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The spatial coupling is an efficient technique that improves the threshold of Low Density Parity Check (LDPC) codes. In this paper, we investigate the performance of the serial concatenation of Continuous phase modulation (CPM) and LDPC convolutional codes over a memoryless additive white Gaussian noise channel. We show that coupling protographs optimized for CPM improves their performance and helps designing very good 'small' protographs. Inspired from convolutional codes and thanks to the inner structure of CPM, we also introduce a new termination without rate loss but that still exhibits a coupling gain and it thus has a very good threshold. We will illustrate the behavior of different LDPC convolutional codes with different termination methods by giving some examples and studying their performance using multidimensional EXIT analysis.

I. INTRODUCTION

Continuous phase modulation (CPM) is a class of nonlinear phase modulation where the phase values are preserved continuous from one symbol interval to the other. Thanks to its constant envelope property, it is traditionally used with embedded amplifiers that operate near the saturation regime and in channel subject to nonlinearities. Because of its interesting properties, CPM is considered with cyclic interest as a good trade-off for different constraint wireless communication systems (satellite video broadcasting, bluetooth, telemetry mesures, GSM mobile network...). In particular, it is envisioned as a possible waveform for UAV aeronautical communications. CPM signal decoding is usually performed using the MAP algorithm over the CPM trellis [START_REF] John B Anderson | Digital phase modulation[END_REF]. This method results in relatively high complexity which restricts the use to some limited schemes (Minimum Shift Keying (MSK), Gaussian MSK (GMSK), continuous phase frequency shift keying CPFSK, ...). Then [START_REF] Bixio | A decomposition approach to cpm[END_REF] shows that the CPM modulator can actually be seen as a time-invariant continuous phase encoder (CPE) concatenated with a time-invariant memoryless modulator (MM). Taking advantage of this decomposition, CPM has greatly benefited from the concept of turbo-decoding. Several papers considered serial concatenations with convolutional codes [START_REF] Moqvist | Serially concatenated continuous phase modulation with iterative decoding[END_REF]- [START_REF] Chaggara | Continuous phase modulation for future satellite communication systems in ka band[END_REF] and Low Density Parity Check (LDPC) codes [START_REF] Krishna R Narayanan | Design of serial concatenated msk schemes based on density evolution[END_REF]- [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF].

The convolutional counterparts of LDPC codes are called LDPC convolutional (LDPC-C) codes [START_REF] Jimenez | Timevarying periodic convolutional codes with low-density parity-check matrix[END_REF].

They are part of a more general family often referred to as spatially coupled LDPC codes. LDPC-C codes are obtained by spatial coupling of LDPC block codes and can be defined also by a sparse parity check matrix which makes them adapted for message passing decoding. The coupling is an efficient technique that leads to substantially better thresholds even with relatively simple protographs under belief propagation (BP) in comparison to its LDPC block counterparts. Since their introduction, there are numerous papers on the analysis of their performance and on the reasons why they perform so good in comparison to classical LDPC codes over the BEC or Gaussian channel (see [START_REF] Kudekar | Threshold saturation via spatial coupling: Why convolutional ldpc ensembles perform so well over the bec[END_REF]- [START_REF] Kudekar | Spatially coupled ensembles universally achieve capacity under belief propagation[END_REF] and therein references for more details). Different methods have been proposed to construct LDPC-C codes. In this paper we will consider protographbased LDPC convolutional codes.

To our knowledge, no work has been done to design and analyze the performance of LDPC-C codes concatenated with a CPM. In [START_REF] Schmalen | Combining spatially coupled ldpc codes with modulation and detection[END_REF], the authors compared the performance of some LDPC-C codes over the Gaussian channel, proposed a 3/4 -rate universally good (with any mapping/MIMO detector) LDPC-C code candidate and illustrated it with the 16 -QAM receiver with different mappings. [START_REF] Phong S Nguyen | Spatially-coupled codes and threshold saturation on intersymbol-interference channels[END_REF] showed that LDPC-C codes achieve the symmetric achievable rate for intersymbol-interference channels. For bit-interleaved coded modulations, [START_REF] Häger | Optimized bit mappings for spatially coupled ldpc codes over parallel binary erasure channels[END_REF] studied the performance of the LDPC-C codes and the optimization of the mapping where each bit channel is modeled by an independent binary erasure channel.

In this paper, we will see that, due to the inner structure of CPM, good codes for Gaussian channel do not exhibit necessarily good performance with CPM. We investigate the performance of the concatenated scheme formed by the serial concatenation of a LDPC-C code and a general CPM modulation scheme. We focus on finding LDPC-C codes that are good for a particular CPM modulator. We also show that coupling protographs that behave well with a particular CPM improves their threshold. Finally, we will show that we can adapt an unusual LDPC-C termination without rate loss but still having a very good threshold. The organization of this paper is as follows: first Section II briefly describes the system model. Section III is dedicated to the convergence analysis method. Section IV discusses some aspects on the convergence behavior of different codes and shows some simulation results. Finally, based on these insights, Section V concludes the paper.

II. SYSTEM DESCRIPTION

We consider a concatenated scheme composed of a binary LDPC convolutional code serially concatenated with CPM modulator. A binary LDPC convolutional code can be described as the ensemble of codewords c [0,∞] = {c 0 , c 1 , ..., c t , ...}, c t ∈ GF (2), that satisfy the equation c [0,∞] B T [0,∞] = 0, where B T [0,∞] has the form:

      B T 0 (0) • • • B T ms (ms) . . . . . . B T 0 (t) • • • B T ms (t + ms) . . . . . .       B T [0,∞]
is called the syndrome former of the code, {B i (t)} i the component matrices, m s the syndrome former memory and v s = (m s + 1) the constraint length. A more detailed definition can be found in [START_REF] Jimenez | Timevarying periodic convolutional codes with low-density parity-check matrix[END_REF].

A protograph [START_REF] Thorpe | Low-density parity-checks codes (ldpc) constructed from protographs[END_REF] is a relatively small bipartite graph described by (V, C, E) where the set of variable nodes V (of cardinality v) is connected to the set of check nodes C (of cardinality c) through edges E. It can be described by its base matrix B where B(r, s) ≥ 0 is the number of edges between the variable node (VN) s and the check node (CN) r. A protograph-based LDPC-C code can then be obtained by the edge spreading rule (ESR, [START_REF] David | Spatially coupled ldpc codes constructed from protographs[END_REF]) applied to the base matrix B: the graph is replicated an infinite number of times, then each VNs bundle is connected to its pairing CNs bundle through a permutation of the corresponding edges bundle only in the forward direction, i.e. from the protograph at time t to the protographs at time t ′ > t. These connections are described by the components base matrices {B i } i which must satisfy:

i=ms i=0 B i = B
In this class of LDPC-C codes, the design rate of the base matrix can be written as R = 1 -c/v. Figure 1 shows an example of ESR operation corresponding to the base matrix B = [ 3 3].

In this paper we will consider mainly terminated time invariant LDPC convolutional codes [START_REF] David | Awgn channel analysis of terminated ldpc convolutional codes[END_REF]. They can be described by mean of convolutional protograph with the base matrix B [0,L-1] of size (L + m s )c × Lv. In this case, L is called the termination factor or the coupling length. firstly, the protograph is replicated, then it is spatially coupled with respect to

B T [0,L-1] =    B T 0 • • • B T ms . . . . . . B T 0 • • • B T ms    (1) 
B 0 = B 1 = B 2 = [1 1]
The design rate of terminated LDPC-C codes without puncturing becomes:

R L = 1 - (L + m s ) L (1 -R) = R - m s L (1 -R) (2) 
One should observe that the termination as shown in Eq. ( 1) results in a rate loss by a penalty of ms L (1-R) as depicted by Eq. ( 2). Note that, as L increases, R L increases and approaches the design rate R, and the singularity in the code profile introduced by the firsts and lasts check nodes (less connected) becomes minor. At the decoder side, we consider BP decoding algorithm [START_REF] Thomas | The capacity of low-density parity-check codes under messagepassing decoding[END_REF].

Each codeword c [0,L-1] is interleaved, mapped into M-ary symbols α = {α i } i , where α i ∈ {±1, ..., ±(M -1
)}, and encoded by the CPM modulator. The normalized complex baseband CPM signal can be written as:

s(t, α) = exp jθ(t, α) (3) 
with:

θ(t, α) = 2πh N -1 i=0 αiq(t -iT ), q(t) = t 0 g(τ )dτ 1/2, t > Lcpm
θ(t, α) the information carrying phase, g(t) the frequency pulse, h = k/p the modulation index and L cpm the memory. Practically, the shape of q(t) (rectangular (REC), raised-cosine (RC), ...) and L cpm determine the smoothness of the phase transitions. If L cpm = 1, we say that we have a full response waveform, otherwise, if L cpm > 1, a partial response waveform. For GMSK, the modulation choosed for GSM system, h = 1/2, L cpm = 3, M = 2, BT = 0.3, and the pulse response is a Gaussian.

Let U i = (α i + (M -1))/2 ∈ {0, 1, ..., M - 1}.
According to [START_REF] Bixio | A decomposition approach to cpm[END_REF], the CPM modulator can be represented by the concatenation of a continuous phase encoder (CPE), described as a time invariant trellis defined by the tuple

σ n = [U n-1 , ..., U n-L+1 , [ n-L i=0 U i ]mod p], followed by a memoryless modulator (MM), formed by pM L different filters {s i (t)} corresponding to CPE output symbols X n = [U n , ..., U n-L+1 , [ n-L i=0 U i ]mod p].
We assume here that the transmitted signal s(t, α) is sent over a memoryless additive white Gaussian noise (AWGN) channel having a double-sided power spectral density N 0 /2. From Eq. ( 3), the received signal has the complex baseband expression:

y(t) = 2E s /T exp{jψ(t, α)} + n(t) , t > 0 (4)
where ψ(t, α) is the tilted phase [START_REF] Bixio | A decomposition approach to cpm[END_REF]. The outputs of the MM filters at the receiver are sampled once each T to form the projections of the received signal

y n = [y n i = (n+1)T nT y(l)s * i (l)dl] 1≤i≤pM Lcpm .
Considering any orthogonal basis of the receiver signal space [START_REF] Moqvist | Serially concatenated continuous phase modulation with iterative decoding[END_REF], p(y n /X n ) can be simplified to exp {2Re(y n i )/N 0 }. This metric is for the transitions of the CPE trellis when running the BCJR algorithm [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (corresp.)[END_REF]. Fig. 2 depicts the receiver considered in this paper. The copy-and-permute operation (called also lifting) of the convolutional protograph is done by replacing each node with a bundle of node of the same type and replacing each edge with the bundle of a permutation of edges of the same type.

III. ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we will study the asymptotic convergence for the AWGN channel for different protograph-based LDPC-C codes. We consider the following scheduling: an iteration ℓ consists in one BCJR forward backward recursion for the CPM soft decoder, followed by one BP data pass check pass for the LDPC-C code. We further assume partial interleavers between the CPM module and each VN bundle [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF], [START_REF] Benaddi | Design of systematic gira codes for cpm[END_REF].

Using density evolution techniques to determine the threshold of the generalized CPM scheme concatenated with different LDPC-C for the AWGN channel is a prohibitive task. Instead, we will use EXIT chart analysis [START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF]. It tracks the variance σ 2 llr (or the mean m llr ) of exchanged log likelihood ratios (LLR) under consistent Gaussian distributed messages (m llr = σ 2 llr /2) and reciprocal channel approximations using the monodimensional function of σ 2 llr noted J(.) [START_REF] Stephan Ten Brink | Design of low-density parity-check codes for modulation and detection[END_REF]:

J(σ 2 llr ) := 1 -Ex(log2(1 + e -x )), x ∼ N ( σ 2 llr 2 , σ 2 llr )
While EXIT analysis works fine for LDPC codes, this method is not accurate when coming accros protograph-based codes. Actually, [START_REF] Liva | Protograph ldpc codes design based on exit analysis[END_REF] proved that because of the relatively small size and the lifting operation which introduces an inherent structure within the corresponding LDPC code, classical EXIT charts cannot predict accurately the threshold (the minimum channel parameter that ensures reliable decoding). Instead, we will use protograph or multidimentinal EXIT charts [START_REF] Liva | Protograph ldpc codes design based on exit analysis[END_REF]. Let us consider hereafter the following notations relative to the ℓ th iteration:

• I ℓ v (q, r): extrinsic mutual information (eMI) between the code bits associated with VN r and the LLRs sent from this VN to the CN q.

• I ℓ c (q, r): eMI associated with messages sent from CN q to VN r.

• I ℓ app (r): a posteriori MI associated with the VN r.

• I ℓ a,CP M (r): a priori MI associated with messages sent from the VN r to the CPM soft decoder.

• I ℓ CP M (r): eMI associated with messages sent from CPM soft decoder to the VN r.

• T CP M (.): input-output EXIT transfer function of the CPM detector implicitly depending the noise variance σ 2 noise . Analytic expression is not straightforward, but it can be evaluated with Monte Carlo simulations.

Let us consider a mother protograph B, of size c × v, which generates the terminated LDPC-C code B [0,L-1] of size Lv × (L + m s )c, noted hereafter B L for ease of notations. The CPM update equations at iteration ℓ seen by the variable node r are given by:

I ℓ CP M (r) = TCP M (I ℓ-1 a,CP M (r)) (5) 
I ℓ a,CP M (r) = J   s BL(s, r) J -1 (I ℓ-1 v (s, r)) 2   (6) 
When B L (q, r) = 0, the VN r to CN q update equation is formally given by:

I ℓ v (q, r) = J   s BL(s, r) J -1 (I ℓ-1 c (s, r)) 2 - J -1 (I ℓ-1 c (q, r)) 2 + J -1 (I ℓ CP M (r)) 2 (7) 
otherwise, I ℓ v (q, r) = 0. Similarly, using reciprocal channel approximation, CN q to VN r update is given by:

I ℓ c (q, r) =1 -J   s BL(q, s) J -1 (1 -I ℓ v (q, s)) 2 - J -1 (1 -I ℓ v (q, r)) 2 (8) 
otherwise, I ℓ c (q, r) = 0. Considering partial interleavers [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF], at the end of each iteration, the a posteriori MI evaluated at the VN r is:

I ℓ app (r) =J   s B L (s, r) J -1 (I ℓ-1 c (s, r)) 2 + J -1 (I ℓ CP M (r)) 2 (9) 
Combining Eqs. ( 5) to (9), we can track the evolution of I ℓ app for each VN through iterations. The threshold is defined as the smallest E b /N 0 such that for all r, I ℓ app (r) = 1 after a certain number of iterations ℓ.

IV. CODE DESIGN AND OPTIMIZATION

We are interested here by finite length block codes, i.e. the LDPC-C codes with finite L. 

A. Classical methods for protograph construction

As for convolutional codes, there are two main methods to terminate LDPC-C codes: Termination (T): If the LDPC-C code in interpreted from its base matrix B L , T termination is equivalent to truncating all VNs of B [0,∞] after the L th copy as in Fig. 1, and keeps only the CNs that are connected up to the L th stage of VNs.

Tail-bitting (TB):

In order to avoid the rate loss, tail-bitting method has been introduced [START_REF] David | Minimum distance and trapping set analysis of protographbased ldpc convolutional codes[END_REF]. The corresponding parity check matrix B tb L can be found in [START_REF] Lentmaier | Asymptotically good ldpc convolutional codes with awgn channel thresholds close to the shannon limit[END_REF]. Because the most right-hand and left-hand CNs are no more 'irregular', there is no coupling gain with this familly and the threshold will remain the same as for the underlying protograph B. However, since the CNs and VNs profiles remain unchanged in comparison to the mother protograph, TB LDPC-C codes are used generally to obtain some bounds (free distance, trapping set, ...) of the T termination LDPC-C codes [START_REF] David | Minimum distance and trapping set analysis of protographbased ldpc convolutional codes[END_REF].

As already pointed out, the iterative decoding threshold improvement gained with LDPC-C codes in comparison to the unstructured LDPC codes is due the wave effect induced by check nodes (less connected degree check nodes). This phenomenon is depicted in Fig. 3a: the less connected check nodes generated more reliable LLRs, which, as iterations go along, gradually propagates from both sides to internal nodes. For the middle VNs, as far as the wave effect did not affect them yet, behave roughly the same way as the VNs of the base protograph B. If E b /N 0 is larger than the threshold of B L (which is lower than the threshold of B), the decoding wave is strong enough to make them converge as depicted in Fig. 3b. As said before, the advantage of TB termination is to insure the same rate as B. However, since the edges CNs are no more irregular, properties of B are conserved (same rate and threshold) as depicted in Fig. 3c.

B. New method: direct truncation

In this section, we introduce a new protograph based LDPC-C code termination that we believe is interesting for some concatenated schemes. Similarly to convolutional codes [START_REF] Howard | On tail biting convolutional codes[END_REF], one can suggest to consider a direct truncation (DT) for the LDPC-C code. It is constructed like tailbitting LDPC-C, but instead of adding m s c CNs at the right-hand end to satisfy L th set of VNs connections, we remove all unconnected edges. The main advantage is the conservation of the rate R DT = R. The parity check matrix is written as:

B DT L =       B0 . . . B0 Bm s . . . . . . Bm s . . . B0       (10) 
It is obvious that the left-hand nodes configuration did not change, compared to B L , which means that the convolutional gain induced by these nodes is preserved. On the contrary, the most right-hand nodes, a small proportion of poorly connected VNs is introduced while previous poorly connected CNs disappears. The direct effect of these VNs is that they will converge slowly in comparison to their counterparts in B L : which means that the corresponding bits have less error protection in comparison to other bits. Besides that, one would say that having at least one degree -1 VNs among the last v VNs may hurt the convergence. Actually, by choosing a good coupling component matrices, not only the proportion of these tedious VNs vanishes with increasing L, but also their effect is surprisingly alleviated by both the coupling gain and the fact that, unlike other modulations, usual CPM schemes have EXIT curves that converge to the point (1, 1) [START_REF] Benaddi | Design of systematic gira codes for cpm[END_REF]. 

C. Design examples

As an example, we consider the following codes:

• C (1) : (3, 6) -regular protograph • C (2) : protograph proposed in [11] • C (1)
1,T : coupling of C (1) with m s =1 B

(1) 0

= [1 2] and B (1) 1 = [2 1] • C (1) 1,DT : direct truncation of C (1) 1,T • C (1) 
2,T : coupling of C (1) with m s =2 B

(2) 0 = B (2) 1 = B (2) 2 = [1 1] • C (1) 2,DT : direct truncation of C (1) 2,T • C (2) 
1,T : coupling of C (2) with m s =1 and:

B0 =    1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0    0.5 1 1.5 2 2.5 3 3.5 4 4.5 0.1 0.2 0.3 0.4 0.5 0.6 C (2) 1,T C (2) 2,T C (1) 2,T C (1) 1,T C (1) C (1) 2,DT C (1) 1,DT C (2) 
Threshold E b /N 0 Rate Fig. 4: Thresholds comparison for different codes when GMSK

B1 =    0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1    • C (2) 
2,T : coupling of C (2) with m s =2 and:

B0 =    0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0    B1 =   
1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

   B1 =    0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 2 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0   
Figure 4 depicts the decoding thresholds for the above codes with GMSK modulation as a function of L. We observe that with increasing L, the design rate R L for C 

1,T and C

(2) 2,T converges to R. Notice that the coupling has significantly improved the thresholds of C (1) and C (2) . Concerning our termination method, the spatial coupling of the (3, 6) -regular code with respect to {B [START_REF] Bixio | A decomposition approach to cpm[END_REF] i }, i.e. C

(1) 2,DT , drastically decreases the threshold. On the contrary, the direct truncation of the spatial coupling following {B [START_REF] John B Anderson | Digital phase modulation[END_REF] i }, i.e. C

(1) 1,DT , the DT method allows us to obtain directly a code with rate R and that has some advantages for encoding. These advantages come with a very small degradation of the threshold. If one want to design convolutional protograph that behave very good with both T and DT terminations, C 2,DT are visualized in Fig. 5 at 1.5dB. Notice that the wave effect travels only from the left side to the right side, because of the less connected CNs present at the first rows. Recall that the C (1) threshold is only E b /N 0 = 2.2dB (> 1.5dB), consequently, the middle VNs, which behave as the VNs of C (1) , do not converge through iterations and wait for the wave gain. For C 2,DT is not strong enough to make the last two degree -1 deficient VNs converge. On the other hand, even if the coupling of C (1) (through {B [START_REF] John B Anderson | Digital phase modulation[END_REF] i }) leads to a slightly worse performance than the coupling of C (2) (through {B [START_REF] Bixio | A decomposition approach to cpm[END_REF] i }) for the classical termination (T) (0.2dB), it is best suited to our no-rateloss termination (DT) C (3) (which shows a degradation of the threshold of only 0.25dB).

For the protographs designed for the GMSK, the two proposed couplings, C

1,T and C

(2) 2,T , show a gain of 0.2dB and 0.3dB respectively over C (2) (if we neglect the small rate loss at high values of L). Because C (2) is optimized for the GMSK, it already presents a good threshold and the spatially coupling operation did not show a large gain as when coupling spatially C (1) . Furthermore, at high rates, at equal syndrome former memory m s , the proposed LDPC-C codes corresponding to both C (1) and C (2) offer approximately the same performance, however, C

(2) 1,T shows the best trade-off between the rate penalty (at most, when L is small, the gap to 0.5 is only of 0.18) and the threshold (varies between 0.55dB and 0.68dB) for the whole range of values of L. Small values of L, i.e. that lead to convolutional protographs with small size, are particularly interesting for finite length design. From this perspective, the performance of the proposed codes is depicted in Fig. 6: threshold is plotted as a function of the total number of VNs for different rate families. When we impose relatively strict constraints on the rateloss, the code which exhibits the best trade-off between threshold and protograph size, when the rateloss is of about 0.007, is C

2,T . On the other hand, when we tolerate a rateloss of 0.083, it is clear that C For quaternary CPM, Table I summarizes some results. For ease of presentation, we compare the codes with coupling factor L = 50 when concatenated with the CPM modulator Q CP M : quaternary, Gray mapping, L CP M = 2, Raised cosine pulse and h = 1/4. Concerning the optimized protograph codes, C (2) still have a very good performance [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF]. The performance one can achieve when optimizing rate-1/2 unstructured LDPC codes for this CPM is 0.7dB [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF], here we almost achieved this limit with C

(2) 1,T As for the binary case, similar observations can be made, however, the direct truncation C Figure 7 gives some simulation results for C (2) and C

(2) 1,T when concatenated with GMSK. Simulation were performed using 250 turbo iterations and a lifting factor of around 1000. For the spatially coupled code, we take L = 50.

V. CONCLUSION

In this paper, we have investigated the performance and the convergence behavior of some LDPC-C codes when concatenated with CPM. We show that coupling protographs optimized for CPM improves their performance and helps designing very good small protographs. Furthermore, we described an unusual termination without rate loss that still has a good threshold. Nonetheless, the gain of our termination should come with a degradation of the growth rate, future works will investigate this aspect. Also, for CPM of high modulation orders, bit interleaved coded CPM approach can be considered to explore the optimization of the bit mapping to alleviate the threshold penalty of DT termination.
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 1 Fig. 1: (3, 6) regular LDPC convolutional code with ms = 2:
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 3 Fig. 3: Evolution of I ℓ app per variable nodes of the LDPC-C depicted in Fig. 1 concatenated with GMSK, L = 100. threshold of B is 2.22dB
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 115 Fig. 5: Evolution of I ℓ app per VNs of C (1) 1,DT and C (1) 2,DT , with L = 50, concatenated with GMSK at 1.5dB

  clearly leads here to better performance in comparison to the classical termination C(1) 1,T , since both have the same threshold (1.13dB) while the latter has a worse rate.

Fig. 7 :

 7 Fig. 7: Bit error rate for GMSK with different codes
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 I Comparison of the performance of some codes when concatenated with Q CP M