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Récepteur exact pour la décomposition de Laurent pour les CPM

Dans ce papier, on propose un récepteur exact pour les modulations à phase continue (CPM) basé sur la décomposition/représentation de Laurent. L'approche proposée permet de remédier aux problèmes des interférences inter-symboles et inter-composantes induites par les composantes de Laurent sans introduire un étage supplémentaire dans le récepteur de type filtre blanchissant. Puis, en se basant sur la décomposition de Rimoldi, on proposera une méthode analytique pour construire le nouveau banc de filtre de réception.

Introduction

La modulation à phase continue (CPM) est une famille de modulation de phase où les transitions de la phase entre les différents symboles modulés sont continues. Grâce à leur phase continue et à leur enveloppe constante, les signaux CPM ont une meilleure efficacité spectrale et résistent mieux aux non linéarités induites par les amplificateurs embarqués ou les canaux non linéaires. Ces propriétés intéressantes font que les CPM sont un bon choix dans plusieurs systèmes de communication (DVB-RCS2, Stanag 4660 (TCS-5GHz), GSM, Bluetooth...).

Après l'invention des turbo-codes [START_REF] Berrou | Near optimum error correcting coding and decoding : Turbo-codes[END_REF], les CPM codées ont beaucoup bénéficié des schémas de turbo décodage. En effet, on a montré dans [START_REF] Rimoldi | A decomposition approach to cpm[END_REF] que la CPM peut être décomposée comme la somme d'un encodeur de phase continue (CPE) concaténé en série avec un modulateur sans mémoire (MM). De manière indépendante, [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF] a dérivé une autre décomposition de la CPM binaire qui représente un signal donné comme la somme de plusieurs signaux modulés en amplitude. L'intérêt majeur de cette représentation est que la quasi totalité de l'énergie du signal est concentrée dans les premières composantes seulement, même pour les ordres de modulations élevées. Ceci permet d'implémenter des récepteurs à faible complexité. L'extension de la décomposition de Laurent au cas M-aire est décrite dans [START_REF] Mengali | Decomposition of m-ary cpm signals into pam waveforms[END_REF]. Dans ce papier, et sans perte de généralités, on se limitera au cas binaire.

Dans [START_REF] Kaleh | Simple coherent receivers for partial response continuous phase modulation[END_REF][START_REF] Murphy | Map symbol detection of cpm bursts[END_REF], les auteurs ont développé le trellis sous-jacent de la décomposition de Laurent et ont décrit par ce fait les récepteurs Viterbi et BCJR [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (corresp.)[END_REF] correspondants. Toutefois, dans leur métrique de branches, ils négligent l'interférence intercomposantes (composantes non ortogonales) et l'interférence inter-symboles (les filtres de mises en forme ont une durée supérieure au temps symbole) devant le bruit du canal. Dans le cas d'un récepteur exact et optimal, il faudrait également introduire un filtre blanchissant. Ce filtre devient encore plus important dans les cas de detections non coherente [START_REF] Lampe | Noncoherent continuous-phase modulation for ds-cdma[END_REF], d'égalisation [START_REF] Tan | Frequency-domain equalization for continuous phase modulation[END_REF] ou de multi-porteuses [START_REF] Montazeri | Mcm and cpm combination as compared to the use of fde for cpm[END_REF]. Dans ce papier, on dérivera dans un premier temps un récepteur basé sur le treillis de Laurent qui prend en compte les interférences inter-composantes et intersymboles, puis on montrera comment calculer le banc de filtres correspondant et on exprimera la relation entre la décomposition de Rimoldi et la décomposition de Laurent.

Description d'un signal CPM

On considère dans ce papier une séquence de N symboles d'information α = {α i } ∈ {±1, . . . , ±(M -1)} N . Le signal CPM à transmettre s'écrit donc :

s(t) = 2E s T cos (2πf 0 t + θ(t, α) + θ 0 ) = ℜ[s b (t)e j2πf0t ]
(1) avec

θ(t, α) = πh N -1 i=0 α i q(t -iT ) où q(t) = t 0 g(τ )dτ, t ≤ L 1/2, t > L
avec E s l'énergie par symboles, T le temps d'un symbole, f 0 la fréquence porteuse, θ 0 la phase à l'origine, θ(t, α) la phase du signal, g(t) la réponse en fréquence, h = k/p l'indice de modulation (k ∧ p = 1), L la mémoire et ℜ(.) la partie réelle. Quand L = 1 (L ≥ 2), on parle d'une CPM à réponse totale (resp. partielle).

Récepteur de Rimoldi

Posons U i = (α i + (M -1))/2 ∈ {0, 1, . . . M -1}. [START_REF] Rimoldi | A decomposition approach to cpm[END_REF] montre que le modulateur CPM s'écrit comme la concaténation en série du CPE, décrit par un treillis invariant dans le temps, et du MM, se présentant sous la forme d'un banc de filtres, chacun de longueur T . Le trellis du CPE est défini par le vecteur

d'état σ R n = U n-1 , . . . U n-L+1 , V n = n-L
i=0 U i mod p . On suppose que le signal s(t, α) est envoyé dans un canal sans mémoire avec un bruit blanc Gaussien (AWGN) avec une densité spectrale de puissance N 0 /2. L'enveloppe complexe du signal reçu est donneé par :

y(t) = 2Es T exp (jψ(t, α)) + n(t), t > 0 (2) 
où ψ(t, α) est la phase modifiée [START_REF] Rimoldi | A decomposition approach to cpm[END_REF]. Les sorties des filtres du MM {s i (t)} sont échantillonnées tous les nT , ce qui permet de calculer la projection du signal reçu, Eq. ( 2) :

y n = (n+1)T nT y(l)s * i (l)dl 1≤i≤pL M
sur l'espace des signaux du récepteur CPM. En considérant n'importe quelle base orthonormée de cet espace, [START_REF] Moqvist | Serially concatenated continuous phase modulation with iterative decoding[END_REF], la probabilité p(y n /X n ) est proportionnelle exp{2ℜ(y n i )/N 0 }. On utilisera cette expression comme métrique de branche dans le treillis du CPE quand on déroule l'algorithme BCJR [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (corresp.)[END_REF]. La Fig. 1a illustre le récepteur de Rimoldi.

Récepteur de Laurent-Kaleh

Dans le cas binaire, la décomposition de Laurent [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF] permet de réécrire l'enveloppe complexe de l'Eq. ( 1) sous la forme de la somme de K = 2 L-1 signaux modulés en amplitude par les pseudo-symboles a k,n = exp(jπhA k,n ) comme suit : Dans le contexte d'un récepteur maximum de vraisemblance (ML), [START_REF] Kaleh | Simple coherent receivers for partial response continuous phase modulation[END_REF] montre que l'on peut former le signal Eq. ( 3) à partir d'un treillis. En effet, à chaque instant nT , sachant le symbole d'entrée α n , on peut calculer tous les pseudo-symboles a k,n à partir de l'état courant de la phase, définie par σ L n = [a 0,n-L , α n-L+1 , . . . , α n-1 ], selon la récursion :

s b (t) = 2Es/T N -1 n=0 K-1 k=0 e jπhA k,n C k (t -nT ) (3) 
C k (t) = s0(t) L-1 j=1 s j+Lβ k,j (t), 0 < k ≤ K -1 A k,n = n i=0 αi - L-1 j=1 αn-jβ k,j , sj(t) = sin(ψ(t + jT )) sin(πh) ψ(t) =      2πhq(t), 0 ≤ t ≤ LT πh -2πhq(t -LT ), LT ≤ t ≤ 2LT 0,
A k,n = A0,n-L + αn + L-1 i=1 αn-i.(1 -β k,i ) (4) 
Ainsi, pour chaque transition correspond un signal si (t

) = 2E s /T K-1 k=0 a k,n C k (t -nT ).
La métrique de branche pour un bruit blanc Gaussien est donc donnée par :

exp -1 N0 +∞ -∞ |y(t) -si(t)| 2 (5) 
La Fig. 1b schématise ce récepteur. En se basant sur cette représentation, [START_REF] Murphy | Map symbol detection of cpm bursts[END_REF] développe le récepteur maximum a posteriori (MAP) correspondant basé sur l'algorithme BCJR. Les 2 L-2 premières composantes {C k (t)} sont des filtres de mises en formes de tailles supérieures à T [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF] et qui ne respectent pas le critère de Nyquist. Par conséquent, la séquence de bruit échantillonné à la sortie des filtres de réception est corrélée. Pour se ramener à un bruit blanc, il faudra introduire un filtre blanchissant [START_REF] Ibrahim | Bluetooth receiver design based on laurent's decomposition[END_REF] après les C * k (-t) concernés. D'autre part, comme les composantes {C k (t)} ne sont pas orthogonales, on aura de l'interférence inter-symboles (ISI).

Afin de simplifier l'Eq. ( 5), les différents auteurs assument un bruit échantillonné blanc et négligent l'ISI devant le bruit du canal. Ce qui équivaut, après simplification de l'Eq. ( 5), à filtrer y(t) par les C * k (-t) et échantillonner les sorties tous les nT [START_REF] Kaleh | Simple coherent receivers for partial response continuous phase modulation[END_REF][START_REF] Murphy | Map symbol detection of cpm bursts[END_REF] comme le montre le schéma Fig. 1b.

Récepteur exact de Laurent

L'expression de si (t) ne prend en compte que les [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (amp)[END_REF]). Le nouveau signal à l'instant si (t) s'écrit : Le terme correctif représente l'interférence des symboles passés. A l'instar de l'Eq. ( 4), on peut retrouver tous les pseudosymboles passés à partir de σ L n . Posons : 

K pseudo- symboles {A k,n } k et néglige l'effet des (L -1)K précédents symboles relatifs aux composantes C k (t) de support > T . Soit L k la longueur de C k (t) ( C k (t) = 0, ∀t > L k T ),
si (t) = 2E s /T K-1 k=0 a k,n C k (t -nT ) + 2E s /T K/2 k=0 L k -1 ℓ=1 a k,n-ℓ C k (t -(n -ℓ)T ) terme correctif 0 1T 2T 3T 0 0.5 1 1.5 C 0 (t) C 1 (t) (a) C k (t) nT (n+1)T -1 0 1 (b) si (t)
α n = [αn-L+1, . . . , αn], B k = (K -1 -k) T 2 1 [L×1] J =           0 
          [L×L]
où (K -1 -k) 2 est la décomposition binaire de K -1 -k sur L -1 bits et . T l'opérateur transposition. Les pseudo-symboles A k,n-ℓ peuvent être calculés par la récursion :

A k,n-ℓ = A 0,n-L + α n J ℓ B k , 0 ≤ ℓ ≤ L (6) 
Exemple : pour L = 4 (K = 8), on a :

α T n =   αn-3 . . . αn   , B1 =     1 1 0 1     , J =     0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0    
Ainsi, la métrique de branche dans l'Eq. ( 5) est plus exacte ici puisqu'on prend en compte les interférences. Désormais, au lieu de filtrer avec les C * k (-t) à la réception, on filtre avec un banc de filtres constitué des pM L différentes valeurs de si (t) tronquées sur [nT, (n+1)T ]. Afin de trouver les différents si (t) pour un schéma CPM donné, il suffit de simuler en amont et une seule fois {s i (t).π n (t)} pour tous les pM L-1 états σ L n , π n (t) est la fonction porte unitaire de support [nT, (n + 1)T ]. La Fig. 2 donne un exemple du banc de filtres pour une configuration CPM.

Expression analytique du banc de filtres

Pour trouver l'expression analytique du banc de filtres {s i } i , on peut utiliser la décomposition de Rimoldi. En effet, à partir d'un état σ R n du CPE et du symbole d'entré U n , la forme d'onde [START_REF] Rimoldi | A decomposition approach to cpm[END_REF] :

s i (t) correspondante, t = τ + nT, 0 ≤ τ < T , est
si(t) = exp (j ψ(τ, Xn)) Xn = [Un, σ R n ] = [Un, Un-1 . . . , Un-L+1, Vn] ψ(τ, Xn) = 2πhVn + 4πh L-1 k=0 U n-k q(τ + kT ) + W (τ ) W (τ ) = πh(M -1)τ /T -2πh(M -1) L-1 i=0 q(τ + iT ) + (L -1)(M -1)πh
Finalement, pour former le signal CPM final, il faut revenir à la fréquence non modifiée, pour cela, il suffit de multiplier, à n'importe quelle section du treillis n, les {s i (t)} i par exp(j2π

(f 1 -f 0 )t) avec f 1 = f 0 -h(M -1)/2T . On trouve : exp(j2π(f1 -f0)t) = exp -jπ (M -1)h T t = exp -jπ (M -1)h T τ exp (-jπ(M -1)hn) = exp -jπh τ T exp (-jπhn) ( cas binaire ) (7) 
A l'instant suivant, c'est-à-dire n + 1 :

• si k dans h est pair (et donc p impair), le facteur exponentiel à gauche dans Eq. ( 7) devient :

exp (-jπh(n + 1)) = exp (-jπhn) exp (-jπh) = exp (-jπhn) exp (-jπh + jπhp) (πhp ≡ 0[2π])
= exp (-jπhn) exp (jπ(p -1)h)

Or p -1 est pair, ∃β ∈ N/p -1 = 2β, donc quand on multipliera Eq. ( 7) avec s i (t), on obtient en argument :

ψ(τ, Xn) + π(p -1)h = 2πhVn + 4πh L-1 k=0 U n-k q(τ + kT ) + W (τ ) + 2πhβ = 2πh(Vn + β) + 4πh L-1 k=0 U n-k q(τ + kT ) + W (τ ) = ψ(τ, X ′ n ) (où X ′ n = [Un, . . . , Un-L+1, Vn + β])
Or, ψ(τ, X ′ n ) a déjà été calculé à l'instant n. On retrouve donc entièrement le banc de filtres en évaluant en une seule section n, ∀n ≥ 0. La Fig. 2b trace les différents filtres obtenus pour une L=2, REC et h=2/3 à un instant n.

• En revanche, si k est impair, alors : Or 2(p -1) est pair. Comme dans le cas précédent, on peut montrer que le banc de filtres de l'instant n + 1, peut être calculés en multipliant les filtres du banc précédent par exp (jπh).

De le même manière, on peut montrer que le banc de filtres à l'instant n+ℓ, ∀ℓ ∈ N est le même que celui de n+(ℓ modulo 2). Par conséquent, pour retrouver tous les filtres de réception, on 

Comparaison de performance

La Fig. 4b trace le rendement maximal R * possible d'un code externe en concaténation série. R * est approximé ici par l'aire sous la courbe de la fonction EXIT chart [START_REF] Hagenauer | The exit chart-introduction to extrinsic information transfer in iterative processing[END_REF] associée à un décodage MAP [START_REF] Murphy | Map symbol detection of cpm bursts[END_REF] basé sur les deux récepteurs de la GMSK h = 1/3, L = 3, BT = 0.3 dans un schéma itératif. La Fig. 4a illustre R * dans un schéma non itératif (Le point correspondant à une information mutuelle apriori nulle dans l'EXIT chart). Dans le cas non itératif, le récepteur introduit dans ce papier permet une légère amélioration par rapport au récepteur classique. En revanche, dans le cas itératif, notre récepteur présente une amélioration considérable. Ainsi, pour un rendement de code externe de 1/2, on peut observer un gain allant jusqu'à 1.74 dB rien qu'en changeant le banc de filtres de réception. En utilisant les méthodes introduites dans [START_REF] Benaddi | Design of unstructured and protograph-based ldpc coded continuous phase modulation[END_REF], le tableau Table 1 résume le profile des codes LDPC (Low Parity Check Code [START_REF] Gallager | Low-density parity-check codes[END_REF]) optimisés et le seuil correspondant.

Conclusion

Dans ce papier, nous avons dérivé un récepteur optimal exact basé sur la décomposition de Laurent qui permet d'une part, de supprimer les interférences induites par les composantes de Laurent, et d'autre part, de former un banc de filtres de réception à temps symbole. Dans un deuxième temps, nous avons dérivé deux méthodes pour calculer ce banc de filtres, l'une à partir du treillis de Kaleh [START_REF] Kaleh | Simple coherent receivers for partial response continuous phase modulation[END_REF] et l'autre à partir du treillis de Rimoldi [START_REF] Rimoldi | A decomposition approach to cpm[END_REF]. Les futurs travaux porteront sur les performances de 
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 1 FIGURE 1: Schéma de la décomposition de Rimoldi et de Laurent
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 2 FIGURE 2: Composantes et banc de filtres exact pour une L=2, REC, h=2/3

  exp (-jπh(n + 1)) = exp (-jπhn) exp (-jπh) = exp (-jπhn) exp (-jπh + j2πhp) (2πhp = 0[2π]) = exp (-jπhn) exp (jπ2(p -1)h) exp (jπh)
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 3 FIGURE 3: Banc de filtres exact pour une L=2, REC, h=3/4

  R * décodage itératif

FIGURE 4 :

 4 FIGURE 4: Comparaison R * pour la GMSK h = 1/3, L = 3, BT = 0.3 notre récepteur dans des schémas plus sensibles à l'interférence (multi-trajet, multi-porteuses, égalisation, . . .).

TABLE 1 :

 1 Codes LDPC optimisés pour le récepteur exact et classique commence par calculer les {s i (t)} i correspondant à un instant n, ∀n ≥ 0, puis à l'instant suivant n + 1 pour trouver les filtres manquants, ce qui est équivalent à multiplier le banc précédent par exp (jπh). La Fig.3trace les différents filtres obtenus pour une L=2, REC, h=3/4 dans deux section du treillis consécutives.

N.B. : dans le cas de modulation M-aire, il faut distinguer les cas selon la parité de : 1 -M mod p.