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Abstract—In the context of satellite communications, random
access methods can significantly increase throughput and reduce
latency over the network. The recent random access methods are
based on multi-user multiple access transmission at the same time
and frequency followed by iterative interference cancellation and
decoding at the receiver. Generally, it is assumed that perfect
knowledge of the interference is available at the receiver. In
practice, the interference term has to be accurately estimated
to avoid performance degradation. Several estimation techniques
have been proposed lately in the case of superimposed signals. In
this paper, we present an overview on existing channel estima-
tion methods and we propose an improved channel estimation
technique that combines estimation using an autocorrelation
based method and the Expectation-Maximization algorithm, and
uses pilot symbol assisted modulation to further improve the
performance and achieve optimal interference cancellation.

Keywords—Satellite communication, Network coding, Channel
estimation, Expectation-maximization algorithms

I. INTRODUCTION

Recently, the use of random access (RA) methods in satel-
lite communications has been the center of attention of many
researchers. In traditionnal RA methods like Aloha [1] and
Slotted-Aloha [2], multiple users transmit their packets simul-
taneously, but the problem is that the receiver only decodes the
contents of clean packets (i.e., packets that did not experience
collision) and thus, superimposed packets are ignored by the
receiver and retransmitted by the corresponding users. To
avoid retransmission delays resulting from the large satellite
propagation time, new RA methods like CRDSA (Contention
Resolution Diversity Slotted Aloha [3]) and MuSCA (Multi-
Slot Coded Aloha [4]), have emerged as a solution to this
problem. These methods enable the receiver to decode a certain
number of packets and remove them from the frame (interfer-
ence cancellation) so that other packets become collision-free.

For instance, in CRDSA, each user sends two or three
replicas of his packet on the frame, separated by random
delays. At the receiver node, several packets corresponding to
different users can arrive at the beginning of the same time slot.
The receiver detects the time slots containing clean packets and
decodes them successfully. Then, the signals corresponding to
the decoded packets and their replicas are reconstructed and
removed from the frame.

On the other hand, MuSCA performs in a similar way but

instead of sending replicas of the same packet, each user first
encodes the content of one packet with a strong forward error
correcting (FEC) code then sends several parts of a single
code word on the frame. At the receiver node, the decoder
combines all the parts of a code word and implies them in
the decoding process. Thus, with MuSCA, the decoder is able
to retrieve information not only from clean packets but also
from packets that experienced collision, because the useful
information inside each packet is well protected by the FEC
code used.

In both RA methods, interference cancellation at the re-
ceiver requires perfect knowledge of the channel parameters
that have a noticeable effect on the packets to remove. In
reality, the receiver does not have knowledge of the channel
state information (CSI), therefore channel parameters have to
be accurately estimated. Otherwise, the interference packets
are not correctly removed and residual estimation errors are
added to the undecoded packets on the frame.

The problem to be addressed in this paper is the accurate
channel estimation for RA methods based on interference can-
cellation. The main issue is to be able to estimate the channel
parameters in the case of superimposed signals, in order to
achieve a performance as good as the perfect knowledge case.

This challenge has been tackled in some previous
publications. To estimate several channels simultaneously,
Expectation-Maximization (EM) algorithm in [5] uses known
orthogonal sequences. In [6], another approach uses an auto-
correlation based method that derives channel amplitudes and
frequency offsets from clean packets. In this paper, we propose
a channel estimation scheme that exploits the EM algorithm
and focuses on the problem of parameter initialization which
has not been taken into account in [5]. In a second contribution,
we use pilot symbol assisted modulation (PSAM) [7] to refine
frequency estimation.

The rest of this paper is organized as follows. In Section
II, we present the system model and the main assumptions
of our work. We describe prior related work in Section III.
In Section IV, we propose an improved channel estimation
scheme and we present experimental results. We conclude and
discuss future work in Section V.



1 Slotl | Slot2 | Slot3 ' Slot4 '
T
User 1 la ! 1b
User 2 2a 2b

Fig. 1: Packets transmission with collision on slot 1

II. SYSTEM MODEL

In order to illustrate the main issues raised by imperfect
channel estimation in interference cancellation based RA meth-
ods, we consider the following example (see Fig. 1). Each user
(1 and 2) sends two replicas (a and b) of the same packet on
two different time slots on the frame. We suppose that the
receiver first detects packet 1b as it is a clean packet, decodes
it correctly and removes its corresponding signal from Slot 4.
Then, using the known decoded bits of packet 1b, the signal
corresponding to packet la is reconstructed and suppressed
from Slot 1. Thus, packet 2a becomes collision free, and has
a bigger probability to be decoded successfully.

To correctly remove the signal sent by User 1 on Slot 1, the
receiver needs to estimate the channel parameters associated
with this signal. If the channel parameters are not estimated
accurately, residual estimation errors are added to the signal
of interest sent by User 2 on Slot 1 and the scheme does not
perform well.

In the following, we consider a system with two users
(User 1 and User 2) transmitting their packets to a receiver
node R during the same time slot 7'S1, over two different
channels hy and hs respectively (See Fig. 2). We suppose the
users to be synchronized at the symbol level, and we consider
an environment where phase noise is neglected. We assume
that the receiver knows the number of superimposed packets
arriving on the same time slot. The structure of the packet sent
by each user is shown in Fig. 3. Guard intervals are used to
delimit the beginning and the end of a packet. The preamble
and the postamble are unique orthogonal sequences modulated
with binary phase-shift keying (BPSK), known at the receiver
node and used for channel estimation.

The received signal, y(i), at the receiver node R during
the time slot 7'S1, after pulse shaping, and oversampling by
the sampling time T, = T,/Q, is given by

2 Ly—1
y(i) =Y hi(i) Y an(n)g(iTe —nTy) + w(i) (1)
k=1 n=0

where:

e i=01,..,QL,—1and n = 0,1,...,L, — 1 are
used to refer to T,.-spaced and 7Ty-spaced samples
respectively;

e x;(n) refers to the n'" symbol sent by user k;
e L, is the length in symbols of the entire packet;
e T is the symbol duration;

e () is the oversampling factor of the root raised cosine
filter;
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Fig. 2: Transmitting scenario
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Fig. 3: Packet strucuture with preamble and postamble

e ¢ stands for the root raised cosine pulse function
(shaping filter);

e w is a complex additive white Gaussian noise
(AWGN) process;

We assume a block fading channel model with unknown
channel parameters. The channel coefficient (i) having an
effect on the signal sent by user k£ is modeled as given in [5]

hy(i) = Akej(27"AfkiTc+<Pk) )
where:

e Aj is alognormally distributed random variable mod-
eling the channel amplitude of user k, assumed to
remain constant over the frame duration;

e Afy is the frequency offset of the signal sent by user
k, assumed constant over the frame duration. A fy is
uniformly distributed in [0, A fy,q2] With A fr,4. equal
to 1% of the symbol rate 1/7;

e ( is the phase shift of the signal sent by user k.
It is assumed to remain constant over a duration
of one time slot. ¢ is a random variable drawn
independantly from one slot to another from a uniform
distribution in [0, 27];

Due to prior decoding, we suppose that R already knows
the interference symbols x1(n), sent by User 1, and needs to
demodulate and decode the signal sent by User 2. Therefore,
R needs to compute the channel estimates h; and hs, then
suppress the signal corresponding to User 1 from y in order
to obtain the discrete signal so as given below

L,—1
s2(i) = ha(i) Y @2(n)g(iT. — nTy)
n=0
L,—1
+ (ha(i) = ha(i)) Y 1(n)g(iTe — nTy)
n=0
L,—1
+ (ha(i) — ha(i)) Y @a(n)g(iTe — nTy) +w(i) (3)
n=0



In presence of residual channel estimation errors, the signal s
is matched filtered and sampled with the sampling period 7%,
and the resulting estimated symbols so(nT}) are given by

s2(nTy) = ha(nTy)za(n) + (h1 (nT}) — hT(nTS)) 21 (n)
+ (h2 (nT}) — hAz(nTs)) zao(n) +wlnly) @)

Finally, the estimated sequence ss is demodulated and decoded
and its corresponding signal is suppressed from the frame.

III. PRIOR RELATED WORK

In this section, we present existing channel estimation
methods that might be relevant to solve the problem addressed
in this paper.

A. EM estimation

The EM algorithm [8] is a two-step iterative estimation
method that has been proposed in [5] to perform channel
estimation in case of superimposed signals. In a first step called
“Expectation” (E step), the preamble part is extracted from
the received signal. Then for each user k, vector py, is derived
as the preamble of user k (prey) multiplied by its estimated
channel coefficient hy(n) (of previous iteration) and added to
an arbitrary chosen percentage [ of the difference between
the received preamble part () and the reconstructed preambles
of both users 1 and 2, as shown below

At the m'" iteration,
5™ (n) = preg(n)hu ()"
K
+ B |r(n) — Zprel(n)hl(n)(’”_l) (5)
=1
where n refers to the index of the preamble.
In a second step called “Maximization” (M step), the mean
square error (MSE) between each user’s component p;, derived

at the E step and a symbol sequence reconstructed using
channel parameters to estimate, is minimized as follows

Lpre—1 )
S |prex(m ™ (n) - AeICrAI T

n=0
(6)
where A’, Af’ and ¢’ are tentative values of the channel
parameters to be estimated.

min
AN !

However, with the experimental assumptions considered
in our work, the approach used in [5] has the following
weaknesses:

e In [5], only preambles at the beginning of each packet
are used in the estimation algorithm. However, using
grouped training symbols only at the beginning of
a packet, makes it difficult to estimate the variable
parameters such as the phase of the signal;

e  Channel parameters are initialized randomly in [5] at
the iteration m = (. Nevertheless, random initializa-
tion of EM has been proved to be inaccurate in [9], and
to affect on the correctness of the estimated values;

B. Estimation using autocorrelation

Casini et al. use the method of autocorrelation to estimate
channel parameters in [6]. However, Af is chosen so small
that it induces negligible phase variation during a time slot.
Moreover, [6] takes advantage of clean packets in CRDSA to
get a good estimation of A and A f. Difficulties arise, however,
in other random access methods like MuSCA, where finding
clean packets in the frame is a rare situation. Note that [6]
presents a system adapted to an environment affected by high
phase noise.

IV. ESTIMATION COMBINING EM AND
AUTOCORRELATION

In order to take advantage of the effect of the channel on
the transmitted packets at the beginning and the end of a time
slot, we find it reasonable to apply the EM algorithm not only
on the preamble symbols, as in [5], but also on the postamble
symbols. In the case of K colliding packets, EM equations for
the m!" iteration are:

E step
for k=1 ... K:

ﬁc(m) (n> = bk (n)A\k(m) ej(Qﬂ'm (m)TS"‘F@(m))

K
—(m . ~ 7 (m) —(m
+ By r(n) _E :bl(n)Al( )ea(%Afz Ton+31™)
=1

)

where:

e ;. is the estimated preamble concatenated with the
estimated postamble of user k;

e n refers to the indexes of the preamble and postamble
symbols;

e by is a vector containing BPSK symbols corresponding
to the preamble concatenated with the postamble of
user k;

e 1 contains the preamble and the postamble parts of
the discrete signal obtained after matched filtering and
sampling of the received signal y;

e [ is a coefficient arbitrarily set to 0.8, for

k= 1,...,K;

For each iteration m > 0 of the E step, the values of the

channel coefficients A(™), 5}’ ) and 3™ are equal to the
ones obtained at the previous iteration (m — 1) of the M step.
In [5], at the first iteration m = 0, the initial values of these
parameters are chosen randomly. According to [9], random
initialization of the channel coefficients in the EM algorithm
is not efficient and can lead to undesired results. Therefore,
to solve this problem and to speed up the convergence of the
EM algorithm, we compute estimates of A and 3 with
the autocorrelation method (Equations (8) and (9)) and we use
them as initial values at the first iteration of the E step.



Initialization by autocorrelation

— (0
The initial estimated amplitude of the channel Ak( ) cor-
responding to user k is derived as follows

Lpre+Lpose—1

;1;(0) _ Z

n=0

Tpre/post(n) X bk(n)
Lpre + Lpost

(0)

()

and the initial estimated phase offset oy~ is calculated as

shown below

@(0) = arg(rpre/post X b{) 9)

where:

®  Tpre/post 1S @ Vector containing the received symbols
of the preambles and postambles;

° bg denotes the transpose of vector bg;

e X refers to the vector multiplication operator;

M step
for k=1,... K:

min
ALAf e

T

. 7 ’ 2
3 b () — Al AT T T 10y
n=1

where:

e A, Af' and ¢’ are tentative values of the channel
parameters to be estimated;

e T is the vector of preamble and postamble indexes, as
T = {Lguard + 17 RN Lguard +Lprea Lguard +Lpre +
Lpay +1,..., Lguard + Lpre + Laata + LpOSt};

We evaluate the performance of the previously mentioned
estimation techniques, by computing the packet error rate
(PER) after demodulating and decoding the discrete signal s5.
Without loss of generality, we assume the channel gain of user
k (k=1,..., K), Ay normalized to one. We use as preambles
and postambles Walsh-Hadamard words of length 80 and
48 symbols respectively. The number of iterations needed to
achieve convergence of the results of the EM algorithm is
three.

Fig. 4 shows the PER achieved with different estima-
tion methods. The payload data is encoded with a CCSDS
(Consultative Committee for Space Data Systems [10]) turbo
code of rate 1/2, provided by the CML (Coded Modulation
Library [11]). The resulting codeword has a length equal to
460 symbols modulated with quadrature phase-shift keying
(QPSK). Note that only for estimation by autocorrelation,
Af is supposed to have a value between 0 and 10~%(1/T}),
because a larger value of the frequency offset results in
a huge increase of the PER. Recall that, as explained in
Section II, Af varies between 0 and 1072(1/Ty) for the
other curves. We can observe on the graph that for the same
Es/Ny ratio, channel estimation using EM combined with
autocorrelation gives lower PER than all the other estimation
techniques. However, degradation compared to perfect channel
state information (CSI) starts increasing at E,/Ny = 1.6 dB
and the PER value is around 1072 which is very limited
for a satellite system. Simulations done for this estimation

PER
=

Perfect CSI ——
107} EM and autocorrelation -
Autocorrelation (Af < 10™4/T) =
EM with random initialization --=--

0 05 i 15 2 25
E4/N, (dB)
Fig. 4: PER vs E, /Ny after interference cancellation and chan-

nel estimation using EM, autocorrelation, and EM combined
with autocorrelation

T

P(1) P(p)

| | b+

Post.

Fig. 5: Packet structure with PSAM

method with the assumption of Af = 0 prove that the error

on the estimated frequency offset Af is the main cause of
performance degradation.

A. Estimation using pilot symbol assisted modulation

To refine the estimation of Af, we use pilot symbol
assisted modulation (PSAM [7]). PSAM relies on the insertion
of orthogonal data blocks called pilots inside the payload data
sequence (see Fig. 5). Like the preamble and the postamble,
pilots are Walsh-Hadamard words modulated with BPSK.

Vector T in Equation (10) becomes: 7' = {L,+1, ...,
Lypres Lg+Lpre +M+1,...,Lg+Lpre + M+ L,...,
Lye+PM+(P—-1)L+1,...,Ly+Lye+P(M+L),
Lyve +(P+1)M+PL+1,...,Lg+ Lpye + (P+1)
PL + Lyost }-

With PSAM, we are able to estimate the initial value of
Af for the EM algorithm as follows

AFO _ fa(k) — fi(k)

Ly+
L+
L,+
M +

k™ om(L+ M)’ an
fl(k) = arg(rpre . Spre(k)T) (12)
fa(k) = arg(rpy - sp1(k)") (13)

where 7 p; is the first pilot block of the received packet, s, (k)
and spq (k) are the transpose vectors of the preamble of user &
and the first pilot block of user k, respectively. The DVB-RCS2
standard [12] allows to use a burst configuration with pilot
blocks inside the frame. However, for ease of simplification,
we choose a frame structure not exactly similar to the one
described in the DVB-RCS2 guidelines [13] for CRDSA
implementation. We uniformly distribute 9 pilot blocks inside
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Fig. 6: PER vs F /N, after interference cancellation and
channel estimation using EM combined with autocorrelation
and PSAM

the packet, each of length equal to 12 symbols. We reduce
the preamble and postamble lengths to 40 and 12 symbols,
respectively. It is evident that a training sequence (preamble,
postamble or pilot) of limited length is able to cope a limited
number of distinct users. Therefore, there is a chance that
different users of the random access channel can have the same
training sequences. However, we suppose that the probability
to have the same training symbols for users colliding on
the same time slot, is very low. Note that, PSAM induces
a slight loss in the useful information rate compared to a
packet structure with only a preamble and a postamble. The
information rate loss is

Spsam — S
S

where Spgaps is the packet size with pilot symbols and S
is the packet size without the pilots. With our parameters, the
loss is equal to 5%. The curve in Fig. 6 corresponding to chan-
nel estimation using EM combined with autocorrelation and
PSAM shows that the performance in presence of estimation
errors is improved and the degradation of E/Ny compared to
perfect CSI is around 0.1 dB.

Loss =

(14)

V. CONCLUSION AND FUTURE WORK

In this paper, we have investigated existing channel es-
timation techniques used in recent random access methods.
With the assumptions we have made, prior studies in [6]
and [5] still suffer from some limitations. We have proposed
an improved channel estimation scheme that combines EM
algorithm with autocorrelation estimation and pilot symbol
assisted modulation. A brief comparison between the different
estimation methods we have presented as well as the estimation
scheme we have proposed is shown in Table I. Our work
evaluated the effect of channel estimation errors in the case
of just two superimposed packets.

Future work should consider the case of collision of several
packets on the same time slot. Furthermore, it should take into
account imperfect symbol synchronization, phase noise impact
and possible reduction of the computational complexity.

Autocorrelation Degradation in dB at
(6] EM [5] PSAM PER — 10-3
v > 0.5 dB with
Af ~1074(1/Ty)
> 0.5 dB with
v v Af ~ 1072(1/T)
< 0.2 dB with
v v v Af ~1072(1/Ts)

TABLE I: Performance degradation in dB for different channel
estimation techniques
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