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Query-based learning of acyclic conditional preference
networks from noisy data

Fabien Labernia and Florian Yger and Brice Mayag and Jamal Atif 1

Abstract. Conditional preference networks (CP-nets) provide a
powerful, compact, and intuitive graphical tool to represent the pref-
erences of a user. However learning such a structure is known to be a
difficult problem due to its combinatorial nature. We propose in this
paper a new, efficient, and robust query-based learning algorithm for
acyclic CP-nets. In particular, our algorithm takes into account the
incoherences in the user’s preferences or in noisy data by search-
ing in a principled way the variables that condition the other ones.
We provide complexity results of the algorithm, and demonstrate its
efficiency through an empirical evaluation on synthetic and on real
datasets.

1 Introduction
Representing, learning and reasoning over users preferences is a cen-
tral question in many Artificial Intelligence related fields, and be-
yond. A large body of research has focused on preference represen-
tation and reasoning (e.g. [6, 11, 14, 21, 22, 23]), but few works have
concerned their learning (e.g. [7, 8, 9, 12, 15, 16, 18]). This work
focuses on learning combinatorial preferences, in the framework
of conditional preference networks (CP-nets) as introduced in [5].

CP-nets are a formal framework for preference representation
based on the notion of ceteris paribus (i.e “all other things being
equal”). This notion of ceteris paribus captures an intuitive idea: it is
difficult to express one preference between two totally different ob-
jects2. Nevertheless, it is easier to express one preference between
two almost identical ones. In this work, we consider that ceteris
paribus means that two objects differ only by one attribute value.
For instance, if two hotels differ by their price ceteris paribus, it is
probably easier to chose one of them. CP-nets implement this no-
tion by factorizing the preferences, leading to a compact graphical
representation.

Learning CP-nets is known to be NP-Complete [1, 5, 7], even for
acyclic ones. Despite this ‘negative’ result, some works have tackled
this problem, e.g. regression-based learning [9, 10, 17], learning by
reduction to 2-SAT [8], and learning by user queries [7, 13, 15].

In all these approaches, the preferences of the users are considered
to be coherent ones. Some other works take into account of noisy
preferences [18, 19]. A noise, also called incoherence or inconsis-
tency, is a preference that does not correspond to the true one, i.e. “I
prefer a than b” whereas the true preference is “I prefer b than a”.
This noise can appear at random, as explained in [4], instead of an
adversarial noise [3] which is not studied here.
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2 An object can be a hotel having as a set of attributes: the number of rooms,
the price, etc.
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Figure 1. General scheme of a learning procedure for CP-nets.

In this work, we propose a new, efficient, and robust learning algo-
rithm for CP-nets. Our aim is to come up with a learning procedure
with the aim of recommendation systems as illustrated in Figure 1.
Classically, a CP-net is constructed for each user. However, in this
work, we use a CP-net as a way to aggregate preferences of many
users. Our learning procedure can be seen as a way to learn an av-
erage CP-net of the common preferences between different users. To
do this, we exploit the notion of exact learning, initially proposed
by [2] in the context of query learning.

We focus on the query learning paradigm for CP-nets as intro-
duced in [15]. More precisely, we proceed by querying (a set of users
or a database) the preference between two objects that differ by just
one attribute value), and in case of incoherence detection, we mini-
mize its influence by choosing the optimal attributes that maximize
the coherence of the overall learnt CP-net.

Our learning algorithm is composed of two phases: a general
learning phase aiming at adding the preference in the graphical struc-
ture of the CP-net, and a parent search phase aiming at updating
this graphical structure. This two-phases decomposition is classical
in CP-nets learning. However, the originality of our approach lies
in these both phases. In the general learning phase, our method add
the less possible number of preferences in the structure which sig-
nificantly decreases the computation time, and in the search parent
phase, we propose a principle updating strategy that minimizes the
incoherence of the overall structure by choosing the parent variable
which splits the large number of rules stemming from the data.



2 Preliminaries
Let us first introduce some notations and concepts related to CP-
nets [5].

2.1 Conditional preference networks (CP-nets)
Let V = {X1, . . . , Xn} be a set of n binary variables (variables
are denoted by capital letters X and sets of variables are denoted
by bold letters X). Each variable X ∈ V is associated with a do-
main Dom({X}) = {x, x′} (to simplify the notation, we will omit
the brackets and write Dom(X)) of values it can take. The value
x ∈ Dom(X) of a variable X ∈ V is called an assignment. We
denote by Dom(V) = Dom(X1) × . . . × Dom(Xn) the domain
of the values of V. We call a state vector x ∈ Dom(X) which is an
assignment of all Xi ∈ X, with X ⊆ V (if X = V, such a vector is
called outcome).

We consider in this study a strict preference relation as a partial
ordering � on Dom(V), i.e. x � y meaning that an object x is
strictly preferred to an object y.

Let x ∈ Dom(X) and y ∈ Dom(Y) be two states, with
X,Y ⊆ V, X ∩ Y = ∅. The notation xy ∈ Dom(X ∪ Y) is
the concatenation of the state x and the state y.

Let o,o′ ∈ Dom(V) be two outcomes. We call a swap, denoted
by (o,o′)V (which induces o � o′), a pair of two outcomes such
that the assignment of only one variable V changes between both.
This variable is called the swap variable of (o,o′)V . Furthermore,
o[X] represents the vector of assignments of all variables in the set
X ⊆ V (when X = V, o[X] = o).

A variable X is called a parent variable of another variable V if
the assignment of X changes the preference over the assignments of
V . More generally, Pa(V ) denotes the set of all parent variables of
V . This defines a rule r, called CP-rule, of the form r = (u : v �
v′) with V ∈ V, Dom(V ) = {v, v′},U = Pa(V ) ⊆ V \ {V },
and u ∈ Dom(U). If Pa(V ) = ∅, we just write r = (v � v′).
We say that a CP-rule r = (u : v � v′) is linked by V . These
rules are stored in a structure called CP-table (for conditional pref-
erence table), which is unique for each variable Y ∈ V and is de-
noted by CPT (Y ). A CP-table contains the preferences over the
assignment of Y for some states x ∈ Dom(Pa(Y )). When all the
possible states of Pa(Y ) are present, it is said to be complete. We
note by CPT (V) the union of all CP-tables in V. More formally
CPT (V) =

⋃
V ∈V

CPT (V ).

Definition 1. A conditional preference network (CP-net) N =
(V, A, CPT (V)) is a directed graph with V the set of vertices
(representing the variables), A the set of directed arcs such that
(X,Y ) ∈ A iff X ∈ Pa(Y ), and CPT (V) =

⋃
V ∈V

CPT (V ).

A CP-net is said complete if its associated CP-tables are com-
plete. We call separable CP-net a CP-net N such that A = ∅, i.e.
Pa(V ) = ∅, ∀V ∈ V.

A graphic representation of a CP-net and the partial ordering of
all possible outcomes is given in Figure 2. One can note that it is a
complete and a non-separable CP-net which contains an independent
variable (swimming pool) and a variable conditioned by another one
(kitchen is conditioned by occupancy).

We say that a CP-net N is cyclic iff there exists a cycle in its
associated graph. Otherwise, the CP-net is said acyclic. We restrict
our work to acyclic CP-nets.

b
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Figure 2. Complete CP-net with three variables.

2.2 Query learning algorithms for CP-nets
We discuss in this section the main query learning algorithms for
CP-nets. We denote by n the number of variables of a CP-net, i.e.
|V| = n, by NT the target CP-net, i.e. the structure that we want to
fit, and byNL our learned CP-net.

The first reported query learning algorithm for CP-nets in the liter-
ature [15] proceeds by asking different questions to a user in order to
learn her preferences. The working assumption is that the user prefer-
ences are representable by a CP-net structure. Two types of questions
can be distinguished:

• equivalence queries EQ(NL,NT ) which return TRUE if NL is
equivalent toNT

3, otherwise they return FALSE plus a counterex-
ample in a form of a swap (o,o′)V s.t. o � o′ representing a
violated rule r.

• membership queries MQ(NT , r), which return TRUE if the rule
r is satisfied in NT (denoted by NT � r), otherwise they return
FALSE.

When NL 6= NT , the equivalence query returns a swap counterex-
ample (o,o′)V . This swap induces a rule r which (1) if it does not
exist in NL, then we just have to add r in NL, or (2) if it is violated
in NL, then we have to find a new parent variable for V . In [15], it
has been shown that a linear number of equivalence queries (O(|V|))
and a logarithmic number of membership queries (O(log2 |V|)) are
required to learn such a CP-net. For an in-depth explanation of the
method, the interested reader can refer to [15].

The second algorithm [13] is neither based on ceteris paribus com-
parison nor equivalence and membership queries. It is an online al-
gorithm that learns an acyclic CP-net and is decomposed into two
phases:

• finding a separable CP-net by asking for each variable V the pref-
erence between v and v′,

• updating the CP-table of each variable by finding the best set of
parent variables using a set of confident4 variables.

In this algorithm, all the parent variables are selected at the same time
by phase 2. It seeks a subset of parent variables P from the set of all
confident variables C, i.e. P ⊆ C ⊆ V. Moreover, for all P ⊆ C,
the entire CP-table of the current variable V is created and tested
until a good one is found (i.e. a CP-table that satisfies all the prefer-
ences). In the worst case, this algorithm needs 22n operations to de-
termine, for each variable, its parents and its corresponding CP-table.

3 We say that two CP-nets N and N ′ are equivalent, denoted by N ≡ N ′
iff they induce exactly the same preferences.

4 We consider a variable V as confident if enough swap that induced rules of
V are found.



Due to the exponential nature of this phase, it is necessary to limit the
computation by bounding the size p of parent variables, the number
e of edges in the target CP-net NT , and the number q of necessary
swaps to conclude that a variable becomes confident. Finally, the al-
gorithm can learn a CP-net in O(np), with p the maximum number
of parent variables. For more details, we refer the reader to [13].

3 Proposed algorithm for learning a CP-net
Let r = (u : v � v′) be a rule with V ∈ V, Dom(V ) =
{v, v′}, Pa(V ) = U ⊆ V \ {V } and u ∈ Dom(U). For the sake
of clarity, we introduce in this section the notations r̄ = (u : v′ � v)
as the inverse rule of V , and rp = (up : v � v′) as the augmentation
of rule r with an assignment p ∈ Dom(P ) of a new parent variable
P ∈ V \ (U ∪ {V }).

As in the algorithm in [15], we query an oracle through
EQ(NL,NT ) if our learned CP-net NL is equivalent to its induced
(the target) CP-net NT . This oracle can be either a user or a dataset
that returns TRUE or FALSE. We suppose here that the oracle is able
to answer, in a polynomial time, the following three queries:

1. the equivalence between two CP-nets (and returns a counterexam-
ple if not),

2. its preference between two outcomes in a swap,
3. another swap (o′′,o′′′)V which respects some conditions (see

Eq. (1) in Subsection 3.2).

We denote by Σ the oracle, and by NT its proper CP-net. The target
CP-net NT , cannot generally be explicitly known due to e.g. cog-
nitive overloads for a user or the size of the database. However, we
suppose that the oracle is able to differentiate its proper CP-net from
the learned one.

Our algorithm, contrary to the state of the art approaches, tries to
take into account incoherent (contradictory) preferences. Indeed, it
may happen, for a user, to have incoherent preferences (she makes
some mistakes or her preferences cannot be modeled by a CP-net). In
case of databases, the data can be affected by noise, i.e. contradictory
preferences. Hence, the learning procedure should be robust as much
as possible to such a noise. In our approach, we introduce a list of
violated rules L which cannot be represented in our CP-net either
because we cannot add a parent to a variable to represent the rule,
or even if such a parent exists, this rule cannot hold in NL. Then,
we say that two CP-nets NL and NT are equivalent if the oracle
compares these two CP-nets without using the rules contained in L,
i.e. EQ(NL,Σ, L).

Following previous learning algorithms, we decompose our pro-
cedure into a general learning phase, and a parent search phase. Still,
our two phases are different from the ones in the state of the art.

3.1 General learning phase
In exact learning theory, we look for a perfect equivalence between
the target and the learned structure. Following this perspective, we
need to completely fitNL and improve as much as possible the learn-
ing accuracy. Algorithm 1 corresponds to the general learning phase,
starting with an empty CP-netNL.
NL is updated by the rule r induced by the swap counterexample

provided by the oracle. As in [5], two cases can occur: the inverse
rule r̄ is not present inNL, then we just have to add r to our CP-net.
But if r̄ is already present, then we must find a new parent to the
variable V associated with the rule r. Since our Algorithm 1 does

Algorithm 1: learningCPNet(Σ,NT )

Data: An oracle Σ which induces a target CP-netNT .
Result: A learned CP-netNL.

1 L = ∅;
2 NL = (V, A = ∅, CPT (V) = ∅);
3 while (¬EQ(NL,NT , L)) do
4 Let (o,o′)V ∈ Σ be a swap counterexample returned by EQ

and r = (u : v � v′) its induced rule with U = Pa(V );
5 if (r̄ ∈ CPT (V )) then
6 P ← searchParent((o,o′)V ,Σ);
7 if (P exists, with Dom(P ) = {p, p′}) then
8 A← A ∪ {(P, V )};
9 CPT (V )← {rp, r̄p

′
} where p = o[P ];

10 L← L \ {r′}, ∀r′ ∈ L s.t. r′ is linked by V ;

11 else L← L ∪ {r};
12 else CPT (V )← CPT (V ) ∪ {r};
13 returnNL;

not always pick the real good parent (because of the presence of in-
coherences in the data), the parent search procedure can fail. If this
happens (Line 11), we add r in the list of violated rules (i.e. a list that
cannot be represented inNL). Otherwise (Line 7), we remove all the
CPT (V ) and create a new one that contains rp and r̄p

′
.

The algorithms in [13, 15] try to compute the complete CP-table
of V and restart for each new parent variable, which leads to heavy
computations. Nevertheless, we guess that in real world applications,
CP-tables are not generally complete. Moreover, in case when the
oracle refines its judgment, the preference in a swap can be different
from a moment to the other, and an incoherence becomes coherent.
Unfortunately, the opposite is also possible. However, we expect that
its preferences becomes truthful as the time passes. Then it is not
mandatory to compute the complete one in a greedy manner. This
allows us to reduce the computational time. Besides, the missing en-
tries are detected in our algorithm thanks to the equivalence queries.

3.2 Parent search phase

The parent search phase is the most important one in the learning
procedure. This is due to the fact that several parent variables can be
chosen, which may lead to bad decisions.

The procedure searchParent needs as an input the swap coun-
terexample given by EQ and the oracle Σ. Its first step is to query the
parent variable P of the swap (o,o′)V (with o � o′) associated with
variable V . The variable P must satisfy the following conditions:

1. It should preserve the assignment p between two comparable5 out-
comes. This is trivial in our case because we have a swap.

2. There should exist at least one other swap (o′′,o′′′)V associated
with the same variable V such that the preference on V is reversed
and it contains the inverse assignment of P .

We can summarize these conditions in the following equation: let
(o,o′)V and (o′′,o′′′)V two swaps, with V, P ∈ V, which respect

o[V ] = o′′′[V ] 6= o′[V ] = o′′[V ],
and o[P ] = o′[P ] 6= o′′[P ] = o′′′[P ].

(1)

5 Two outcomes o and o′ are comparable if either o � o′ or o′ � o.



These constraints are modeled in Line 1. Since we restrict ourselves
to acyclic CP-nets, a function cycle is used to test the acyclicity of
NL with the new parent variable.

We need to choose the good parent variable among all the available
ones in P. Instead of choosing a random P ∈ P, we pick the variable
P that minimizes the number of swaps that violate the rule induced
by the current swap counterexample, i.e. let (o,o′)V and (o′′,o′′′)V
be two swaps, with V ∈ V and P ∈ Pa(V ), then:

(o[P ] = o′′[P ] and o[V ] 6= o′′[V ])
or (o[P ] 6= o′′[P ] and o[V ] = o′′[V ]).

(2)

In case of equality, we randomly choose one.

Our parent search procedure is given in Algorithm 2. It is impor-
tant to note that this algorithm can be parallelized using one process
for each parent candidate, thanks to the independence of this search.
However, this implementation is left for future work.

Algorithm 2: searchParent((o,o′)V ,Σ)

Data: A swap (o,o′)V and the oracle Σ.
Result: A parent variable P if there exists one, an error

otherwise.
1 P← {P ∈ V \ ({V } ∪ Pa(V )) | ¬cycle(N =

(V, A ∪ {(P, V )}, CPT (V))) and ∃(o′′,o′′′)V ∈ Σ s.t.
Eq. (1) returns TRUE};

2 if (P 6= ∅) then
3 return argmin

P∈P
{#(o′′,o′′′)V ∈ Σ | Eq. (2) returns TRUE};

4 else return “parent not found”;

Example 1. Let us now try to learn a simple complete CP-net from
Figure 2 (without the swimming pool variable). We begin by asking a
couple if the empty learned CP-net is equivalent to their induced one.
This is obviously not the case. Consider that they then give us the fol-
lowing swap counterexample ((2, big), (3, big))occupancy. The algo-
rithm finds the rule r = (2 � 3) which is added toNL. The next step
is the equivalence query. Consider now that they answer the query
by returning ((2, small), (2, big))kitchen. Then, the rule r = (small
� big) is deduced, and is added toNL. The process is repeated once
again. Consider once more that the couple at this stage returns the
following swap counterexample ((3, big), (3, small))kitchen which in-
duces the rule r = (big � small). Since the inverse rule r̄ = (small
� big) already exists, the searchParent returns only the occupancy
variable. Theses two new rules r3 = (3 : big� small) and r̄2 = (2 :
small � big) are then added in the CP-net.

We end this subsection by giving some complexity results about
these two algorithms.

Proposition 1. Let Σ be an oracle. We define by s the number of
swaps contained in Σ, i.e. holding in a database, or known by a user,
and by n the number of variables in a CP-net. Algorithm 2 has a
complexity of O(n3 + ns).

Proof : Line 1 has to detect a cycle in O(n+n2) ≈ O(n2). The first
n is the number of variables in the CP-net and the second n2 corre-
sponds to the maximum number of directed arcs in a directed graph.
Finding a swap that respects the parent condition can be computed
in O(s). These steps have to be repeated for each parent candidate.
Thus, Line 1 has a total complexity of O(n(s+ n2) = O(n3 + ns).

Line 3 has to count the number of swaps in Σ that respect a given
condition, it is in O(ns). Hence, Algorithm 2 has a total complexity
of O(n3 + ns).

Proposition 2. Algorithm 1 has a complexity of O(2p(n4 + n2s +
ne)) to computeNL, where p = max

V ∈V
{|Pa(V )|}, e is the time taken

by EQ to return TRUE or FALSE, andNL is an acyclic CP-net.

Proof : We know from Prop. 1 that searchParent (Line 6) has a
complexity of O(n3+ns). We now consider the while condition at
Line 3. Suppose that NT is a complete CP-net. Then, we must have
complete CP-tables which imply, for p the max number of parents
in NT , 2p equivalence queries (one for each rule). Moreover, we
have to remove all the rules in the CP-table when a new parent is

found. In the worst case, we need
p∑

i=1

2i = 2(2p − 1) equivalence

queries to learn one CP-table, so 2n(2p − 1) equivalence queries in
total. We finally have a complexity of 2n(2p − 1)(n3 + ns + e) ∈
O(2p(n4 + n2s + ne)).

Note that s and e, which are respectively defined in Propositions 1
and 2, correspond to the same process if the oracle is a dataset. For n
the number of variables, the maximum number of objects in a dataset
is 2n in the binary case. The maximum number of rules is then k ≤
2n. Furthermore, each of these rules is represented by at least one
swap (exactly one if k = 2n). Hence, in the worst case, s ≤ 2n and
e ≤ 2n. However, in real world applications, s < m� 2n (with m
the number of objects in a dataset) and the worst case does not hold
in most of situations.

4 Experimental results
In this section, we consider that the oracle Σ is a database that con-
tains a list of swaps. To evaluate the efficiency of our algorithm, we
demonstrate its usefulness on real and on simulated datasets.

Defining an accuracy measure of a learning algorithm on such a
structure is not a trivial task. A CP-net can be seen as a set of rules.
A workaround to define an accuracy measure is to use the number
of rules induced by the preferences of Σ which are correctly repre-
sented in NL versus the total number of rules. However, even if this
can be relevant in some cases, where there is just one violated rule,
this measure becomes meaningless. Indeed, a violated rule cannot be
represented in NL and then induces a huge number of unsatisfiable
swaps. In a context of learning a relevant CP-net, we rather prefer to
use the number of swaps that are in agreement with NL versus the
total number of swaps in the whole dataset.

We use two different runs of our algorithm in order to smooth our
results: the first one consists of the random generation phase of the
target CP-nets or the datasets, and the second one consists of the
learning phase of NL. We note these two runs by k × l with k the
random generation phase and l the learning phase. In all the graphics
in the rest of the paper, each point corresponds to a simple averaged
value according to the number of runs. The standard deviation is re-
ported as an error bar on these graphics.

We use two distinct datasets to conduct our experiments:

1. the TripAdvisor dataset [24, 25] rescaled to obtain binary at-
tributes (considered here as variables),

2. randomly generated dataset in order to test the scalability of our
algorithm, and its robustness to incoherences.



The TripAdisor6 dataset contains about 240, 000 hotel reviews. A
hotel is represented by seven rates (between 1 and 5) plus one general
rate. We use this general rate as our preference relation between the
reviews. To be able to learn a binary CP-net, the rates are rescaled:
1 if the rate is strictly greater than two, and 0 otherwise. We have,
after this procedure, 126 different hotel reviews that induce a target
CP-netNT which potentially contains incoherences.

We also generate a random artificial dataset as follows: two ran-
dom boolean vectors such that they form a swap (only one bit
changes between both vectors) are generated along with a random
score for each of these vectors. This score corresponds to our pref-
erence relation. In order to test Algorithm 1, we generate three sizes
of random datasets with 50 objects (7 attributes), 500 objects (10 at-
tributes), and 10000 objects (15 attributes). We set the size of vectors
of each dataset by applying n = blog2 mc + 1, with m the number
of objects in the dataset. We suppose that such a generated synthetic
dataset reflects reality in the sense that a real dataset cannot contain
all the possible combinations of the attribute values and some ob-
jects may not exist, i.e. m ≤ 2n−1 < 2n. A preprocessing procedure
transforms a set of objects into a set of swaps.

Accuracy(%) Agreement Disagreement
p = 1

real hotels (126) 0.73 0.27
random hotels (50) 0.72 0.28
random hotels (500) 0.57 0.43
random hotels (10000) 0.52 0.48

p = 5
real hotels (126) 0.82 0.18
random hotels (50) 0.82 0.18
random hotels (500) 0.59 0.41
random hotels (10000) 0.51 0.49

p =∞
real hotels (126) 0.83 0.17
random hotels (50) 0.79 0.21
random hotels (500) 0.69 0.31
random hotels (10000) 0.66 0.34

relaxing acyclic condition
real hotels (126) 1.00 0.00
random hotels (50) 1.00 0.00
random hotels (500) 1.00 0.00
random hotels (10000) too long to compute

Table 1. Accuracy of Algorithm 1. Results are averaged on 10× 10 runs.

We firstly test the importance of having coherent preferences for
the learning phase. Except for the 50 objects dataset (probably due
to the few number of objects), a gap is observed between the real
hotel dataset and the 500 objects dataset in Figure 3. Of course, the
agreement grows with regards to the maximum number of parents.
The last test consists in relaxing the acyclic condition in order to
observe the its influence. In this case, we are able to exactly fit NT ,
but at the price of heavy computations.

Figure 3 depicts the results of Table 1. The accuracy increases
linearly w.r.t the number of parents. Once again, one can observe
a gap between the accuracy of separable (p = 0) and tree-shaped
CP-nets (p = 1) for all datasets, and a decreasing accuracy between
p = 1 and p = 2. The accuracy continues growing when p > 2.
Furthermore, one can note that the learning procedure is not stable

6 http://times.cs.uiuc.edu/˜wang296/Data/.
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Figure 3. Learning accuracy according to the number of parent p per
variable. Datasets are randomly generated except for the real 126 hotels file.

Results are averaged on 5× 10 runs and error bars correspond to the
standard deviation of the observed values.

for small numbers of objects (n < 500) because of the number of
variables which does not allow the algorithm to correct its mistakes.
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Figure 4. Learning accuracy when the number of variables is fixed
(n = 15). We increase the number of objects in the random datasets. Results

are averaged on 2× 5 runs and error bars correspond to the standard
deviation of the observed values.

Figure 4 shows the influence of the number of objects m on the
accuracy for a fixed number of variables n. When m � 2n, we can
easily fit the structure with an accuracy greater than 80% (for the 500
and 1000 datasets). When the dataset contains a number of objects m
close to the limited size 2n, the accuracy increases until about 60%.
We can observe the same phenomenon as in Figure 3, with a negative
gap between p = 1 and p = 2. It occurs for all random datasets.

At last, we focus on the time taken by Algorithm 1 to learn one CP-
net from a dataset. We can see in Figure 5 that this learning task is
immediate for m ≤ 1000. However, whereas we need about 20 sec-
onds to learn a CP-net from m = 5000 and p = 14, we need more
than 150 seconds to learn a CP-net from m = 10000 and p = 14.
Thus, for two times more objects, we need ten times longer to com-
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Figure 5. Learning time when the number of variables is fixed (n = 15).
We increase the number of objects in the datasets. Results correspond to one
learning execution averaged on 2× 5 runs and error bars correspond to the

standard deviation of the observed values.

pute it. However, the computation time increases linearly according
to the number of parents: as we need to browse the whole database,
the number of objects m (thus the number of swaps s that induce the
rules) is a critical factor.

5 Conclusion
We presented in this paper a new algorithm for learning acyclic CP-
nets, and designed a bunch of experiments to evaluate its perfor-
mances on synthetic and on real datasets. They showed that despite
its exponential complexity depending on the number of objects and
parents (Proposition 2), our algorithm can learn in a few seconds a
CP-net on random CP-nets, random datasets, or real dataset.

The main ingredient of our approach is incoherence handling in
the preferences. The robustness of our algorithm to these incoher-
ences has been evidenced by the designed experiments. For instance,
on a task for hotel rating using a TripAdvisor dataset affected by
noise, our algorithm achieves good accuracy results.

Future work will concern the improvement of our algorithm from
different standpoints, in particular to reduce its time complexity.

A first effort will concern the implementation of a parallel version
of our searchParent subroutine in order to decrease the learning
time according to Proposition 1. This will allow to gain at least a n
factor. This is especially important as recommender systems are ap-
plied in environments with massive datasets such as social networks.

A second effort will concern the improvement of several critical
parts of our algorithm. The first one concerns the exhaustive nature
of equivalence queries. Since we want a perfect fitting between NT

andNL (when working with datasets) we must look over all the input
data for an answer, which is very time consuming. This issue can
be overcome by designing an approximate strategy, potentially with
accuracy guarantees. The second critical part concerns the random
nature of the counterexample returned by the equivalence queries. It
may occur when the counterexample does not correspond to the real
true preference rule. This leads to erroneous rules generation.
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