
HAL Id: hal-01461712
https://hal.science/hal-01461712

Submitted on 8 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensemble weight enumerators for protographs: A proof
of Abu Surra’s conjecture and a continuous relaxation

for a faster enumeration
Tarik Benaddi, Charly Poulliat, Marie-Laure Boucheret, Benjamin Gadat,

Guy Lesthievent

To cite this version:
Tarik Benaddi, Charly Poulliat, Marie-Laure Boucheret, Benjamin Gadat, Guy Lesthievent. Ensemble
weight enumerators for protographs: A proof of Abu Surra’s conjecture and a continuous relaxation
for a faster enumeration. IEEE International Symposium on Information Theory (ISIT 2015), Jun
2015, Hong Kong, Hong Kong SAR China. pp. 2889-2893. �hal-01461712�

https://hal.science/hal-01461712
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17191

The contribution was presented at ISIT 2015:
http://www.isit2015.org/

To cite this version : Benaddi, Tarik and Poulliat, Charly and Boucheret, Marie-
Laure and Gadat, Benjamin and Lesthievent, Guy Ensemble weight enumerators for
protographs: A proof of Abu Surra's conjecture and a continuous relaxation for a
faster enumeration. (2015) In: IEEE International Symposium on Information
Theory (ISIT 2015), 14 June 2015 - 19 June 2015 (Hong Kong).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Ensemble weight enumerators for protographs: a

proof of Abu Surra’s conjecture and a continuous

relaxation for a faster enumeration

Tarik Benaddi∗†‡, Charly Poulliat†‡,

Marie-Laure Boucheret †‡, Benjamin Gadat§ and Guy Lesthievent∗

∗CNES †University of Toulouse, ENSEEIHT/IRIT ‡TéSA - Toulouse §Thales Alenia Space

Abstract—In this paper, we provide a proof for the conjec-
ture made by Abu Surra et al. [1] to simplify the computation
of ensemble input output weight enumerators for protograph-
based low density parity check (LDPC) codes. Furthermore, we
propose a new method to compute more efficiently the ensemble
weight enumerator. This approach can be applied particularly
to lighten the computations for high rate codes, generalized
LDPC codes or spatially coupled LDPC codes.

I. INTRODUCTION

Low density parity check (LDPC) codes are known to
achieve very good performance both in the waterfall and the
error floor region. In order to predict the performance in the
error floor region, one can evaluate the average codeword
weight enumerators: good code ensembles are those which
have a minimum distance that grows linearly with the code
length. Inspired from concatenated schemes [2], the deriva-
tion of the ensemble weight enumerators for protograph-
based LDPC codes are well explained [3], [4]. However,
the simulations become quickly unfeasible when dealing
with large code lengths. The bottleneck is the evaluation of
the check node enumerators, especially for high rate codes
(highly connected check nodes) and for generalized check
nodes. In order to alleviate the computations, [1] proposed
a conjecture based on the edge types. In this paper, we
intend to provide a proof of the Abu Surra’s conjecture.
Additionally, we introduce a new method that computes
more efficiently the enumerator of the check nodes. Based on
a continuous relaxation optimization, this method gives very
accurate results and reduces greatly the complexity even for
very large code lengths or large degree check nodes.

This paper is organized as follows: after the introduction
of the main notations and a review of the propograph code
ensemble weight enumerators in Section II, we provide
the proof of the Abu Surra’s conjecture in Section III. In
Section IV, we introduce our new method for evaluating
the check node ensemble weight enumerators. Finally, some
numerical results are presented in Section V.

II. PROTOGRAPH ENSEMBLE WEIGHT ENUMERATORS

A. Notations

A protograph [5] is a relatively small bipartite graph
described by the tuple (V,C,E). The set of variable nodes
V (of cardinality nv) is connected to the set of check nodes
C (of cardinality nc) through edges in E (the set of edges
with cardinality |E|). The protograph is usually described
by its protomatrix B where B(j, i) ≥ 0 is the number
of connections between the variable node (VN) vi and the
check node (CN) cj .

Let qvi
(qcj) be the degree of the VN vi (resp. CN cj).

The corresponding protograph based LDPC code is con-
structed by ”copy-and-permute” operations [5]: it consists of

Fig. 1: The ’vectorized’ protograph ldpc code generated by ”copy-and-
permute” operations. Each interleaver πi|1≤i≤5 permutes the bundle of the
N replicas of each edge.

Fig. 2: Main notations considered for VNs and CNs

making a certain number of copies of the protograph, say N
times, and merging them by permuting the endpoints of each
edge copies. Figure 1 depicts the ’vectorized’ protograph
code associated with the following base matrix:

B =

(
2 1
1 1

)

Let Ωt (reps. Ωp) denote the set of transmitted (resp.
punctured) VNs of cardinality nt (resp. np). The set operator
|.| returns the number of elements of an ensemble, the matrix
operator .T denotes the transposition and the vector function
‖.‖1 (resp. ‖.‖2) is the L1 (resp. L2) norm.

The overall input weight vector is denoted by d = [di]i:
i.e., to each VN vi, we associate its input weight di (0 ≤
di ≤ N) and output weight vector wi = [wi,1, . . . , wi,qvi

]T .

For CNs, we denote by wj = [wj,1, . . . , wj,qcj
]T the input

weight vector of a CN cj ,and a fictitious edge output with
weight 0. Observe that wj is directly deduced from d and
the graph connectivity, i.e. wi,k = wj,l if B(l, k) 6= 0. Also,
note that each component of the vector wj is equal to a
component di of the vector d if vi is a neighbor of cj for
some i.

Figure 2 summarizes the main notations. In the follow-
ing, for ease of notations, we omit the subscripts i and j
as long as it is clear from the context that we refer to an
arbitrary VN or CN.

B. Weight enumerators

To derive the expression of the ensemble weight enumer-
ator of protograph-based LDPC codes, we consider that the
size-N interleavers {πe}1≤e≤|E| are uniform. Hence, based
on the result for serially concatenated codes [2], the average

weight enumerator can be obtained when we reinterpret the
protograph LDPC code as a serial concatenation of VNs
constituent codes and CNs constituent codes. It is shown in
[1] that the average number of codewords of weight-vector
d = [di]i is written as:

A(d) =

∏nc

j=1
Acj (wj)

∏nv

i=1

(
N
di

)qvi−1
(1)

where Acj (wj) denotes the input weight-vector-wj enumer-
ator for the cj constituent CN code. Writing Eq. (1) in the
log-domain gives:

logA(d) =

nc∑

j=1

logAcj (wj)−

nv∑

i=1

(qvi
− 1) log

(
N

di

)

(2)

For sufficiently large N , using Stirling’s approximation
and denoting δi = di/N , we get:

log

(
N

di

)

≈ N.H(δi) (3)

where H(.) is the binary entropy function.

In order to derive the expression of acj (wj), [6] derived
the explicit expression of acj (wj) when qcj = 3. For higher
degree CNs, one can perform a check splitting operation to
write acj (wj) as the maximization over qcj − 3 variables of
the sum of qcj − 2 degree-3 constituent CNs code weight
enumerators [6, Eq. 14]. For highly connected CNs or
for generalized CNs, this method introduces many dummy
VNs and the maximization becomes complex. Therefore, [1]
proposed a more efficient method for generalized CNs.

Consider a degree-qc constituent CN code c. We want to
compute Ac(w) where w = {w1, ..., wqc}

T . We have:

Ac(w) =
∑

{C}

C(N ;C) (4)

where {C } is the family of sets C , each contains N valid
codewords of the CN constituent code c, such that the ith

component, ∀i ∈ ❏1, qc❑, of all these codewords constitute a
partition of the input weight wi. C(N ;C) is the number of
distinct permutations of the elements in C .

Let M c be the qc ×K matrix formed by the codewords
of the CN c, denoted {C1, . . . , CK}, as its columns (K =
2qc−1). Equation (4) can be rewritten as:

Ac(w) =
∑

{n}

C(N ;n) (5)

where {n} = {(n1, . . . , nK)}T is the set of solutions of

w = M c.n such that ni ≥ 0 and
∑K

i=1
ni = N . C(N ;n)

is the multinomial coefficient [7].

Rewriting Ac(w) in the logarithm domain gives:

log (Ac(w)) = log




∑

{n}

C(N ;n)





= max
{n}

∗

(

logC(N ;n)

)

(6)

where the pairwise max ∗ operator is defined as
max ∗(x, y) = max(x, y) + log (1 + e−|x−y|).

As the number of combinations C(N ;n) can be very
large, Eq. (6) can be approximated by:

log (Ac(w)) = max
{n}

(

logC(N ;n)

)

(7)

inducing an error of at most maxx,y log (1 + e−|x−y|) =
log 2.

Lemma 1: For sufficiently large N :

logC(N ;n) ≈ N.H(
n1

N
, . . . ,

nK

N
)

where H(.) is the multivariate entropy function.

Inserting Lemma 1 in Eq. (7) gives:

log (Ac(w)) = N max
{n}

(

H(
n1

N
, . . . ,

nK

N
)

)

Thus, the generic enumerator of the constituent CN code
c with the N -normalized input weight vector δ = w

N can be
written as

a
c (δ) = lim sup

N→∞

log (Ac(w))

N
≈ max

{p}

(

H(p1, . . . , pK)

)

(8)

under the constraints ‖p‖1 = 1 and δ = M c.p, where p =
{pi}i and pi =

ni

N .

III. A PROOF OF ABU SURRA’S CONJECTURE

The average number of the protograph’s codewords of
weight d is given by

Ad =
∑

{di/vi∈Ωt}

∑

{dk/vk∈Ωp}

A(d)

where
∑

di/vi∈Ωt
di = d. Let n be the number of transmitted

VNs in the code (i.e. nt.N). The n-normalized logarithmic
asymptotic weight enumerator can be then written as [1]:

r

(
d

n

)

=
1

nt
r̃(δ)

where δ = d/N and

r̃(δ) = lim sup
N→+∞

Ad

N

= max
δt:vt∈Ωt

max
δp:vp∈Ωp

{

nc
∑

j=1

a
c
j(δj)−

nv
∑

i=1

(qvi − 1)H(δi)

}

(9)

The computation complexity of r̃(δ) is limited by the
complexity of spanning all partitions of size nt of the
weight d, combined with all possible input weights of the
punctured VNs. To alleviate this difficulty, [1] proposed the
following steps: the protograph’s VNs are partitioned into
subsets according to their types. Two VNs are of the same
type when their neighborhoods are identical, in other words,
if one switches the input weights between the VNs of the
same type, the resulting input weight vector forms a valid
codeword and no difference is noticed from all CNs point of
view. By labeling each edge of the protograph by its adjacent
VN type, each CN’s adjacent edge can be labeled with its
weight and its type. The subset-weight vector (SWV) of a
CN codeword is defined as the vector whose entries are the
weights of bit subsets of the CN codeword.

[1] conjectured that ”in the maximization of Eq. (8), the
optimal point occurs when codewords of equal SWV have
the same proportion of occurence”. This is equivalent to
say that the maximum is reached when edges that belongs
to the same type carry the same weight. In general, this is
not always possible since the total weight carried by the
edges of the same type is not necessarily a multiple of the
number of edges of this type. In the following we will prove
the generalized form of this conjecture:

Theorem 1: The maximization of Eq. (8) occurs
when the weights number of occurrences {pi}i of the
check node codewords, that belongs to the same VNs
type composition are as uniform as possible.

A. Proof when CN has 3 edges of the same type

Without loss of generality, let us consider a degree-qc
CN where 3 edges, α < β < γ are of the same type.
The corresponding N -normalized input weight vector is
δ = (δ1 . . . δα . . . δβ . . . δγ . . . δqc)

T such that δα, δβ and δγ
are not all equal.

A triplet (f1, f2, f3), of total weight s = Nf1 +Nf2 +
Nf3 is called as as-uniform-as-possible (AUAP) if a permu-
tation of (Nf1, Nf2, Nf3) has the form:







(k, k, k) if s = 3k

(k, k, k + 1) if s = 3k + 1

(k + 1, k + 1, k) if s = 3k + 2

(10)

N.B.: In the asymptotic case, i.e. as N goes to infinity,
the weights will be equal (dealing with normalized weights
k/N asymptotically equals (k + 1)/N , when N goes to
infinity), as-uniform-as-possible could then be substituted
simply with uniform.

Since M c is not necessarily unimodular [8], M c.p = δ
does exist only for some δ.

Definition 1: δ is called admissible if M c.p = δ admits
a solution .

Theorem 2: If δ is admissible, then the related
AUAP version δ∗ is also admissible

Proof: By circular permutation of the weights
δα, δβ and δγ , we form the following vectors:

δT1 = (δ1 . . . δα . . . δβ . . . δγ . . . δqc)

δT2 = (δ1 . . . δγ . . . δα . . . δβ . . . δqc)

δT3 = (δ1 . . . δβ . . . δγ . . . δα . . . δqc)

Because of the symmetry of VNs of the same type, it is
clear that δT1 , δ

T
2 and δT3 are also valid CN input weight-

vector (see introduction of Section III). Let p1,p2 and p3

be solutions of the equality contraint of Eq. (8) such that :

M c.p1 = δ1 (11)

M c.p2 = δ2 (12)

M c.p3 = δ3 (13)

‖p1‖1 = ‖p2‖1 = ‖p3‖1 = 1

Let us find three variables a, b and c such that aδ1 +
bδ2 + cδ3 is AUAP wih respect to δα, δβ and δγ . To this
end, we have to solve the system:

(
δα δγ δβ
δβ δα δγ
δγ δβ δα

)

︸ ︷︷ ︸

∆

(
a
b
c

)

=

(
f1
f2
f3

)

(14)

Lemma 2: ∆ is invertible ∀(δα, δβ , δγ)

Proof: The determinant of ∆ is:

|∆| =
1

2
(δα + δβ + δγ)

(

(δα − δβ)
2 + (δα − δγ)

2 + (δβ − δγ)
2
)

6= 0 (δα, δβ and δγ are not all null by definition)

The determinant of Eq. (14) is not null, it exists then a
unique solution (a, b, c).

Lemma 3: (a, b, c) ∈ [0, 1]3 and a+ b+ c = 1

Proof: • By summing the three equations of the system
Eq. (14), we obtain:

(δα + δβ + δγ)(a+ b+ c) = f1 + f2 + f3

Since f1 + f2 + f3 = δα + δβ + δγ 6= 0, then a+ b+ c = 1.

• Since |∆| > 0, by Cramer’s rule we have a =
|∆a|/|∆|, where ∆a is formed by replacing the first column
of ∆ by (f1, f2, f3)

T . By studying the sign of |∆a| in the
cases depicted in Eq. (10), one can show that a > 0. Similar
result can be shown for b and c.

So far, we have shown that a, b and c are positive and
a+ b+ c = 1, which lead to (a, b, c) ∈ [0, 1]3.

Summing Eqs. (11) to (13) weighted by (a, b, c) gives:

M c.(ap1 + bp2 + cp3) = aδ1 + bδ2 + cδ3

= (δ1 . . . f1 . . . f2 . . . f3 . . . δqc)
T

(15)

, δ∗

From Lemma 3, we get p∗ , ap1+ bp2+ cp3 ∈ [0, 1]K

and by construction:
∑

i:vi∈Ωt

δ
∗(i) =

∑

i:vi∈Ωt

δ1(i) =
∑

i:vi∈Ωt

δ2(i) =
∑

i:vi∈Ωt

δ3(i) = δ

i.e δ∗ is within the same search space in Eq. (9) as δ1, δ2
and δ3.

Theorem 3: H(p1) = H(p2) = H(p3) and
H(p∗) ≥ H(p1)

Proof: Recall M c = (C1, . . . CK) where {Ci}i are all
CN codewords. Let Lj be the jth row of the qc rows of
M c. Substituting the rows of Eq. (12) gives:

M
c
.p2 = δ2 ⇒





































L1

...
Lα

...
Lβ

...
Lγ

...
Lqc





































.p2 =





































δ1
...
δγ
...
δα
...
δβ
...

δqc





































⇒





































L1

...
Lβ

...
Lγ

...
Lα

...
Lqc





































.p2 =





































δ1
...
δα
...
δβ
...
δγ
...

δqc





































(16)

Concerning single parity check codes, notice that the neces-
sary and sufficient condition of any CN codeword Ci is that
it must have an even number of ′1′s. Permuting the rows

of M c clearly preserves the number of ′1′s in each column
(for general parity check nodes, particular attention must be
given to the form of the matrix M c and to the potential
edges of the same type). Hence, the most left hand matrix
in Eq. (16) is just a column-wise permuted version of M c.
It exists then a permutation matrix Π2 such that:

(L1 . . . Lβ . . . Lγ . . . Lα . . . Lqc)
T
= M c.Π2

Consequently, Eq. (16) becomes:

M c.Π2.p2 = δ1

By definition of p1 and the symmetry of the entropy
function:

H(p1) ≥ H(Π2p2) = H(p2)

Similarly, we can show that H(p2) ≥ H(p1). This leads to
H(p1) = H(p2). Same conclusion can be drawn for p3.
Consequently:

H(p1) = H(p2) = H(p3)

Using Lemma 3 and the concavity of H , Jensen’s in-
equality gives:

H(p∗) = H(ap1 + bp2 + cp3)

≥ aH(p1) + bH(p2) + cH(p3)

≥ (a+ b+ c)H(p1)

≥ H(p1)

To summarize, for a fixed δ, from an admissible input-
weight vector δ, we built an admissible input-weigth vector
δ∗ which is AUAP such that ac(δ∗) ≥ ac(δ). Therefore,
solutions of the maximization in Eq. (9) belongs to the set
of AUAP δ weight-vectors. Theorem 1 and the conjecture
in [1] are hence proved. Q.E.D.

N.B.:A similar proof, with great simplifications, can be
made for CN with only 2 edges of the same type.

B. CN has more than three edges of the same type

As in the previous section, let us consider the normal-
ized CN input-weight vector δ = (δi)

T
i . In this case, the

corresponding vector δ∗ = (ζ1, ...ζn) is said to be AUAP
when the weights of all the edges that belong to the same
type, i.e. a subset of {ζi}i, are as uniformly distributed as
possible.

Consider first the particular case when the CN has 4
edges of the same type. ∆ in Eq. (14) is a size-4 right-hand
circulant matrix. Consider its associated polynomial [9]:

f(x) = δα + δβx+ δγx
2 + δκx

3

It follows that the 4 eigenvalues of ∆ are given by [9]:

λ1 = f(1), λ2 = f(z), λ3 = f(z2), λ4 = f(z3)

where z = exp(2πi
4
) is the 4-th root of unity and i the

imaginary unit. We have:

λ2 = f(z) = (δα − δγ) + i(δβ − δκ)

If δα = δγ and δβ = δκ, then λ2 = 0, therefore, ∆

is not invertible. Consequently the previous proof cannot be
applied. A strategy to generalize our approach when more
than 3 edges of the same type exist is as follows:

1) Pick the first leftmost edge, say edge i, whose
weight δi is different from its AUAP value ζi.

2) Select two adequate edges j and k within the same
type such that: δi + δj + δk ≥ ζi.

3) Give to δi its final value ζi by putting f1 = ζi.
4) Form the new vector δ, where δi = ζi, and its

corresponding p.
5) Go back to step 1 if δ 6= δ∗.

At the end, we obtain the configuration δ∗ and its corre-
sponding p∗ that maximizes H .

IV. EFFICIENT COMPUTATION OF r̃(δ) THROUGH

COUNTINUOUS RELAXATION

In order to solve Eq. (8), [7] enumerates all the solutions
of the equality M c.p = δ where N.pi ∈ N. Even if
some reduction of the search space can be made (cf. [7,
Appendix A]), Theorem 1 does not simplify necessarily the
computation of Eq. (8) for protographs where not much VNs
can be gathered as belonging to the same type. If besides
that, we have a generalized or a highly connected CN,
the computation of Eq. (8) becomes very complex. More-
over, for convolutional LDPC codes [10], this simplification
cannot be applied since the VNs belongs to different time
instants [11].

A. Continuous relaxation

The constituent CN c weight vector enumerator in Eq. (8)
is computed by solving the following optimization:

maximize
x

H(x)

subject to: M c.x = δ

K∑

i=0

xi = 1

xi ∈ {
k

N
/k ∈ ❏0, N❑}, ∀i ∈ ❏1,K❑

By putting together the equality constraints, which de-
fines M ′c.x = b, and noting L = { k

N /k ∈ ❏0, N❑}, we
get the following discrete optimization programming:

maximize
x

H(x)

subject to: M ′c.x = b (17)

x ∈ L
K

Eq. (17) is a concave but nonlinear discrete optimization
with equality constraints. To our knowledge, no method
is given to solve efficiently this kind of problems. Conse-
quently, we have to enumerate all possible solutions in the
search space, which grows in exponential time with the CN
degree qc and polynomial time with the lifting factor N .

By relaxing Eq. (17), let us consider the following
concave nonlinear continuous programming:

maximize
x

H(y)

subject to: M ′c.y = b (18)

y ∈ [0, 1]K

Eq. (18) can be solved easily and efficiently with differ-
ent well-known optimization methods [12], even for large
values of K. Moreover, the solution, when it exists, is
optimal.

Theorem 4: Given a solution of Eq. (18), one can
construct a solution in L K of Eq. (17) given any
arbitrary small penalty ε on the maximum value of

H(x) and the constraint equality in Eq. (17).

Proof: It is easy to show that L K is dense in [0, 1]K ,
in other words, for any element y in [0, 1]K , we can form a

sequence with elements xN in L K such that xN
‖.‖2

−→
N→∞

y.

As an example, one can take xN = (⌊Nyi⌋
N)1≤i≤K .

Let yopt = (yopti)1≤i≤K be the solution of Eq. (18) and

x
opt
N the sequence of elements in L K that tends to yopt.

Using the formal definition of the limit and the continuity
of the entropy function H , we have, ∀ε ≥ 0:

∃N1 ∈ N, ∀N ≥ N1, ‖x
opt
N − yopt‖2 ≤ ε

∃N2 ∈ N, ∀N ≥ N2, |H(xopt
N)−H(yopt)| ≤ ε

∃N3 ∈ N, ∀N ≥ N3, ‖M
′c.xopt

N − b‖2 ≤ ε

Taking N0 = max (N1, N2, N3), we get:

∀ε ≥ 0, ∃N0 ∈N, ∀N ≥ N0,






‖xopt
N − yopt‖2 ≤ ε

|H(xopt
N)−H(yopt)| ≤ ε

‖M ′c.xopt
N − b‖2 ≤ ε

Consequently, x
opt
N ∈ L K is a solution to the optimiza-

tion in Eq. (17) that satisfies both the maximization of H
and the equality constraints for an arbitrarily small correction
term ε as N → ∞.

B. On numerical implementations

To solve Eq. (18), we can apply different iterative opti-
mization methods such as internal point (IP) or sequential
quadratic programming (SQP) [12]. For this king of algo-
rithms, we need to provide an initial guess, denoted y0, that
satisfies the constraints (here M ′c.y = b), and is within the
feasible region (here, [0, 1]K).

First, let us put aside the feasible region and try to find
at least one solution in the following affine space:

M ′c.y = b

One can compute the Moore−Penrose pseudoinverse [13]
(not necessarily unique) of M ′c, denoted M ′c+. Hence,
y0 = M ′c+b.

In Eq. (17), since M ′c is not necessarily unimodular
[14], M ′c.x = b does not have a solution ∀b, i.e. for
any value of the CN input-weight vector w. When it is not
possible, it means that C is an empty set and no codeword
of the protograph with such Hamming weight exists.

When the system is solvable, Moore−Penrose pseudoin-
verse does not provide necessarily a solution that remains
within the domain of the multivariate entropy function H ,
(some entries of y0 may be < 0 or > 1). We can solve this
problem by considering an adequate analytic continuation of
H . Since H is concave, it has one global maximum, then
substituting in Eq. (18) H(.) with any analytic continuation
H∗(.) which does not induce local maxima in the regions
] −∞, 0] and [1, +∞[is transparent for the optimization
routines.

V. NUMERICAL RESULTS

Figure 3 gives the asymptotic codeword weight enumera-
tor for different regular LDPC codes and their corresponding
dmin. The numerical results are obtained using N = 105.

0 0.04 0.08 0.12 0.16 0.2 0.24

−0.1

0

0.1

0.2
(3,4), dmin=0.112

(3,5), dmin=0.045

(3,6), dmin=0.023

(3,7), dmin=0.013

(4,5), dmin=0.21

(4,6), dmin=0.128

(5,6), dmin=0.254

(5,8), dmin=0.134

Fig. 3: Asymptotic weight enumerators for different protograph codes

VI. CONCLUSION

In this paper, we provided a proof of Abu Surra’s con-
jecture used to lighten the computation of ensemble weight
enumerators of protograph-based LDPC codes. Moreover,
we proposed a new method based on a continuous relaxation
to compute more efficiently the ensemble weight enumerator
especially for CNs with large M ′c such as highly connected
CNs of generalized CNs. The results of this paper also might
be usefull for enumeration of other non-codeword objects
in LDPC codes such as trapping sets, stopping sets and
pseudocodewords.

REFERENCES

[1] S. Abu-Surra, D. Divsalar, and W. E. Ryan, “Enumerators for
protograph-based ensembles of ldpc and generalized ldpc codes,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 858–886, 2011.

[2] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial
concatenation of interleaved codes: Performance analysis, design,
and iterative decoding,” IEEE Transactions on Information Theory,
vol. 44, no. 3, pp. 909–926, 1998.

[3] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for” turbo-
like” codes,” in Proceedings of the annual Allerton Conference on

Communication control and Computing, vol. 36. UNIVERSITY OF
ILLINOIS, 1998, pp. 201–210.

[4] S. Fogal, R. McEliece, and J. Thorpe, “Enumerators for protograph
ensembles of ldpc codes,” in International Symposium on Information

Theory, 2005. ISIT 2005. IEEE, 2005, pp. 2156–2160.

[5] J. Thorpe, “Low-density parity-checks codes (ldpc) constructed from
protographs,” IPN Progress Report, pp. 42–154, 2003.

[6] D. Divsalar, “Ensemble weight enumerators for protograph ldpc
codes,” in IEEE International Symposium on Information Theory,

2006, 2006, pp. 1554–1558.

[7] S. A. Abu-Surra, “Protograph-based generalized ldpc codes: Enumer-
ators, design, and applications,” Ph.D. dissertation, The University of
Arizona, 2009.

[8] D. S. Hochbaum and A. Pathria, “Can a system of linear diophantine
equations be solved in strongly polynomial time?” Citeseer, 1994.

[9] P. J. Davis, Circulant matrices. American Mathematical Soc., 1979.

[10] D. G. Mitchell, M. Lentmaier, and D. J. Costello Jr, “Spatially
coupled ldpc codes constructed from protographs,” arXiv preprint

arXiv:1407.5366, 2014.

[11] D. G. Mitchell, M. Lentmaier, and D. J. Costello, “On the minimum
distance of generalized spatially coupled ldpc codes,” in IEEE

International Symposium on Information Theory Proceedings (ISIT),

2013. IEEE, 2013, pp. 1874–1878.

[12] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[13] R. Penrose, “A generalized inverse for matrices,” in Mathematical

proceedings of the Cambridge philosophical society, vol. 51, no. 03.
Cambridge Univ Press, 1955, pp. 406–413.

[14] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[15] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

APPENDIX A
PROOF OF LEMMA 1

[1] proved Lemma 1 using the method of types [15,
Thm. 12.1.3]. An alternative proof is as follows: For suffi-
ciently large N and even if some particular ni are not large
we have:

C(N ;n) = C(N ;n1, . . . , nK)

=
N !

n1!n2! . . . nK !

≈

(
N
e

)N

(
n1

e

)n1

. . .
(
nK

e

)nK
(Striling: n! ≈ (n

e
)n)

=

(
N
e

)n1

. . .
(
N
e

)nK

(
n1

e

)n1

. . .
(
nK

e

)nK
(
∑K

i=1
ni = N)

=

K∏

i=1

(
N

ni

)ni

= exp

(
K∑

i=1

ni log

(
N

ni

))

= exp
(

N.H(
n1

N
, . . . ,

nK

N
)
)

APPENDIX B
PROOF OF LEMMA 3

|∆| =

∣
∣
∣
∣
∣

δα δγ δβ
δβ δα δγ
δγ δβ δα

∣
∣
∣
∣
∣

= δ3α + δ3β + δ3γ − 3δαδβδγ

= (δα + δβ + δγ)
(
δ2α + δ2β + δ2γ
−δαδβ − δαδγ − δβδγ)

=
1

2
(δα + δβ + δγ)

(

(δα − δβ)
2
+ (δα − δγ)

2

+(δβ − δγ)
2
)

6= 0 (δα, δβ and δγ are not all null by definition)

APPENDIX C
PROOF OF EQ. (15)

M c.(ap1 + bp2 + cp3) = aδ1 + bδ2 + cδ3

=




















(a+ b+ c)δ1
...

aδα + bδγ + cδβ
...

aδβ + bδα + cδγ
...

aδγ + bδβ + cδα
...

(a+ b+ c)δqc




















= (δ1 . . . f1 . . . f2 . . . f3 . . . δqc)
T

, δ∗

