a similar numerical investigation with X-FEM. An easy way to change the ratio Nc is to

work with a given mesh and vary GF. The non-dimensional load–deflection curves obtained with X-FEM

are shown in Fig. 14 for a uniform mesh (10 elements in the depth, 40 in the length of the beam) and Fig. 15

for the unstructured mesh shown in Fig. 9 (below).

Fig. 14. Non-dimensional load–deflection curves for a uniform mesh (10 elements in the depth and 40 in the length). The number of

element per characteristic length Nc is varied by modifying the fracture energy.

Fig. 15. Non-dimensional load–deflection curves for an unstructured mesh shown in Fig. 9 (below). The number of element per

characteristic length Nc ¼ lch=h is varied by modifying the fracture energy.
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In each simulation, the crack is grown by an amount da at each step where da is the characteristic el-

ement size in the mesh. The initial crack length a ¼ 0:3b and the material properties are still given by Eq.

(20). We observe that above a threshold of about two elements per characteristic length, the results are

stable. Note that the results for Nc below 0.5 are not shown because they are subjected to large oscillations.

Similar oscillations were observed by Carpinteri and Colombo [41] even for Nc in the range of 1–10, where

our method succeeded.

Fig. 16 shows the load–deflection curves obtained with different meshes (uniform and unstructured) and

a fixed fracture energy (GF ¼ 4:14 Nm�1). As in Figs. 14 and 15, a minimum of about two elements per

characteristic length is needed to obtain reliable results.

4.2. A four-point shear specimen

This numerical example is taken from Ref. [29] and shown in Fig. 17. The geometrical characteristics of

the problem are

Fig. 16. Non-dimensional load–deflection curves obtained with different meshes for a fixed fracture energy (GF ¼ 4:14 Nm�1).

Fig. 17. A four-point shear specimen.
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b ¼ 0:2 m; l ¼ 4b; a ¼ 0:2b; c=b ¼ 0:4; l1 ¼ l2 ¼ 0:02 m; t ¼ 0:10 m

where t is the specimen thickness and the material parameters are

E ¼ 28; 000 MPa; m ¼ 0:1; GF ¼ 145 Nm�1; fu ¼ 2:4 MPa

The point ðl=2;�b=2Þ is fixed in both x and y directions whereas the point ð�c=2;�b=2Þ is fixed in the y

direction. The mesh consists of about 11,000 nodes and we consider 18 steps of crack growth each of size

0.01 m. A comparison in between experimental (average) crack path and the path obtained with X-FEM is

shown in Fig. 18.

As the crack is propagating, the number of nodes enriched with the jump function rises from 24 to 130

(dof associated with the bj, Eq. (14)). On the other hand, the number of nodes enriched with the tip function

(dof of type ck), remains roughly constant (around 3).

As the cohesive crack propagates, the load–deflection curve where F1 and F2 are applied are shown in

Fig. 19. The experimental curves are taken from Ref. [29]. A very severe snap-back is observed under the

load F1.

In Fig. 20, we compare the load–deflection curves obtained with X-FEM for linear fracture mechanics

and two different cohesive law profiles: rectangular and linear. In all three cases, the fracture energy is the

same: GF ¼ 145 Nm�1. The load in Fig. 20 is the total load on the upper part of the beam F1 þ F2 whereas

the deflection is the average

ðl� l2Þd1 þ cd2

ðl� l2Þ þ c
ð24Þ

where d1 and d2 is the (average) deflection in the loading zones 1 and 2, respectively. Figs. 21 and 22 show

the cohesive crack at four different steps of the propagation.

Fig. 18. Comparison between experimental results and the X-FEM numerical simulation for the crack path.
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5. Conclusions

A method has been developed to allow smooth growth of cohesive cracks in finite elements meshes

without remeshing. The problem of finding the proper load factor for a given crack growth does not involve

Fig. 19. Load–deflection curves in the first and second loading zones for the four-point shear problem.

Fig. 20. Load–deflection curve for the four-point shear specimen considering linear fracture mechanics and two different cohesive law

profiles.
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the evaluation of the stress field at the mathematical tip of the cohesive zone. Instead we rely on energetic

considerations: the correct load factor is found by zeroing the Mode I SIF at the tip. The numerical studies

carried out for the three-point bending specimen indicate that the proposed approach (X-FEM in con-

junction with J-domain integral) is more accurate than the classical finite element approach with node

release (and stress evaluation at the tip) in the sense that fewer elements are needed per characteristic length

of the material (around two elements instead of 10 in the node release case). Also, no remeshing is required

as the crack propagates since with the X-FEM approach, the location of the crack may be arbitrary with

respect to the mesh.

Fig. 21. Extent of the cohesive crack at steps 3 and 8 of the propagation. The axis have been stretched for a better rendering.
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Fig. 22. Extent of the cohesive crack at steps 13 and 18 of the propagation. The axis have been stretched for a better rendering.
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Appendix A. Two-dimensional interaction integral for a curved loaded crack

In linear elasticity, the general form of the J-contour integral for a crack not necessarily straight and in

the presence of tractions on the crack faces is given by

J ¼
Z

C[Ccþ[Cc�

1

2
rik�ikd1j

�

� rijui;1

�

nj ds ðA:1Þ

The coordinate system is taken to be the local crack tip coordinate system with the x1 axis tangent to the

crack at the tip, see Fig. 23. The scalar nj is the j component of the outward normal to the closed contour

C [ Ccþ [ Cc� and d1j ¼ 1 if j ¼ 1 and 0 otherwise. The J integral is contour independent and measures the

strength of the singularity at the crack tip:

J ¼ K2
I

E� þ
K2

II

E� ðA:2Þ

where E� ¼ E (Young’s modulus) for plane stress and E� ¼ E=ð1� m2Þ for plane strain (m is the Poisson’s

ratio).

This contour integral may be turned into a domain integral, more suited for finite element computations

[43,44]. Defining a scalar function q which takes a value of unity on an open set containing the crack tip and

vanishes on an outer prescribed contour (C here), the contour integral (25) may be recast into the domain

integral:

J ¼
Z

A

rijui;1

�

� 1

2
rik�ikd1j

�

q; jdxþ
Z

Ccþ[Cc�

1

2
rik�ikd1j

�

� rijui;1

�

qnj ds ðA:3Þ

It is possible to use the J-integral concept to extract separately the stress intensity factors KI and KII [45].

Two states of a cracked body are considered. State 1 ðrð1Þ
ij ; �

ð1Þ
ij ; u

ð1Þ
i Þ corresponds to the present state and

State 2 ðrð2Þ
ij ; �

ð2Þ
ij ; u

ð2Þ
i Þ is an auxiliary state which will be chosen as the asymptotic fields for Mode I or Mode

II. The J-integral for the sum of the two states is

Fig. 23. Notations for the J-integral.
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J ð1þ2Þ ¼ J ð1Þ þ J ð2Þ þ I ð1;2Þ

¼ ðKð1Þ
I Þ2
E� þ ðKð1Þ

II Þ
2

E�

!

þ ðKð2Þ
I Þ2
E� þ ðKð2Þ

II Þ
2

E�

!

þ 2

E� K
ð1Þ
I K

ð2Þ
I

�

þ K
ð1Þ
II K

ð2Þ
II

�

ðA:4Þ

from which we deduce

I ð1;2Þ ¼ 2

E� ðK
ð1Þ
I K

ð2Þ
I þ K

ð1Þ
II K

ð2Þ
II Þ ðA:5Þ

where I ð1;2Þ, called the interaction integral for States 1 and 2, is given by

I ð1;2Þ ¼
Z

A

ðrð1Þ
ij u

ð2Þ
i;1 þ r

ð2Þ
ij u

ð1Þ
i;1 � r

ð1Þ
ik �

ð2Þ
ik d1jÞq; j dxþ

Z

Ccþ[Cc�

ðrð1Þ
ik �

ð2Þ
ik d1j � r

ð1Þ
ij u

ð2Þ
i;1 � r

ð2Þ
ij u

ð1Þ
i;1 Þqnj ds ðA:6Þ

Making the judicious choice of State 2 as the pure Mode I asymptotic fields with K
ð2Þ
I ¼ 1, K

ð2Þ
II ¼ 0 gives

the Mode I SIF for State 1 in terms of the interaction integral

K
ð1Þ
I ¼ 2

E� I
ð1;Mode IÞ ðA:7Þ

The mathematical proof of the contour independence of the integrals presented above assumes that the

fields r, � and u (and the auxiliary fields) satisfy exactly the equation of the problem. In practice, the finite

element solution does not satisfy these equations. The domain integral is nevertheless a robust tool to extract

the stress intensity factors. Similarly, the auxiliary field taken as the Mode I or Mode II asymptotic fields are

only approximate solution in the case of a curved crack. Accurate results are nevertheless obtained.

For the numerical evaluation of the above integral, the domain A is set from the collection of elements

about the crack tip. We first determine the characteristic length of an element touched by the crack tip and

designate this quantity as hlocal [23]. For two dimensional analysis, this quantity is calculated as the square

root of the element area. The domain A is then set to be all elements which have a node within a ball of

radius rd about the crack tip where rd is taken as 2hlocal in the numerical experiments.
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