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Abstract

Collaborative clustering is a recent field of Machine Learning that shows sim-
ilarities with both ensemble learning and transfer learning. Using a two-step ap-
proach where different clustering algorithms first process data individually and
then exchange their information and results with a goal of mutual improvement,
collaborative clustering has shown promising performances when trying to have
several algorithms working on the same data. However the field is still lagging
behind when it comes to transfer learning where several algorithms are working
on different data with similar clusters and the same features.

In this article, we propose an original method where we combine the topolog-
ical structure of the Generative Topographic Mapping (GTM) algorithm and take
advantage of it to transfer information between collaborating algorithms working
on different data sets featuring similar distributions.

The proposed approach has been validated on several data sets, and the exper-
imental results have shown very promising performances.
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Figure 1: Collaborative clustering

1 Introduction
Data clustering is a difficult task which aims at finding the intrinsic structures of a data
set. The goal is to discover groups of similar elements among the data [10]. However,
the number and the size of data sets currently expend at an unprecedented rate, in-
creasing difficult for individual clustering algorithms to achieve good performances in
a reasonable amount of time. There are two main reasons to explain these difficulties:
1) Finding a satisfying clustering often requires to try several algorithms with differ-
ent parameter configurations. 2) Regardless of the results’ quality, processing huge
data sets is time consuming, and there are very few tools to transfer and re-use already
mined information from one problem to another with the goal of making the process
faster.

Given this context, collaborative clustering is a recent and promising new field with
few works available in the literature (e.g. [15, 4, 6, 22]) that offers several solutions
for these specific issues. While most of distributed clustering techniques [17, 16] try to
obtain a consensus result based on all algorithms’ models and solutions, the fundamen-
tal concept of collaboration is that the clustering algorithms operate locally (namely,
on individual data sets) but collaborate by exchanging information [12]. In short, the
goal of collaborative clustering is to have all algorithms improving their results. Most
collaborative methods follow a 2-step framework [12] (See Figure 1):

• Local Step: First, the algorithms operate locally on the data they have access to.
At the end of this step, each algorithm proposes a solution vector, i.e. a vector of
cluster labels, one for each data point.

• Collaborative Step: Then, the algorithms exchange their information. The in-
formation received form the collaborators is used to confirm or improve each
local model. Depending on the collaborative method, this step may use differ-
ent ways of exchanging the information: votes, confusion matrices, prototypes,
etc. At the end of the collaborative step, ideally, all solution vectors have been
improved based on the shared knowledge.

Depending on the data sets on which the algorithms collaborate, there are three
main types of collaboration: Horizontal, Vertical and Hybrid collaboration. The defi-
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nitions of Horizontal and Vertical Collaboration have been formalized in earlier works
[14, 8]. The Hybrid Collaboration is a combination of both Horizontal and Vertical
Collaboration. Both subcategories can be seen as a constrained forms of transfer learn-
ing:

• Horizontal Collaboration: Several algorithms analyze different representations
of the same observations. It can be applied to multi-view clustering, multi-expert
clustering, clustering of high dimensional data, or multi-scale clustering, see
Figure 2.

• Vertical Collaboration: Several algorithms analyze different data sets sharing
the same descriptors and having similar data distributions. The Collaborators are
therefore looking for similar clusters, see Figure 3. This is equivalent to knowl-
edge transfer in identical feature spaces and can also be applied to process large
data sets by splitting them and processing each subset with different algorithms
exchanging information.

Figure 2: Horizontal clustering principle

In this article we propose to to adapt an horizontal collaboration framework [18] for
vertical collaboration purposes. The new method is based on the neural network struc-
ture of the Generative Topographic Maps (GTM) [1]. By combining both, we are able
to turn our originally horizontal collaboration method into a new and robust vertical
collaboration framework. This article is an extension from an original work presented
at the 7th International Conference on Soft Computing and Pattern Recognition [19].
This extended version includes some extra theoretical background as well as additional
experiments.

The remainder of this article is organized as follows: Section 2 presents recent
works on collaborative clustering and explains how they compare to our proposed
method. In section 3 we introduce the horizontal collaborative framework. In section
4, we detail the GTM algorithm and we explain how it is combined with the horizontal
collaborative framework to achieve a vertical collaboration. Section 5 present the re-
sults a set of experiments to assess the performances of our proposed method. Finally,
this article ends with a conclusion and a few insights on potential extensions of this
work.

3

https://www.researchgate.net/publication/246348953_GTM_The_Generative_Topographic_Mapping?el=1_x_8&enrichId=rgreq-f9098a168b230a6136b78a41b377bc5d-XXX&enrichSource=Y292ZXJQYWdlOzI5NTk5MTM3MjtBUzozMzQ4MTI0NzM3NzQwODBAMTQ1NjgzNjkyMjI0MQ==


Figure 3: Vertical clustering principle

2 Collaborative Clustering
In this section we shortly describe the closest and most recent related works in the
literature:

• The Collaborative Clustering using Heterogeneous Algorithms framework [18].
This framework enables horizontal collaboration as well as reinforcement learn-
ing, and is based on the EM algorithm [3]. We use this framework as a tool to
build the proposed method of this article.

• The SAMARAH multi-agent system [5]. This framework enable collaboration
and consensus for horizontal clustering only, and is based on a complex conflict
resolution algorithm that uses probabilistic confusion matrices.

• Fuzzy Collaborative Clustering introduced by Pedrycz using the fuzzy c-means
algorithm. The objective function governing the search for the structure in this
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case is the following:

Q[ii] =

N [ii]∑
k=1

c∑
i=1

u2ik[ii]d2ik[ii] +

P∑
jj=1

β[ii, jj]

c∑
i=1

N [ii]∑
k=1

u2ik||vi[ii]− vj [jj]||2

where β[ii, jj] is a collaboration coefficient supporting an impact of the jjth

data set and affecting the structure to be determined in the iith data set. The
number of patterns in the iith data set is denoted by N [ii]. U [ii] and v[ii] denote
the partition matrix and the ith prototype produced by the clustering realized for
the ii-set of data.

• Two prototype-based collaborative clustering Frameworks have been proposed
by Ghassany et al. [6], Grozavu N. and Bennani Y. [9]. These methods have
been inspired from the works of Pedrycz et al. [12, 13] on the c-means collabo-
rative clustering. Both these prototype-based approaches can be used for either
horizontal or vertical collaboration. It is a derivative method modifying the orig-
inal SOM algorithm [11]. Since this approach is the closest from ours, the results
from both methods are compared in the experiments.

For the SOMcol method [9], the classical SOM objective function is modified in
order to take into account the distant neighborhood function Kij as follows:

R
[ii]
V (χ,w) =

P∑
jj 6=ii

α
[jj]
[ii]

N∑
i=1

|w|∑
j=1

K[ii]
σ(j,χ(xi))

‖x[ii]i − w
[ii]
j ‖

2

+

P∑
jj=1,jj 6=ii

β
[jj]
[ii]

N [ii]∑
i=1

|w|∑
j=1

KijDij (1)

Kij =
(
K[ii]
σ(j,χ(xi))

−K[jj]
σ(j,χ(xi))

)2

Dij = ‖w[ii]
j − w

[jj]
j ‖

2

where P represents the number of datasets, N - the number of observations of
the ii-th dataset, |w| is the number of prototype vectors from the ii SOM map
and which is equal for all the maps.

For collaborative GTMs [6], we penalize the complete log-likelihood of the M-
step, basing on [7], considering the term of penalization as a collaboration term.

One disadvantage of the last two prototype-based collaborative approaches is that
they require to fix a collaborative (confidence) parameter which define the importance
of the distant clustering. In the case of unsupervised learning there is no available
information on the clusters quality and this parameter is often tricky to choose, which
is a problem since the final results are very dependent from the confidence parameter.
One of the advantages of the method proposed in this article is that it does not require
a confidence parameter. Indeed, it benefits from self-regulation by diminishing the
influence of solutions with high diversity compared with the other collaborators.
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3 Horizontal collaborative clustering with heterogene-
ous algorithms

In an earlier work, we have proposed a collaborative framework that allows different al-
gorithms working on the same data elements [18] to collaborate and mutually improve
their results. This algorithm is described in the subsection thereafter.

3.1 Algorithm
Let us consider a group of clustering algorithms C = {c1, ..., cJ}, which we indepen-
dently apply to our data set (observations) X = {x1, ..., xN}, xi ∈ Rd resulting in
the solution vectors S = {S1, S2, ...SJ}, where Si is the solution vector provided by
a given clustering algorithm ci searching for Ki clusters. A solution vector contains
for each data element the label of the cluster it belongs to. sin ∈ [1..Ki] is the id of
the cluster that algorithm ci associates to the nth element of X (i.e. xn). We also
note θ = {θ1,θ2, ...,θJ} the parameters of the different algorithms (for example the
mean-values and co-variances of the clusters).

The main idea is to consider that each algorithm involved in the collaborative pro-
cess can be transformed into an optimization problem where we try to optimize an
equation similar to Equation (2), with p(Si|X,θi) that will be a density function rep-
resenting the observed algorithm depending on its parameters θi , and P (Si) the a
posteriori probability of the solution vector Si.

S̃i = arg max
Si

(p(Si|X,θi)) = arg max
Si

(p(X|Si,θi)× P (Si)) (2)

This Equation corresponds to the maximization of a likelihood function. Let us
consider the density function f(x|θi) with θi ∈ Ω the parameters to be estimated.
Then, Equation (2) can be rewritten into Equation (3) where f(X|θi)|Si depends on
the current solution vector Si as defined in Equation (4).

S̃i = arg max
Si

(p(Si|X,θi)) = arg max
Si

(f(X|θi)|Si × P (Si)) (3)

f(X|θi)|Si =

N∏
n=1

f(xn|θisn) (4)

Since all our collaborating algorithms may not be looking at the same representa-
tions of the data, we have a sample abstract space X and several sampling spaces of
observations Yi, i ∈ [1 . . . , J ]. Instead of observing the ”complete data” X ∈ X , each
algorithm may observe and process sets of ”incomplete data” y = yi(x) ∈ Yi, i ∈
[1 . . . J ].

For a fixed i, let gi be the density function of such y = yi(x), given by:

gi(Y |θi) =

∫
X (y)

f(x|θi)dx (5)

with X (y) = {x; yi(x) = y}, i ∈ [1 . . . J ].
Using these notations, the problem that we are trying to solve in our collaborative

framework is shown in Equation (6) which is the collaborative version of Equation
(3). The last term P (Si|S) is extremely important since it highlights our objective of
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taking into account the solutions vectors S = {S1, S2, ...SJ} proposed by the other
algorithms in order to weight the probability of a local solution Si.

S̃i = arg max
Si

(p(Si|θi, Y, S)) = arg max
Si

(gi(Y |θi)|Si × P (Si|S)) (6)

This equation can be developed as follows:

gi(Y |θi)|Si × P (Si|S) =

N∏
n=1

gi(yn|θi
sn

)× P (sin|S) (7)

Solving the latest equation requires to compute the probability P (sin|S),∀n ∈ N .
To do so, we need to map the clusters proposed by the different collaborating algo-
rithms.

To this end, let Ψi→j be the Probabilistic Correspondence Matrix (PCM) mapping
the clusters from an algorithm ci to the clusters of an algorithm cj . Likewise Ψi→j

a,b

is the probability of having a data element being put in the cluster b of clustering al-
gorithm cj if it is in the cluster a of algorithm ci. These PCM matrices can easily be
computed from the solution vectors of the different collaborators using Equation (8),
where |Sia ∩ S

j
b | is the number of data elements belonging to the cluster a of algorithm

ci and to the cluster b of algorithm cj , and |Sia| is the total number of data elements
belonging the the cluster a of algorithm ci. This equation can easily be modified for
fuzzy algorithms.

Ψi→j
a,b =

|Sia ∩ S
j
b |

|Sia|
, 0 ≤ Ψi→j

a,b ≤ 1 (8)

While the solution vectors coupled with the PCM matrices may be enough to build
a consensus Framework as they did in [5], it is not enough to have a collaborative
framework that benefits all collaborators. Doing so would require the local models
of each clustering algorithm to be able to use these solution vectors and matrices to
improve themselves.

Under the hypothesis that all clustering algorithms are independent from each other,
for a given algorithm ci the right term of Equation (7) can then be developed as shown
in Equation (9) where Z is a normalization constant, and Ψj→i

sn (shorter version for
Ψj→i

sjn,sin
) the element of the matrix Ψj→i that links the clusters associated to the data

element xn by algorithms cj and ci.

gi(yn|θi
sn

)× P (sin|S) =
1

Z
gi(yn|θi

sn
)×

∏
j 6=i

Ψj→i
sn (9)

In practice, we propose to transform any clustering algorithm into its collaborative
version by translating it into the same model than shown in Equations (6) and (9).

Equation (9) can then be optimized locally for each algorithm using a modified ver-
sion of the Expectation Maximization algorithm [3]. This modified algorithm as well
as the complete process of our proposed framework is explained in Algorithm (1). As
one can see, since one version of this algorithm runs for each algorithm simultaneously,
our framework can easily be parallelized.

For two algorithms ci and cj , let Hi,j be the normalized confusion entropy [20, 21]
linked to the matrix Ψi→j having Ki lines and Kj columns. Hi,j is then computed on
the lines of Ψi→j according to Equation (10).
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Algorithm 1: Probabilistic Collaborative Clustering Guided by Diversity: Gen-
eral Framework

Local step:
forall the clustering algorithms do

Apply the regular clustering algorithm on the data Y .
→ Learn the local parameters θ

end
Compute all Ψi→j matrices
Collaborative step:
while the system global entropyH is not stable do

forall the clustering algorithms ci do
forall the yn ∈ Y do

Find sin that maximizes Equation (9).
end

end
Update the solution vectors S
Update the local parameters θ
Update all Ψi→j matrices

end

Hi,j =
−1

Ki × ln(Kj)

Ki∑
l=1

Kj∑
m=1

Ψi→j
l,m ln(Ψi→j

l,m ) (10)

H is a square matrix of size J × J where J is the number of collaborators. It
has null diagonal values. Since the entropies are oriented, the matrix is not properly
symmetrical, albeit it exhibits symmetrical similarities. The stopping criterion for this
algorithm is based on the global entropy H which is computed using Equation (11).
WhenH stops changing between two iterations, the collaborative process stops.

H =
∑
i6=j

Hi,j =

J∑
i=1

∑
j 6=i

−1

Ki × ln(Kj)

Ki∑
l=1

Kj∑
m=1

Ψi→j
l,m ln(Ψi→j

l,m ) (11)

3.2 Adaptation to vertical collaboration
Since the previously introduced algorithm showed good performances for horizontal
collaboration applications, our goal was to try to modify this algorithm for transfer
learning purposes.

Doing so would require to get rid of the constraint that with this Framework all
algorithms must work on the same data, even if they have access to different feature
spaces. Instead, what we wanted was to have several algorithms working on different
data sets in the same feature spaces and looking for similar clusters.

Unfortunately, modifying the original Framework and its mathematical model to
adapt them to this new context proved to be too difficult. Instead of working on a new
Framework for vertical collaboration from scratch, we though of a clever way to tweak
the original framework by using the properties of unsupervised neural networks based
on vector quantization, such as the Self-organizing maps (SOM) [11], or the GTM [1].
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Figure 4: From Different data sets to similar prototypes

The principle of these algorithms is that when initialized properly, and when used
on data sets that have similar data distributions and are in the same feature spaces,
they output very similar topographic maps where the prototypes are roughly identical
from one data set to another (See Figure 4). The outputted maps and their equivalent
prototypes can then be seen as a split data set to which it is possible to apply our previ-
ous collaborative Framework without any modification. Therefore, using the structure
of these unsupervised neural networks, it is possible to solve a vertical collaboration
problem using an horizontal collaboration framework.

4 The GTM model as a collaborative clustering local
step

4.1 Original GTM algorithm
The GTM algorithm was proposed by Bishop et al. [1] as a probabilistic improvement
to the Self-organizing maps (SOM) [11]. GTM is defined as a mapping from a low
dimensional latent space onto the observed data space. The mapping is carried through
by a set of basis functions generating a constrained mixture density distribution. It is
defined as a generalized linear regression model:

y = y(z,W) = WΦ(z) (12)

where y is a prototype vector in the D-dimensional data space, Φ is a matrix con-
sisting ofM basis functions (φ1(z), . . . , φM (z)), introducing the non-linearity, W is a
D×M matrix of adaptive weights wdm that defines the mapping, and z is a point in la-
tent space. The standard definition of GTM considers spherically symmetric Gaussians
as basis functions, defined as:

φm(x) = exp

{
−‖x− µm‖

2

2σ2

}
(13)

where µm represents the centers of the basis functions and σ - their common width.
Let X = (x1, . . . , xN ) be a data set containing N data points. A probability distribu-
tion of a data point xn ∈ RD is then defined as an isotropic Gaussian noise distribution
with a single common inverse variance β:
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p(xn|z,W, β) = N (y(z,W), β)

=

(
β

2π

)D/2
exp

{
−β

2
‖xn − y(z,W)‖2

} (14)

The distribution in x-space, for a given value of W, is then obtained by integration
over the z-distribution

p(x|W, β) =

∫
p(x|z,W, β)p(z)dz (15)

and this integral can be approximated defining p(z) as a set of K equally weighted
delta functions on a regular grid,

p(z) =
1

K

K∑
i=1

δ(z − zk) (16)

So, equation (15) becomes

p(x|W, β) =
1

K

K∑
i=1

p(x|zi,W, β) (17)

For the data set X , we can determine the parameter matrix W, and the inverse
variance β, using maximum likelihood. In practice it is convenient to maximize the log
likelihood, given by:

L(W, β) = ln

N∏
n=1

p(xn|W, β)

=

N∑
n=1

ln

{
1

K

K∑
i=1

p(xn|zi,W, β)

}
(18)

4.2 The EM Algorithm
The maximization of (18) can be regarded as a missing-data problem in which the
identity i of the component which generated each data point xn is unknown. The EM
algorithm for this model is formulated as follows:

The posterior probabilities, or responsibilities, of each Gaussian component i for
every data point xn using Bayes’ theorem are calculated in the E-step of the algorithm
in this form

rin = p(zi|xn,Wold, βold)

=
p(xn|zi,Wold, βold)∑K
i′=1 p(xn|z′i,Wold, βold)

=
exp{−β2 ‖xn −Wφ(zi)‖2}∑K
i′=1 exp{−β2 ‖xn −Wφ(z′i)‖2}

(19)
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As for the M-step, we consider the expectation of the complete-data log likelihood in
the form

E[Lcomp(W, β)] =

N∑
n=1

K∑
i=1

rin ln{p(xn|zi,W, β)} (20)

The parameters W and β are now estimated maximizing (20), so the weight matrix W
is updated according to:

ΦTGΦWT
new = ΦTRX (21)

where, Φ is the K ×M matrix of basis functions with elements Φij = φj(zi), R is
the K ×N responsibility matrix with elements rin, X is the N ×D matrix containing
the data set, and G is a K ×K diagonal matrix with elements

gii =

N∑
n=1

rin (22)

The parameter β is updated according to

1

βnew
=

1

ND

N∑
n=1

K∑
i=1

rin‖xn −Wnewφ(zi)‖2 (23)

4.3 Clustering of the obtained map
The result of the GTM algorithm is a topographic map in the form of linked prototypes.
These topographic maps can be seen as a compression of the original data set, with the
prototype being representative of different clusters from the original data set.

However, the number of prototype is usually much higher than the number of clus-
ters that one can expect to find in a data set. Therefore, the initial GTM algorithm
is usually followed by a clustering of the acquired prototypes in order to map them
to the final clusters. This process is analogue to building a second layer of neurons
over the topographic map. The prototypes of the final clusters are usually computed
using the EM algorithm for the Gaussian Mixture Model [3] on the prototypes from the
topographic map.

4.4 Collaborative clustering applied to the clustering step of the
GTM algorithm

Our idea here is to apply the previously proposed collaborative framework to the sec-
ond step of the GTM algorithm: The clustering of the final prototypes using the EM
algorithm. To do so, we use the prototypes vectors W as input data sets for our collab-
orative model.

If we note siq the cluster linked to the qth map prototype wq for the ith map, then
when adapting equation (9), the local equation to optimize in the collaborative EM for
the ith topographic map is the following:

P (wq|siq, θisq )× P (siq|S) =
1

Z
P (wq|siq, θisq )×

∏
j 6=i

Ψj→i
sq (24)
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Figure 5: Example of 3 collaborating topographic maps. Since they had the same
initialization and are used on data that are assumed to have similar distributions, the
neurons are equivalent from one map to another. This simple example shows a conflict
on the cluster associated to the first neuron. Using our collaborative method, the first
neuron will most likely be switched to the red cluster in the second map. With bigger
maps, more algorithms and more clusters, conflicts will be more difficult to resolve
than in this simple example.

Under the hypothesis that all topographic maps have the same number of proto-
types, underwent the same initialization, if we suppose that the different data sets have
similar distributions, and knowing that we use the batch version of the GTM algo-
rithm, the prototypes outputted by different GTM algorithms can be seen as a data set
the attributes of which have been split between the different GTM algorithm instances.
Therefore, since each prototype has a unique equivalent in each other topographic map,
we can apply the collaborative framework for Heterogeneous algorithms.

Let’s now suppose that we are running several GTM algorithms on different data
sets that have the same features and for which we can assume the same cluster dis-
tributions can be found. If we use the same initialization for the prototypes of the
topographic maps as described before, then we will have the prototype equivalents on
the different maps. In this context, using the map prototypes W and their temporary
cluster labels S from the local EM algorithm, we can apply a collaborative step to the
EM algorithm. By doing so, the whole framework would be equivalent to a transfer
learning process between the different data sets using vertical collaboration.

Based on the collaborative version of the EM algorithm, the transfer learning algo-
rithm with Generative Topographic Maps using Collaborative Clustering is described
in Algorithm 2. Figure 5 is an illustration of the kind of result we can expect from this
Framework applied to topographic maps.

5 Experiments

5.1 Data sets
To evaluate the proposed Collaborative Clustering approach, we applied our algorithm
on several data sets of different sizes and complexity. We chose the following: Wave-
form, Wisconsin Diagnostic Breast Cancer (wdbc), Madelon and Spambase.

• waveform data set: This data set consists of 5000 instances divided into 3 classes.
The original base included 40 variables, 19 are all noise attributes with mean 0
and variance 1. Each class is generated from a combination of 2 of 3 ”base”
waves.

12



Algorithm 2: Vertical Collaborative Clustering using GTM : V2C-GTM
Data transformation
forall the Data sets Xi do

Apply the regular GTM algorithm on the data Xi.
Run a first instance of the EM algorithm on the prototypes Wi

end
Retrieve the prototypes Wi and their clustering labels Si

Local step:
forall the clustering algorithms do

Apply the regular EM algorithm on the prototypes matrix W.
→ Learn the local parameters Θ

end
Compute all Ψi→j matrices
Collaborative step:
while the system global entropy is not stable do

forall the clustering algorithms ci do
forall the wq ∈Wi do

Find siq that maximize Equation (24).
end

end
Update the solution vectors S
Update the local parameters Θ
Update all Ψi→j matrices

end

• Wisconsin Diagnostic Breast Cancer (WDBC): This data has 569 instances with
32 variables (ID, diagnosis, 30 real-valued input variables). Each data observa-
tion is labeled as benign (357) or malignant (212). Variables are computed from
a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.

• Spam Base: The SpamBase data set is composed from 4601 observations de-
scribed by 57 variables. Every variable described an e-mail and its category:
spam or not-spam. Most of the attributes indicate whether a particular word or
character was frequently occurring in the e-mail. The run-length attributes (55-
57) measure the length of sequences of consecutive capital letters.

• Madelon: Madelon is an artificial dataset, which was part of the NIPS 2003 fea-
ture selection challenge. This is a two-class classification problem with contin-
uous input variables. MADELON is an artificial dataset containing data points
grouped in 32 clusters placed on the vertices of a five dimensional hypercube
and randomly labelled +1 or -1. The five dimensions constitute 5 informative
features. 15 linear combinations of those features were added to form a set of 20
(redundant) informative features. Based on those 20 features one must separate
the examples into the 2 classes (corresponding to the +/-1 labels).
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5.2 Indexes
As criteria to validate our approach we consider the purity (accuracy) index of the map
which is equal to the average purity of all the cells of the map. A good GTM map
should have a high purity index.

The cells purity is the percentage of data belonging to the majority class. Assuming
that the data labels set L = l1, l2, ..., l|L| and the prototypes set C = c1, c2, ..., c|C| are
known, the formula that expresses the purity of a map is the following:

purity =

|C|∑
k=1

ck
N
× max

|L|
i=1|cik|
|ck|

(25)

where |ck| is the total number of data associated with the cell ck, and |cik| is the
number of data of class li which are associated to the cell ck and N - the total number
of data.

We define a11 as the number of object pairs belonging to the same cluster in P1
and P2, a10 denotes the number of pairs that belong to the same cluster in P1 but not
in P2, and a01 denotes the pairs in the same cluster in P2 but not in P1. Finally, a00
denotes the number of object pairs in different clusters in P1 and P2. N is the total
number of objects, ni the number of objects in cluster i in P1, nj the number of objects
in cluster j in P2 and nij the number of object in cluster i in P1 and j in P2.

AR =
a00 + a11 − nc

a00 + a01 + a10 + a11 − nc
(26)

For the Adjusted Rand Index (ARI), nc is the agreement we would expect to arise
by chance alone using the regular Rand index.

Finally, we also used a clustering index: The Davies-Bouldin index (DB index) [2]
which assess that the resulting clusters are compact and well separated. The Davies-
Bouldin index is not normalized and a lower value indicates a better quality. It is
computed as follows:

Let Si be a measure of scatter within a cluster i of size Ti and of centroid µi. Let
xj ∈ X be a data associated to this cluster and µi, then:

Si =
1

Ti

Ti∑
j=1

||xj − µi||2

Let Mi,j be a measure of separation between two clusters i and j so that:

Mi,j = ||µi − µj ||2
From these values and given K clusters, we define the Davies-Bouldin Index as

shown in Equation (27).

DB =
1

K

K∑
i=1

maxj 6=i
Si + Sj
Mi,j

(27)
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5.3 Experimental Results
The experimental protocol was the following: All data sets were randomly shuffled
and split into 5 subsets with roughly equivalent data distributions in order to have the
topographic maps collaborating between the different subsets.

First, we ran the local step, to obtain a GTM map for every subset. The size of all
the used maps were fixed to 12 × 12 for the SpamBase and Waveform data sets and
4× 4 for the wdbc and Madelon data sets. Then we started the collaborative step using
our proposed collaborative framework with the goal of improving each local GTM by
exchanging based on the maps found for the other subsets. We evaluated the maps
purity, the Adjusted Rand index of the final cluster, and the Davies-Bouldin Index of
the clusters, based on the new GTMs after collaboration.

The results are shown in Table 1. Improved results and results that have not been
deteriorated during the collaborative process are shown in bold.

As one can see, the results are different depending on the considered indexes. Over-
all our proposed method gives good results at improving the Adjusted Rand Index with
excellent performances on all data sets except for the wdbc data set. The results for the
purity index are also very satisfying with a post-collaboration improvement for more
than 50% (12/20) of the data sets sub-samples. The results on the Davies-Bouldin in-
dex are more contrasted with only 11 cases out of 20 when the internal index remains
stable or improves. These results are similar with those of other works on collaborative
learning and highlight that while the goal of a general improvement of all collaborators
is usually difficult to achieve, the average results’ improvements remains positive.

Furthermore, our main goal was to take into account distant information from other
algorithms working on similar data distribution and to build a new map. This procedure
being unsupervised, it can deteriorate the different quality indexes when collaborating
with data sets the distributions of which do not exactly match between each other, or
simply when the quality of their proposed maps is too low.

5.4 Comparison with other algorithms
In this section we compare our algorithm to the vertical version of the collaborative
clustering using prototype-based techniques (GTMCol) introduced in [6]. While the
two methods may seem similar, there are some major differences: 1) In our proposed
method the collaboration occurs after building the maps, while in the GTMCol the
collaboration occurs while building the maps. 2) In our method the collaborations is
simultaneously enabled between all algorithms, while GTMCol only enables pairwise
collaborations. Given these two differences the results that we show thereafter have to
be taken with caution: While the two methods have the same goals and applications,
they are very different in the way they work.

In Table 2, we show the comparative results of the average gain of purity measured
before and after collaboration.

As one can see, while both methods give mild performances at improving the pu-
rity of a GTM map for our algorithm and a SOM map for the GTMCol method, our
algorithm is always positive on average for all data sets and our global results are also
slightly better.

It is easy to see that the proposed V2C-GTM method outperforms other methods
by increasing every time the accuracy index after the collaboration step. Even, if for
Madelon dataset, the purity index after the collaboration is higher for the GTMCol

and SOMCol methods, we have to note here that for these indexes the accuracy gain
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Table 1: Experimental results of the horizontal collaborative approach on different data
sets

Dataset Map Purity ARI DB index

SpamBase

GTM1 51.1% 0.2 2.15
GTM2 53.3% 0.17 1.87
GTM3 58.4% 0.12 1.72
GTM4 64.89% 0.38 1.47
GTM5 75.97% 0.61 0.91
GTMcol1 59.8% 0.3 1.68
GTMcol2 59.2% 0.27 1.65
GTMcol3 57.8% 0.12 1.77
GTMcol4 65.58% 0.45 1.23
GTMcol5 68.43% 0.52 1.09

WDBC

GTM1 62.66% 0.32 1.37
GTM2 67.65% 0.37 1.29
GTM3 73.78% 0.48 0.94
GTM4 61% 0.35 1.48
GTM5 56.13% 0.241 1.63
GTMcol1 58.66% 0.258 1.56
GTMcol2 67.45% 0.36 1.34
GTMcol3 71.62% 0.462 1.12
GTMcol4 63.12% 0.374 1.38
GTMcol5 62.45% 0.369 1.44

Madelon

GTM1 51% 0.22 13.35
GTM2 56.5% 0.27 15.25
GTM3 52.5% 0.245 12.16
GTM4 50.75% 0.209 11.56
GTM5 50.25% 0.2 11.69
GTMcol1 51% 0.223 13.35
GTMcol2 55.5% 0.27 15.71
GTMcol3 52.5% 0.245 12.16
GTMcol4 56.25% 0.257 14.82
GTMcol5 51.5% 0.234 14.05

Waveform

GTM1 67.25% 0.46 1.54
GTM2 72.12% 0.58 1.27
GTM3 74.28% 0.61 1.22
GTM4 69.47% 0.507 1.49
GTM5 71.09% 0.564 1.3
GTMcol1 67.79% 0.472 1.46
GTMcol2 71.76% 0.62 1.27
GTMcol3 72.59% 0.59 1.25
GTMcol4 71.52% 0.617 1.24
GTMcol5 71.1% 0.603 1.23

16



depends on the collaboration parameter β which is fixed in the algorithm (the higher
this parameter is, the higher the distant collaboration will be used in the local learning
process).

Another important aspect of the GTM and SOM based collaboration methods is
that these approaches can attempt collaboration only between two collaborators in both
direction which explain the± in the results (without having an a priori knowledge about
the quality of the collaborators the accuracy gain can be positive or negative). We
note here that the proposed V2C-GTM approach can use several distant information
from several collaborators without fixing any collaboration parameters and usually the
accuracy gain is positive.

Table 2: Comparison of the average gain of purity before and after collaboration

Dataset Purity

V2C-GTM GTMCol SOMCol

SpamBase +1.43% -2.31% -2.4%

WDBC +0.416% -2.45% ±0.32%

Madelon +1.15% +2.85% +2.1%

Waveform +0.11% +0.07% ±2.6%

These results are quite interesting because unlike the GTMCol method that was
specifically thought and developed with the idea of using it with semi-organized maps
or generative topographic maps, the collaborative framework that we use was thought
to be as generic as possible and not particularly adapted to the GTM algorithm.

The conclusion we could draw from these results is that perhaps the probabilistic
approach used by our framework is more effective than the derivative approach used in
the other method.

6 Conclusion
In this article, we have proposed an original collaborative learning method based on
collaborative clustering principles and applied to the Generative Topographic Mapping
(GTM) algorithm. Our framework consists in applying the GTM algorithm on different
data sets where similar clusters can be found (same feature spaces and similar data dis-
tributions). Our proposed method makes it possible to exchange information between
different instances of the GTM algorithm with the goal of a faster convergence and
better tuning of the topographic maps parameters.

Our experimental results have shown our framework to be very effective at improv-
ing the final clustering of the maps involved in the collaborative process at least based
on external indexes such as the maps purity and the Adjusted Rand Index, thus fulfilling
its intended purpose. Furthermore, the results on both internal and internal indexes are
better or similar with those already observed with other collaborative methods. Sadly
some of the caveats observed with other methods in the literature seem to apply to our
proposed method as well, in the way that while the global results’ improvement after
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collaboration remain positive, it is still unlikely to achieve performances above those
of the best collaborator.

One attractive perspective for our work would be to find a way to remove both
constraints that either the observed data or the feature spaces have to be identical in
order to use either horizontal or vertical collaboration. Getting rid of both constraints
would enable transfer learning between data sets that are very different but have similar
clusters structures. Doing so would require to find a solution to train the topographic
maps with either the SOM or the GTM algorithm in a way that despite the different
feature spaces the parallel maps would learn from all data sets and still have similar
features once built. We look forward to finding a solution for this problem.
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