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In recent random access methods used for satellite communications, collisions between packets are not considered as destructive. In fact, to deal with the collision problem, successive interference cancellation is performed at the receiver. Generally, it is assumed that the receiver has perfect knowledge of the interference. In practice, the interference term is affected by the transmission channel parameters, i.e., channel attenuation, timing offsets, frequency offsets and phase shifts, and needs to be accurately estimated and canceled to avoid performance degradation. In this paper, we study the performance of an enhanced channel estimation technique combining estimation using an autocorrelation based method and the Expectation-Maximization algorithm integrated in a joint estimation and decoding scheme. We evaluate the effect of residual estimation errors after successive interference cancellation. To validate our experimental results, we compare them to the Cramer-Rao lower bounds for the estimation of channel parameters in case of superimposed signals.

I. INTRODUCTION

In the context of satellite communications the main weakness of traditional random access (RA) methods like Aloha [START_REF] Abramson | The ALOHA system : another alternative for computer communications[END_REF] and Slotted Aloha [START_REF] Roberts | ALOHA packet system with and without slots and capture[END_REF] is destructive packet collisions and retransmission delays, which might be incompatible with some application requirements. To deal with this problem, recent TDMA (Time Division Multiple Access) based RA methods like CRDSA (Contention Resolution Diversity Slotted Aloha [START_REF] Casini | Contention resolution diversity slotted ALOHA (CRDSA) : An enhanced random access scheme for satellite access packet networks[END_REF]) and MuSCA (Multi-Slot Coded Aloha [START_REF] Bui | An enhanced multiple random access scheme for satellite communications[END_REF]) allow the receiver to perform iterative interference cancellation in order to achieve a better throughput and support a higher load. However, in a real system, the receiver has not perfect knowledge of the interference channel, and estimation errors are added to the frame when the packets are removed.

The problem to be addressed in this paper is the impact of residual channel estimation errors on recent TDMA based RA methods. The main issue is to be able to estimate the channel parameters in the case of multiple superimposed signals and to achieve performance close to the perfect knowledge case. This challenge has already been addressed in part in the existing literature. In [START_REF] Feder | Parameter estimation of superimposed signals using the EM algorithm[END_REF] a method based on the Expectation-Maximization (EM) algorithm is presented to estimate channel parameters simultaneously. In [START_REF] Casini | Method of packet mode digital communication over a transmission channel shared by a plurality of users[END_REF], another approach uses the autocorrelation to derive channel amplitude and frequency offsets from packets that did not experience collision. In [START_REF] Cocco | A network-coded diversity protocol for collision recovery in slotted ALOHA networks[END_REF], channel estimation using EM is evaluated for a network coded diversity protocol (NDCP). We have also presented a first contribution of our work in [START_REF] Zidane | Improved channel estimation for interference cancellation in random access methods for satellite communications[END_REF], where we have used an EM based channel estimation method and evaluated experimentally the effect of imperfect interference cancellation on the decoding of the remaining packet.

The main contributions of this paper are the following:

• Introduction of a joint EM estimation and decoding scheme with autocorrelation initialization;

• Consideration of symbol level misalignment between signals in collision, and integration of estimated timing offsets inside the EM algorithm;

• Comparison of mean square errors with respect to the Cramer-Rao lower bounds for joint estimation of multiple channel parameters;

• Application of the proposed estimation technique in case of more than two superimposed signals.

The rest of this paper is organized as follows. Section II presents the system overview. Section III presents the proposed channel estimation method. In Section IV we derive the Cramer-Rao lower bounds (CRLB) as well as the mean square errors (MSE) for the joint estimation of channel parameters. Section V presents experimental results. We conclude and discuss future work in Section VI.

II. SYSTEM OVERVIEW

We consider the transmission scenario in Fig. 1. Each user sends two replicas of the same packet on different time Fig. 1: A part of a frame (three time slots) with four users transmitting their packets to a destination D slots (TS). The packets of different users are not synchronized at the symbol level. We consider the case where the receiver has previously decoded packets 1b and 3b successfully and needs to remove the signals corresponding to their replicas (1a and 3a) leaving the signal of user 2 on T S1 collision free. Therefore, the receiver has to accurately estimate the channel parameters of the signals on T S1, i.e., channel attenuation, timing offsets, frequency offsets and phase shifts. Otherwise, significant residual estimation errors are added to packet 2a, and it may not be decoded successfully.

In the rest of the paper, we consider a one-way system where K users share the same time slot (T S1) to transmit their signals to a destination node D. We suppose that phase noise is neglected. Pilot symbol assisted modulation (PSAM) [START_REF] Palmer | Real-time Carrier Frequency Estimation Using Disjoint Pilot Symbol Blocks[END_REF] is used to refine the estimation of the channel frequency offset. PSAM relies on the insertion of orthogonal data blocks called pilots inside the payload sequence. A preamble and a postamble are added to the beginning and the end of each packet. The training symbols (i.e. the preamble, the postamble and the pilots) are unique orthogonal sequences modulated with binary phase shift keying (BPSK) known at the destination node and used for the purpose of channel estimation.

The received signal, y, at the destination node D during TS1, after pulse shaping, and oversampling by a factor Q, is given by

y(i) = K k=1 h k (i) L-1 n=0 x k (n)g(iT e -nT s -τ k T s ) + w(i) (1)
where:

• T s and T e = T s /Q are respectively the symbol period and the oversampling period;

• i = 0, 1, ..., LQ -1 and n = 0, 1, ..., L refer to T espaced and T s -spaced samples respectively, with L being the length of the entire packet in symbols.

• x k (n) refers to the n th symbol sent by user k.

• g stands for the root raised cosine pulse function.

• w is a complex additive white Gaussian noise process of variance σ 2 w . • τ k is the timing offset relative to the signal sent by user k, supposed to take a random value uniformly

distributed in 0, 1 Q , 2 Q , ..., Q -1 Q .
Like in [START_REF] Feder | Parameter estimation of superimposed signals using the EM algorithm[END_REF], we assume a block fading channel model with unknown channel parameters, as given below

h k (i) = A k e j(2π∆f k iTe+ϕ k ) (2)
where A k is a lognormally distributed random variable modeling the channel amplitude, ∆f k is the frequency offset supposed to take a random value uniformly distributed in [0, ∆f max ] with ∆f max equal to 1% of the symbol rate 1/T s .

A k and ∆f k are assumed to remain constant during the frame duration. ϕ k represents the phase shift of the signal, it is a random variable drawn independantly from one slot to another from a uniform distribution in [0, 2π].

We suppose that, D has successfully decoded the replicas of all the packets in collision on TS1 except the ones corresponding to user 2, either because they have been received without collision on other slots (like in CRDSA), or because their combination has allowed successful decoding (like in CSA or MuSCA). Thus, D knows the number of the interference packets on TS1, as well as the interference symbols x 1 (n), x 3 (n), ..., x K (n). The goal is to demodulate and decode the signal of user 2. Therefore, D needs to compute the channel estimates h 1 , h 2 , h 3 , ..., h K and the timing offsets τ 1 , τ 2 , τ 3 , ..., τ K then suppress the interference signals from y in order to obtain the discrete signal s 2 as follows

s 2 (i) = h 2 (i) L-1 n=0 x 2 (n)g(iT e -nT s -τ 2 T s ) + k=K k=1,k =2 h k (i) L-1 n=0 x k (n)g(iT e -nT s -τ k T s ) -h k (i) L-1 n=0 x k (n)g(iT e -nT s -τ k T s ) + w(i) (3)
The signal s 2 is matched filtered and sampled at the sampling times T 2,n, τ2 = nQ + Q τ 2 , with T 2,n, τ2 being an integer time index, and τ 2 being the estimated timing offset of user 2. The resulting estimated symbols s 2 (T 2,n, τ2 ) are

s 2 (T 2,n, τ2 ) = L-1 n=0 h 2 (T 2,n, τ2 )q(( τ 2 -τ 2 )T s )x 2 (n) + k=K k=1,k =2 L-1 n=0 h k (T 2,n, τ2 )q(( τ 2 -τ k )T s )x k (n) -h k (T 2,n, τ2 )q(( τ 2 -τ k )T s )x k (n) + w(T 2,n, τ2 ) (4) 
with q being the raised cosine function. For ease of simplicity, we suppose that the timing offset of user 2 is the reference time, τ 2 = 0, and the timing offsets of the other users are relative to τ 2 .

III. PROPOSED CHANNEL ESTIMATION METHOD

A. Timing Offset Estimation

Our approach is to apply a delayed matched filter (delay = Qτ ′ ) on the received signal y and then sample at times T k,n,τ ′ = nQ + Qτ ′ for each user k, with τ ′ being the timing offset to estimate. The resulting sequence r is then correlated with the training symbols corresponding to each user. The correlation peak position determines the apropriate timing offset. For each iteration m of the E step of the EM algorithm, the estimates τ k for each user k are computed as follows

• For m = 0: τ k (0) = argmax τ ′ Lpre-1 n=0 r(n) × pre k (n) (5)
where pre k is the preamble of user k of length L pre symbols.

• For m > 0, we derive the signal y k by compensating the effect of prior estimated frequency offset ∆f k (m-1)

. Then we re-compute τ k as shown below

y k (i) = y(i) × e -j2π ∆f k (m-1) iTe (6) τ k (m) = argmax τ ′ n∈Υ r k (n) × z k (n) (7) 
where r k (n) is the result of matched filtering and sampling of y k at T k,n,τ ′ , z k is the vector of training symbols of user k and Υ is the set of training symbols indexes in a packet.

B. Channel Parameters Estimation

EM is an iterative estimation algorithm. At each iteration m we go through the following steps: 

A k (0) = Lpre-1 n=0 s k (n) × z k (n) L pre (8) 
ϕ k (0) = arg Lpre-1 n=0 s k (n) × z k (n) (9) ∆f k (0) = f 2,k -f 1,k 2π(L pre + L data ) ; (10) 
with

f 1,k = arg   Lpre-1 n=0 s k (n) × z k (n)   ( 11 
)
f 2,k = arg   L pilot +Lpre+L data -1 n=Lpre+L data s k (n) × z k (n)   (12 
) where L pre , L pilot and L data are symbol lengths of the preamble, postamble and data blocks respectively. 3) Expectation -E Step:

p k (m) (n) = z k (n) A k (m-1) e j(2π ∆f k (m-1) Tsn+ ϕ k (m-1) ) + β k s k (n) - K l=1 h l (n) (m-1) z l (n)q((τ k -τ l )T s ) (13) 
where p k are the estimated training symbols of user k, n here refers to the index of a training symbol, β k is a coefficient arbitrarily set to 0.8 for all users and h l (n) (m-1) is expressed as follows

h l (n) (m-1) = A l (m-1) e j(2π ∆f k (m-1) nTs+ ϕ k (m-1) ) (14) 4) Maximization -M Step: min A ′ ,∆f ′ ,ϕ ′ Υ n=1 z k (n) p k (m) (n) -A ′ e j(2π∆f ′ Tsn+ϕ ′ ) 2
(15) where A ′ , ∆f ′ and ϕ ′ are tentative values of the channel parameters to be estimated.

C. Joint Estimation and Decoding Approach

Joint estimation and decoding [START_REF] Sandell | Iterative channel estimation using soft decision feedback[END_REF] allows to feedback decoded bits to the channel estimator. In [START_REF] Wang | Joint Estimation and Channel Decoding in Physical-Layer Network Coding Systems[END_REF], a similar scheme is used in the context of physical-layer network coding [START_REF] Liew | Hot Topic: Physical-Layer Network Coding[END_REF]. In our work we implement joint estimation and decoding with hard-decision feedback for the purpose of accurate interference cancellation in RA methods.

In fact, to approach the interference free case, it is better to use the data symbols constituting the packets and not just the training symbols in the estimation process. This can be done with joint iterative estimation and decoding. In a first step, channel parameters are estimated using training symbols as done in Section III-B. Then the interference is removed from the considered slot. Practically the first estimation is not perfect and residual estimation errors are added to the signal of interest. However, we demodulate and decode the desired signal even in presence of residual estimation errors. The resulting decoded bits, although not all correct, are fed back to the estimator. Thus, the estimation process relies not only on the training symbols but also on the payload data, making the channel parameters estimation more accurate.

IV. DERIVATION OF CRLBS AND MSES

The Cramer-Rao lower bounds (CRLB) express lower bounds on the variance of estimation errors of deterministic parameters [START_REF] Van Trees | Detection, Estimation and Modulation Theory, Part I[END_REF]. In [START_REF] Nasir | Training-Based Synchronization and Channel Estimation in AF Two-Way Relaying Networks[END_REF] the CRLBs for joint estimation of multiple channel impairments are derived for an amplify and forward (AF) two-way relaying network. We use the same approach to compare our results to the CRLBs. For sake of simplicity, we consider a system with two users. The vector y t corresponding to the training parts of the received signal y (Eq. ( 1)), can be written as

y t = Ωα + W ( 16 
)
where

Ω = [Λ 1 Gz 1 Λ 2 Gz 2 ] is an M Q × 2 matrix, with M
the length of the training vector z, Λ is an LQ × LQ matrix equal to diag [e j(2π∆f (0)Te) , ..., e j(2π∆f (LQ-1)Te) ] , G is the M Q × L matrix of the samples of the shaping filter g, α is equal to the transpose of [α 1 , α 2 ] with α k = A k e jϕ k and W is the complex noise vector of length M Q.

Following [START_REF] Nasir | Training-Based Synchronization and Channel Estimation in AF Two-Way Relaying Networks[END_REF], the vector y t of the received signal is a circularly symmetric complex Gaussian random vector with mean µ given by

µ = Ωα = α 1 Λ 1 Gz 1 + α 2 Λ 2 Gz 2 (17)
We suppose that timing offsets are estimated separately at an earlier stage than the rest of the channel impairments. Therefore, the parameter vector of interest λ (i.e. the channel parameters to estimate jointly) is

λ = [ℜ(α 1 ), ℜ(α 2 ), ℑ(α 1 ), ℑ(α 2 ), ∆f 1 , ∆f 2 ] T (18)
We derive the 6 × 6 Fisher's information matrix (FIM), denoted by F , using the following equation

F (θ) l,q = 2 σ 2 w ℜ ∂µ H ∂θ l ∂µ ∂θ q (19)
where θ represents each element of λ, the indexes l and q ∈ {1, 6} and the superscript (.) H denotes the conjugate transpose operator. The CRLB for the estimation of λ is the vector containing the diagonal elements of the inverse of F . Note that the CRLB for the estimation of α is the sum of the CRLBs for the estimation of real and imaginary parts of α.

To compare the performance of the actual estimatior with the calculated CRLBs, we dervie the MSEs for the estimated parameters of each user based on experimental simulations. The equations used to plot the MSEs in Fig. 2 and Fig. 3 are

M SE(α k ) = E |e α k | 2 = E A k e jφ k -A k e j φ k 2 (20) M SE(∆f k ) = E |e ∆f k | 2 = E ∆f k -∆f k 2 (21) 
Fig. 2 and Fig. 3 plot results for user 1 with confidence intervals equal to [mse-σ 2 e , mse+σ 2 e ] where σ 2 e is the variance of the estimation error. Similar results are obtained for user 2 on the E s /N 0 range considered. The figures show that the loss with respect to the CRLB is constantly around 3 dB and 6 dB for the estimation of α 1 and ∆f 1 respectively.

To further show how meaningful is the estimation error, we derive the mean signal to noise plus residual estimation errors ratio for the remaining user to decode (user 2)

E C N 0 + P e1 = E h 2 2 N 0 + E [P e1 ] (22) 
where N 0 is the noise power spectral density and P e1 is the power of the residual estimation errors of user 1, detailed as follows

P e1 =E h 1 -h 1 2 =E α 1 e j2π ∆f1nTs -α 1 e j2π∆f1nTs 2 =A 2 1 E   A 1 A 1 e j2π( ∆f1-∆f1)nTs+( φ1-φ1) -1 2   (23) 
According to Fig. 3, we can neglect the effect of ( ∆f 1 -∆f 1 ) over a limited packet length (620 symbols in our case). Then, we can suppose that after several simulations, the mean power of estimation errors E [P e1 ] is equal to M SE(α 1 ). If we compute the ration in Eq. ( 23) for E s /N 0 = 2 dB, we obtain a degradation around 0.2 dB. 

V. EXPERIMENTAL RESULTS

In this section we compute the packet error rate (PER) after demodulating and decoding the sampled signal s2 in presence of residual estimation errors. We compare the results to the case of perfect channel state information (CSI). We use as training sequences, Walsh-Hadamard words of lengths 40 symbols for preambles and 12 symbols for pilots and postambles. We uniformly distribute 9 pilot blocks inside each packet. The payload data is encoded with a CCSDS (Consultative Committee for Space Data Systems [START_REF] Ccsds | TM Synchronization and channel coding: Recommended Standard[END_REF]) turbo code of rate 1/2, provided by the CML (Coded Modulation Library [START_REF] Valenti | Coded Modulation Library[END_REF]). The resulting codeword has a length of 460 symbols modulated with quadrature phase-shift keying (QPSK). The pilot symbols result in an overhead of 23.4%. The oversampling rate of the shaping filter is set to Q = 5, and the noise variance σ 2 n = 1/(E s /N 0 ). Note that the execution time of our method increases linearly with the number of iterations. To achieve convergence, The EM algorithm is iterated 4 times, and joint estimation and decoding is repeated up to 3 times. For each run, the MSEs and the PER are calculated over 10000 packets.

A. One Interference

We consider two users colliding on the same time slot. We suppose the channel amplitudes A 2 and A 1 normalized to 1 (worst case scenario). The timing offsets τ 1 and τ 2 are uniformly distributed over the range 0, Q-1 Q . Fig. 4 illustrates the PER obtained with application of the proposed channel estimation (CE) technique and joint estimation and decoding (JED) on misaligned packets. It shows that with JED, the PER performance degradation in comparison to perfect CSI is around 0.1 dB for E s /N 0 < 2 dB, and around 0.3 dB for E s /N 0 > 2 dB. The results correlate with the signal to 

B. More than One Interference

Now we consider the case where several packets collide on the same time slot, and we decode the packet of interest after iterative interference cancellation in the presence of cumulative residual estimation errors. Fig. 5 illustrates the PER after cancellation of up to four interferents all having equal power. We notice that the degradation of PER does not exceed 0.1 dB.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

The summary of our work is the use of the iterative EM algorithm and the integration of accurate timing offset estimation inside EM, as well as applying a joint estimation and decoding approach on the whole system. We have been able to jointly estimate different channel impairments while keeping a relatively low performance loss that does not exceed 0.3 dB, with the experimental assumptions considered. We have also showed that the MSEs obtained are close to the CRLBs. We have not compared the gains of this EM-based solution for RA methods with respect to existing implementation in [START_REF] Cocco | A network-coded diversity protocol for collision recovery in slotted ALOHA networks[END_REF] because the use case is different. In [START_REF] Cocco | A network-coded diversity protocol for collision recovery in slotted ALOHA networks[END_REF], the channel estimation has been done in presence of superimposed packets, but its effect has been evaluated on the simultaneous decoding of multiple users (NDCP). While in our paper, we have investigated the impact of cumulative residual estimation errors after interference cancellation. Furthermore, we have noticed that timing offset estimation with autocorrelation causes an additional loss in the PER, so we can consider to use more accurate timing estimators in the future studies. Also, the evaluation has been performed for a certain range of E s /N 0 corresponding to a high performance forward error correction (FEC) code, and it may be useful to evaluate the performance degradation at higher values of E s /N 0 for different FEC codes. 
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 5 Fig.5: PER vs E s /N 0 after cumulative interference cancellation and channel estimation in case of more than one interference packet