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Abstract In this paper we present a simple method to

create general 3D digital surfaces of revolution based on

a 2D implicit curve of revolution (therefore not limited

to a circle) and a hand-drawn generatrix. Our method

can handle any sequence of Euclidean 2D points, that

represents a curve, as generatrix. One can choose the

topology of the surface that may have 1-tunnels, 0-

tunnels or no tunnels with applications in 3D printing

for instance. An online tool that illustrates the method

is proposed.

Keywords digital surfaces, implicit functions, surface

of revolution.

1 Introduction

Surfaces of revolution (as a particular class of sweep sur-

faces), are an important class of surfaces in computer

modeling [1]. It allowed early on, with limited user in-

terface capabilities, to design common 3D objects based

on 2D forms (a 2D circle and 2D generatrix): pen, glass,

�ower pot, chess piece, . . .Moreover, fundamental sur-

faces such as spheres, cylinders, torii, . . . can be de�ned

as surfaces of revolution. A surface of revolution is de-

�ned by a 2D revolution curve (classically a circle) and

a curve as pro�le, most often an explicit function, called

generatrix. In this paper we are interested in digital sur-

faces of revolution with a free-shaped generatrix and an

implicitly de�ned curve of revolution with some control

on the topological properties of the digital surface. The

digital surface of revolution is de�ned by a �ake digiti-

zation method which is de�ned as all the �akes centered
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on digital points cut by the continuous surface of revo-

lution.

In our DGCI 2016 paper [2], we proposed a �ake

based simple digital surface of generation tool with a

generatrix limited to explicit functions y = g(z) (see

section 1.1 and section 2.3 for more details). This was

somewhat limiting. One of the motivations for our work

on digital surfaces is to propose �exible generation

tools for the general public and a local artist, Aurélie

Mourier, who works with us. Classically for an explicitly

de�ned generatrix y = g(z), for each z value, there is

one and only one y value. In the present paper, the

generatrix can be any curve represented by an ordered

sequence of 2D continuous points, therefore there can

be more than one y value for a given z. This may cor-

respond to a hand-drawn curve which was the main

motivation for this work (see section 4.1), an open or

closed sampled parametric curve (section 4.2), or a 2D

digital curve (section 4.3).

In order to handle such generatrices, we devised a

surface of revolution generation algorithm with the fol-

lowing steps (see section 3.4):

� The generatrix can be any �nite and open sequence

of points. The generatrix is divided into monotonic

explicit or horizontal point sequences. Each genera-

trix section can then be digitized independently.

This works because our method is based on mor-

phological type digitizations: we ensure that way

that the union of the digitizations is the same as

the digitization of the unions.

� For horizontal generatrix sections (see section 3.3)

we simply need the minimum and maximum y value

in the sequence.

� For monotonic explicit sequences of points de�ning

a section of the generatrix, the sequence is recom-

puted in order to have a sequence of y for integer and
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half-integer z values (see section 3.1.1, section 3.1.2

and section 3.2.1). The �ake digitization method we

are using only requires to compute y values for inte-

ger and half-integer z values of the generatrix. This

allows a direct O(1) constant time look-up (see sec-

tion 3.1.2) for the generatrix curve values.

� For all (x, y, z) ∈ Z3 in the generation window, for

each generatrix section, we test if the corresponding

�ake centered in (x, y, z) is cut by the continuous

surface of revolution. If it is, the voxel of coordi-

nates (x, y, z) belongs to the digital surface. There

are however some di�culties that need to be han-

dled. A monotonic generatrix section may be de-

�ned only on a �nite z domain and thus only par-

tially cut some �akes. We introduce in section 3.2.2

and section 3.2.3 the notion of cropped �ake and

cropped adjacency ball that can handle such partial

cuts. Without this, there could be holes at the junc-

tion of two generatrix sections in the surface since

the end of one monotonic sequence will typically be

the beginning of the next monotonic or horizontal

generatrix section. Note that the generatrix curve

does not have to be a closed curve.

To illustrate our method, we propose an on-

line tool (that can be found at: http://xlim-sic.

labo.univ-poitiers.fr/demonstrateurs/DSoR_

Generator/?lang=en), that was used for most of the

examples in this paper, in particular for a 3D printed

chess queen (see Figure 9). After some basic notations

and the analytical implicit surface digitization method

in section two, we present, in section three, how we

handle an explicit �nite or an horizontal generatrix. In

section four we propose some results, limitations, an

algorithm and we conclude and provide perspectives in

section �ve.

1.1 Previous work

There are relatively few papers that have dealt specif-

ically with the problem of de�ning or generating digi-

tal surfaces of revolution. N. Stolte et al. have de�ned

a generation method for digital implicit surfaces with

cylindrical and spherical coordinates [3,4]. Their goal

was not so much to de�ne a generation method for

digital surfaces as to propose a visualization method

for implicit surfaces. Their method is limited to super-

cover type surfaces (tunnel-free surfaces) that are de-

�ned with cylindrical and spherical coordinates. More

recently, G.Kumar and P.Bhowmick [5,6] proposed a

generation algorithm for digital surfaces of revolution

for the design of virtual pottery. Their idea was to su-

perpose 2D digital annuli since a rasterized horizontal

slice of height one of a surface of revolution corresponds

to a 2D digital annuli. The authors worked with a classi-

cal notion akin to the Bresenham circle [7], de�ned only

for integer radii and center. The main drawback is that

concentric Bresenham circles of increasing radii leave

points that do not belong to any circle. The authors

therefore determine what they call absentee voxels, to

�ll-up the 6-connected holes in the digital surface [8].

The method for �lling the holes with absentee voxels is

however very complicated and limited to circular curves

of revolution. One way around this problem could have

been to use Andres circles [9,10,11] that do �ll space

and are de�ned for arbitrary center and radii. Their

method de�nes only naive type surfaces (2-tunnel free

surfaces). It can be note however, that they allow a gen-

eral form of generatrix akin to the type of generatrix

we are proposing in the present paper.

A surface of revolution can be de�ned as an implicit

surface [1]. This was the basis for our DGCI 2016 paper

[2], where we proposed an approach based on a mor-

phology type digitization method for implicit nD sur-

faces [12,13] (generalizing the approach of Laine [14]).

The digital surface of revolution presented in [2] was de-

�ned by an explicit function y = g(z) as generatrix and

a 2D implicit function r(x, y) = 0 as curve of revolution

(not limited to 2D circles). The method is very sim-

ple and straight-forward to implement. Furthermore,

under some regularity constraints [12], the digitization

method o�ers a control over the digital surfaces' topo-

logy by de�ning k-tunnel free digital surfaces. This al-

lows the design of digital surfaces adapted to speci�c

applications: for visualization purposes, the thinnest,

so called naive surface, 2-tunnel free surface might be

adequate. For 3D printing however, one might want to

choose 2-connected, so called supercover, tunnel free

surfaces. The present paper is an extension of this last

paper.

2 Notations, basics and recalls

Let {e1, . . . , en} denote the canonical basis of the n-

dimensional Euclidean vector space. Let Zn be the sub-

set of Rn that consists of all the integer coordinate

points. A digital (resp. Euclidean) point is an element of

Zn (resp. Rn). We denote by xi the i-th coordinate of a

point x, that is its coordinate associated to ei. In 3D, for

the sake of simplicity, we will often refer to the classical

xyz coordinate system corresponding to {e1, e2, e3}. A
digital (resp. Euclidean) object is a set of digital (resp.

Euclidean) points. The Chebychev norm of a vector x

is de�ned by ‖x‖∞ = max (|xi|). The Manhattan norm

of a vector x is de�ned by ‖x‖1 =
∑
|xi|.

http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
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For all k ∈ {0, . . . , n− 1}, two integer points v and

w are said to be k-adjacent or k-neighbors, if for all i ∈
{1, . . . , n}, |vi−wi| ≤ 1 and

∑n
j=1 |vj − wj | ≤ n−k. In

the 3-dimensional space, the 0-, 1- and 2-neighborhood

notations correspond respectively to the classical 26-,

18- and 6-neighborhood notations.

A k-path is a sequence of integer points such that

every two consecutive points in the sequence are k-

adjacent. A digital object E is k-connected if there ex-

ists a k-path in E between any two points of E. A ma-

ximum k-connected subset of E is called a k-connected

component. If the complement of a digital object E,

Zn \E admits exactly two k-connected components C1

and C2, i.e. there exists no k-path joining integer points

of C1 and C2, then E is said to be k-separating in Zn.

Let ⊕ be the Minkowski addition, known as dilation,

such that A⊕ B = ∪b∈B{a+ b : a ∈ A}.

2.1 Adjacency norms

The adjacency norms have been introduced in [15]. Ev-

ery digital adjacency relationship can be associated to

a norm called an adjacency norm de�ned as follows:

De�nition 1 (Adjacency norms [15]) Let n be the

dimension of the space. Let k be a positive integer lower

than n. The k-adjacency norm [·]k is de�ned as:

∀x ∈ Rn, [x]k = max

{
‖x‖∞,

‖x‖1
n− k

}
.

The name adjacency norms stems for the following

property:

Lemma 1 (Digital adjacency and adjacency

norms [15]) Let v and w ∈ Zn. Then, v and w are

k-adjacent i� [v − w]k ≤ 1.

Let B[·]k(
1
2 ) be the ball of radius

1
2 under the norm

[·]k. The associated distance is denoted by dk. It is easy

to see that the 0-adjacency norm corresponds to the

Chebychev norm and the (n − 1)-adjacency norm to

the Manhattan norm.

2.2 Implicit surface digitization

In this paper we are considering morphological digitiza-

tion schemes [13,15,16,17]. A summary on this type of

digitization schemes and how they can be used to de�ne

digital objects can be found in [13]. The basic idea is to

say that a digital object is de�ned as the digital points

inside a Minkowksy sum between a structuring element

E and the, to be digitized, continuous object S:

1 2

3 4 5

Fig. 1 (1,2) 2D adjacency balls B[·]0(
1
2
) and B[·]1(

1
2
) ; (3,4,5)

3D adjacency balls B[·]0(
1
2
), B[·]1(

1
2
) and B[·]2(

1
2
).

De�nition 2 (Morphological Digitization) Let us

consider an object S and a structuring element E both

de�ned in Rn. The morphological digitization of S by

E is de�ned by :

DE(S) = (S ⊕ E) ∩ Zn = {v ∈ Zn : (v ⊕ E) ∩ S 6= ∅} .

De�nition 3 (Adjacency Digitization [12,2,15])

The k-adjacency digitization is the DB[·]k (
1
2 )

morpho-

logical digitization.

There are two fundamental properties that can al-

most immediately be deduced from this de�nition:

Proposition 1 (Adjacency Norm Digitization

Properties)

� DE(S ∪ T ) = DE(S) ∪ DE(T ) [2,16,17,18];

� if S is a (n-1)-dimensional object, then DB[·]k (
1
2 )
(S)

is locally k-tunnel free [2,12,13,15] (see Figure 3).

The �rst of these properties is very interesting when

it comes to modeling. The second means that we have

some type of control on the topology of a digitized sur-

face (see Figure 3). The problem is that the Minkowsky

sum (or the intersection of a surface and a adjacency

ball) of a continuous object with an adjacency ball can

be di�cult to compute (see [15] for the complicated

equations describing the adjacency ball digitization of

3D spheres). In order to simplify the analytical charac-

terization, and subsequently the generation algorithm,

of a digital 3D surface, we introduced the notion of ad-

jacency �akes in [15] and used those to propose a digi-

tization method for digital implicit surfaces [12]. An

adjacency �ake can be described as the union of a �-

nite number of straight segments joining the opposite

vertices of a k-adjacency ball (see Figure 2).



4 E.Andres et al.

De�nition 4 (Adjacency Flake [12,15])
Let 0 ≤ k < 3. A 3D k-adjacency �ake, Fk is de�ned
by:

Fk =

{
λu : λ ∈

[
0,

1

2

]
, u ∈ {−1, 0, 1}3,

3∑
i=1

|ui| = 3− k

}
.

Fig. 2 Fk Adjacency and Mk Matryoshka �akes in 3D.

Instead of an adjacency digitization, with an adja-

cency ball as structuring element, we are considering a

digitization with the corresponding adjacency �ake for

implicitly de�ned surfaces. Let S be an implicit sur-

face S =
{
x ∈ R3 : f(x) = 0

}
which separates space

into one (or several) region(s) where f(x) < 0 and one

(or several) region(s) where f(x) > 0:

De�nition 5 (Flake Digitization [12,13,15]) The

k-Flake digitization of a 3D surface S is de�ned by

DFk
(S) =

{
v ∈ Z3 : (v ⊕ Fk) ∩ S 6= ∅

}
.

When the surface S veri�es a regularity condition,

meaning S is r-regular [19] with r >
(√

3− k +
√
3
)
/2

[12], then the k-�ake digitization can be analytically

characterized by considering only the vertices of the k-

�ake. Let us introduce such a digitization scheme:

De�nition 6 (Simple Analytical Flake Digitiza-
tion [12])

Ak(S) =

{
v ∈ Z3 :

min{f(x) : x ∈ (v ⊕ Fk)} ≤ 0
and max{f(x) : x ∈ (v ⊕ Fk)} ≥ 0

}
.

When the surface veri�es the regularity conditions

previously mentioned then Ak(S) = DFk
(S) and thus

veri�es all the properties of morphological digitizations

and adjacency �ake digitizations. Otherwise there are

some di�erences that may in some cases create topo-

logical problems [12] (see section 4.5 and Figure 11).

This is largely compensated by the fact that Ak(S) is

easy to construct while DFk
(S) may not. Figure 3 il-

lustrates the di�erences between the three digitizations

A2,A1 and A0.

Fig. 3 Illustration of the topological properties with A2,A1,A0

digitizations of a simple surface of revolution.

Let us mention one natural-seeming property that

is missing with the way we have de�ned the adjacency

�akes: a digitization inclusion property. For the ad-

jacency balls, we have B[·]2(
1
2 ) ⊂ B[·]1(

1
2 ) ⊂ B[·]0(

1
2 )

which means that for a given Euclidean object S,

DB[·]2 (
1
2 )
(S) ⊆ DB[·]1 (

1
2 )
(S) ⊆ DB[·]0 (

1
2 )
(S). This is not

the case for adjacency balls as we have de�ned them

since F2 * F1 * F0. One way around this is simply

to de�ne a sequence of �akes that have the inclusion

property:

De�nition 7 (3D Matryoshka Flakes) Three di-

mensional Matryoshka �akes Mk are de�ned by: M2 =

F2, M1 = M2 ∪ F1 and M0 = M1 ∪ F0 (Figure 2).

The implicit surfaces digitizated with the M1 and

M0 Matryoshka �akes still have the same topological

properties than the one digitized with the adjacency

�akes but now we have DM2(S) ⊆ DM1(S) ⊆ DM0(S).

This can be used to solve some problems with non reg-

ular surfaces (see Figure 11).

2.3 Digital surface of revolution with explicit

generatrix [2]

Classically, a surface of revolution is de�ned by the ro-

tation of a curve (the generatrix) around a straight line

(the axis). The axis is most often simply the z-axis of

a classical xyz-axis system. In our previous work [2],

we considered the generatrix as an explicit function

y = g(z), de�ned for all z ∈ R. The horizontal slice

at height z of the surface of revolution is classically a

circle (the curve of revolution) of radius g(z). The gene-

ratrix acts as an homothetic function. It is easy to see

that this de�nition corresponds to an implicit 3D sur-

face where the curve of revolution is not limited to a

circle:
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De�nition 8 (Implicitely de�ned Euclidean Sur-

face of Revolution [1,2])

S(g, r) =

{
(x, y, z) ∈ R3, r

(
x

g(z)
,

y

g(z)

)
= 0

}
,

where r(x, y) = 0, (x, y) ∈ [−1, 1]2 ⊂ R2, is an im-

plicitly de�ned curve of revolution that separates the

window [−1, 1]2 into regions of opposite signs, and

∀z ∈ R, g(z) > 0.

The implicit surface of revolution can be digi-

tized into a Digital Surface of Revolution with an in�-

nite explicit generatrix using the Ak-digitization. This

corresponds to the DGCI 2016 paper [2].

3 Digital surface of revolution generation

algorithm

In this section we are going to explore our proposed

method of digital surface of revolution generation with

a hand-drawn generatrix. The particularity of a hand-

drawn generatrix is that we cannot assume anything

particular about the generatrix: it may correspond to

an in�nite explicit function (de�ned on the whole height

interval of de�nition of the surface. Section 2.3), to a �-

nite explicit curve (section 3.2.1), to an horizontal curve

(section 3.3), or to the union of some or all of those cases

(section 3.4).

+

-
0Curve of 

revolution

Explicit y=f(x)

Generatrix

Flake cut

by the surface

completly inside

cropped flake

completly

outside flake

(Finite) Explicit 
generatrix section

Horizontal 
generatrix section

Flake cut

by the surface

Hand-drawn

Section 3.2

Section 3.1

Section 3.4

Section 3.3

Section 3.3.1 & 3.3.2

Fig. 4 Illustration of the �ake digitization for di�erent type of
generatrices.

The input for the algorithm is a curve of revolu-

tion based on an implicit 2D function de�ned in a

window [−1, 1]2 and an ordered sequence of Euclidean

points (zi, yi), 1 ≤ i ≤ n, typically following the or-

der in which the generatrix has been drawn and rep-

resenting a sampled curve g(z). In this case there can

be several values g(z) for a given z. The function is

not necessarily explicit anymore. In order to generate

the digital surface of revolution, we will de�ne a �-

nite window with, in particular, a generation domain

[zmin, zmax] , (zmin, zmax) ∈ Z2, along the z-axis. For

what follows we will consider only one (connected)

hand-drawn curve but it is easy to expand the method

to work with several di�erent generatrix curves as, by

essence of morphological digitizations each surface of

revolution corresponding to each generatrix curve can

be digitized independently. The di�erent steps of the

digital surface of revolution generation algorithm are

presented in the algorithm 1. Let us detail the di�erent

aspects of this algorithm:

Algorithm 1: Surface of revolution digitization
input : A List Gen of 2D Euclidean points as

generatrix, an implicit 2D function Rev as curve
of revolution, a connexity conex, and a
digitization window W

(xmin, xmax, ymin, ymax, zmin, zmax).
output: A list V of voxel belonging to the digitization of

the surface of revolution.
begin

Initialize the list V as empty;
GenParts=DivideAndRecompute(Gen) (* see section
3.1*);
foreach digital point P (x,y, z)∈W do

foreach Part in GenParts do

if IsHorizontal(Part) then
if inHorizontal(Rev,conex,x,y,z,Part)
then

Add the voxel to V ;

else
if inMonotonic(Rev,conex,x,y,z,Part)
then

Add the voxel to V ;

return V;

3.1 First step of the Algorithm: divide and recompute

each generatrix section

The generatrix acts as an homothetic factor to the

curve of revolution. For a generatrix de�ned as a se-

quence of 2D points representing a sampled curve g(z),

there can be more than one such value for a given

z. In order to handle this, the generatrix is divided

into a set of strictly monotonic (in z, increasing or

decreasing) or horizontal sequences. The end point of

one sequence is duplicated as the starting point of the

next sequence. The considered morphological digitiza-

tion methods mean we can simply digitize each se-

quence separately.
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Now, let us remark that we need to compute a value

g(z) at the vertices of �akes that have only integer and

half-integer coordinates (with the exception of cropped

�akes that will be introduced in the following section

3.2.2). Each strictly monotonic sequence (not the hor-

izontal sequences) is replaced by a sequence with in-

terpolated y values for integer and half-integer z val-

ues. One can use any kind of interpolation function to

compute a y value for each integer and half-integer z

value. For all of the following �gures and for the online

program, we simply used a linear interpolation scheme

between appropriate points of the initial sequence. For

each strictly monotonic sequence, we need to keep the

starting and ending points that de�ne the domain of

de�nition of the �nite explicit generatrix (see subsection

3.2.1). For the horizontal sequences, the points with

minimum and maximum y are the only two points we

need (see subsection 3.3).

3.1.1 Example

Let us give a simple example of this recomputation pro-

cess:

� Let us start with the generatrix de�ned by the fol-

lowing sequence of (zi, yi) points:

{(16.9, 12.15), (17.8, 13), (18.1, 14.05), (18.1, 16.95),
(18.1, 18.95), (17.2, 20.85), (16.4, 22)};

� This is decomposed into three sequences

{(16.9, 12.15), (17.8, 13), (18.1, 14.05)},
{(18.1, 14.05), (18.1, 16.95), (18.1, 18.95)},
and {(16.4, 22), (17.2, 20.85), (18.1, 18.95)}.
The �rst and the last of those sequences are strictly

monotonic: one with increasing z values and one

with decreasing z values which is reversed to allow

a uniform treatment for all monotonic sequences.

The second sequence corresponds to an horizontal

sequence (in z).

� The �rst strictly monotonic sequence is interpolated

and replaced by:

{(16.9, 12.15), (17., 12.24), (17.5, 12.72),
(18., 13.7), (18.1, 14.05)};

� The horizontal sequence is replaced by:

{(18.1, 14.05), (18.1, 18.95)}. We do not need the

other values;

� The last strictly monotonic sequence is interpolated

and replaced by:

{(16.4, 22), (16.5, 21.86), (17., 21.14), (17.5, 20.22),
(18., 19.16), (18.1, 18.95)}.

3.1.2 Direct access to a monotonic sequence value

The interesting thing about recomputing a strictly

monotonic sequence in such a way is that given

the z value, one can immediately determine the

place in the sequence in a O(1) constant time look

up: let us say that we have a monotonic sequence

{(z1, y1), (z2, y2), . . . , (zn, yn)}: the index in the list to

return is:

� If z < z2 then the index to return is 1 ;

� if z > zn−1 then the index to return is n ;

� otherwise the index to return is 2z − d2z1e+ 2.

Where dxe is the ceiling of x (i.e. the smallest integer

greater than x). For example, in the last monotonic

sequence in the previous example, for z = 17.5, we have

2 ∗ 17.5−d2 ∗ 16.4e+2 = 4. This allows a direct access

to the value we are looking for. The formula should be

modi�ed according to the starting index.

3.2 Handling strictly monotonic generatrix sequences

A �rst simple case comes when the strictly monotonic

sequence is de�ned on the whole z generation domain:

Let us assume now that we have a strictly monotonic se-

quence of Euclidean points {(z1, y1), . . . , (zn, yn)} with
z1 < . . . < zn and a generation domain interval

[zmin, zmax] along the z-axis. If z1 < zmin and zn >

zmax, we are in the case where the generatrix de�ned

by the sequence of points can be handled as an in�-

nite explicit generatrix just as we did in [2] with the

appropriate interpolation and resampling as presented

in subsection 3.1. It gets more complicated when this is

not the case.

Algorithm 2: inMonotonic(see section 3.2.1)

input : An implicit function Rev, a connexity conex, a
voxel center Vx,Vy, Vz and a Euclidean point
list Part which is a strictly monotonic increasing
part of the generatrix .

output: A boolean that is True if the voxel is in the
digitization of this part of the surface
(Rev × Part) and false otherwise.

begin
Compute the �ake vertices of the voxel for the chosen
connexity (* see section 3.2.3 and 3.2.2 *);
Compute the values Lvalues by applying the
revolution function on these �ake vertices using the
homothetic factor found in Part;
if min(Lvalues)<0 and max (Lvalues>0) then

return(TRUE);
else

return(FALSE);

3.2.1 Explicit �nite generatrix

Let us now consider a strictly monotonic sequence of

Euclidean points {(z1, y1), . . . , (zn, yn)} with z1 < . . . <
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zn, and a generation domain interval [zmin, zmax] along

the z-axis such that z1 > zmin or zn < zmax. This case

needs to be handled speci�cally because a digitization

of the surface of revolution by a digitization scheme Ak

supposes that we are able, for all points in 1
2Z

3, to com-

pute a value for r
(

x
g(z) ,

y
g(z)

)
where r is the implicitly

de�ned curve of revolution and g is the interpolated

generatrix function. In the �nite case, when testing a

voxel, it is possible that one or several vertices of the

k-�ake fall outside the de�nition domain of the gener-

atrix: g(z) is not de�ned for such a vertex. While it

seems logical that the voxel is not part of the digital

surface if g is not de�ned for any of the vertices of a

�ake, when some vertices of the �ake are inside the def-

inition domain of the generatrix and some not then the

voxel may be simply partially cut (see 2D illustration

in Figure 5.2-8) and not simply crossed by the continu-

ous surface of revolution (see 2D illustration in Figure

5.1). Simply ignoring the vertices for which we have no

value can lead to many wrongly discarded voxels and

lead to holes at the junction of consecutive generatrix

sequences.

To get these values, we can choose substitute points,

to better adjust to the domain of the function. For this

we introduce cropped �akes and cropped adjacency balls.

These points are actually easy to choose since the do-

main is restricted along only one coordinate: the z-axis.

3.2.2 Cropped �akes

There are two ways of considering alternate �ake ver-

tices. The �rst method consists simply in considering

only the parts of the �ake that are inside the domain.

The considered vertices for the computations are the

endpoints of the cropped �ake line segments. For the

sake of clarity, Figure 5 shows all the di�erent con�gu-

rations in 2D for an A2 digitization (it is easy to extend

to A1 and A0). An example, Figure 5.9 shows the con-

�guration of Figure 5.2 in 3D.

3.2.3 Cropped adjacency ball

The second method consists in considering the vertices

of the cropped adjacency ball which the k-�ake approx-

imates. There are a few more points for the A1 and A2

digitizations, but the results are much closer to what

we would get by computing the intersection between

the surface and the adjacency balls.

Again, for the sake of clarity, Figure 6 shows, in

2D, which points should be computed in every possible

con�guration for the A2 digitization. Figure 6.9 shows

the corresponding 3D con�guration to Figure 6.2.

1 2 3 4 5

6 7 8 9

Fig. 5 The di�erent con�gurations that can occur in the digi-
tization process when cropping �akes.

1 2 3 4 5

6 7 8 9

Fig. 6 The di�erent con�gurations that can occur in the digi-
tization process when cropping balls.

3.3 Handling a horizontal generatrix

Let us now consider an horizontal sequence

{(z0, y1) , . . . , (z0, yn)}. As shown in the example

of section 3.1.1, we only keep the minimum and

maximum of the y values: ymin = min (y1, . . . , yn),

ymax = max (y1, . . . , yn). An horizontal generatrix

would be de�ned by z = z0, z0 ∈ R on an interval

y ∈ [ymin, ymax] ⊂ R. Such a generatrix, associated to

a circle as the curve of revolution, would result in an

annulus as the generated surface. To determine if a

voxel is part of this annulus, we simply need to know if

it is inside the large circle (radius = ymax) and outside

the small one (radius = ymin). This works of course

exactly in the same way for any implicitly de�ned

curve of revolution. We can test this simply using the

Ak digitization. The main di�culty is the same as

in 3.2.1: it will most likely be impossible to compute

the value corresponding to any vertices, since only

one value is possible for z. Using the same solution as

before we will get a slice of adjacency ball (or a slice of

�ake) de�ning the substitute points we should use.
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Algorithm 3: inHorizontal (see section 3.3)

input : An implicit function Rev, a connexity conex, a
voxel center Vx,Vy, Vz and a Euclidean point
list Part which is an horizontal part of the
generatrix .

output: A boolean that is True if the voxel is in the
digitization of this part of the surface
(Rev × Part) and false otherwise.

begin
if The horizontal Part crosses the voxel
(|Partz −Vz| ≤ 0.5) then

Compute the �ake vertices of the voxel for the
chosen connexity (* see section 3.2.3 and 3.2.2 *);
Compute the values Lvalues by applying the
revolution function on these �ake vertices using
the homothetic factor found in Part;
if min(Lvalues)<0 and max (Lvalues>0) then

return(TRUE);
else

return(FALSE);

else

return (FALSE);

3.4 Additional considerations

We have now all we need to generate the surface (see

algorithm 1). Since the basis of the generation is a mor-

phological type digitization scheme, Proposition 1 al-

lows us to generate each single sequence independently

as described in the previous sections. The most im-

mediate approach is simply to test if each voxel, in

a 3D �nite generation window, belongs to the surface

of revolution of a generatrix point sequence. One can

also determine a starting point as seed and generate

the surface by neighborhood propagation. This is the

main generation method proposed in our online tool.

This is usually faster but there is no guarantee that the

surface of revolution is formed by only one connected

component or that it is not composed of all the voxels

of the generation window. In terms of complexity, we

test each voxel of the 3D window where we generate

the digital surface of revolution, and this for each of

the sequences in the set of generatrix point sequences.

For a generation window of size n3 with a set of m

generatrix point sequences, the worst case complexity

would be O(m.n3) with no absolute limit on m (one

can think of a generatrix based on a function such as

z = sin(1/y)). There could be some improvement im-

plemented here in future works. There are some obvi-

ous optimizations that help during the generation: if

a point (x, y, z) is part of the digital revolution sur-

face for one generatrix point sequence, there is no need

to test further if it belongs also to the digital surface

of another generatrix point sequence. Moreover, each

generatrix point sequence is de�ned on some interval

zmin ≤ z ≤ zmax. We only need to test the voxels

(x, y, z) verifying zmin − 0.5 ≤ z ≤ zmax + 0.5.

4 Results

In this section we present results of our digital gener-

ation algorithm with various ways to obtain the point

list for the generatrix.

4.1 Hand-drawn generatrix and online creation tool

The �rst way to create a generatrix as a list of points is

to consider a hand-drawn curve de�ned by a sequence

of 2D Euclidean points. This was the main incentive for

this work: proposing a natural method to create a digi-

tal surface of revolution. We developed an online digital

surface creation tool that can be found at the following

address: http://xlim-sic.labo.univ-poitiers.

fr/demonstrateurs/DSoR_Generator/?lang=en. A

screenshot of the interface with an example of hand-

drawn generatrix can be seen in Figure 10. Some other

examples of surfaces generated by the online tool are

presented in Figure 14. In Figure 9 we show the work

of a local artist, Aurélie Mourier, who used our online

tool to create a set of chess pieces. We printed out the

White Queen piece in two halfs so as to show that it

is an actual surface we are creating (see Figure 9). In

this case, the surface is based on the M0 Matrioshka

�ake in order to have a robust 2-connected tunnel free

surface.

4.2 Parametric generatrix

An alternative way of generating a list of points as gen-

eratrix is to sample a parametric function. You will

�nd two examples in Figure 7. An adaptative sampling

might be useful depending on the curve [20].

4.3 Digital curve as generatrix

A generatrix (or a set of generatrices) can also be

extracted from a digital image as a (set of) digital

curve(s). This can be done in many di�erent ways. The

main problem here is extracting an ordered list of dig-

ital points which depends on the type of digital curves

present in the image. The main idea for handling such

digital curves is to decompose them into a set of digital

line segments and then taking the continuous analog of

those digital line and regenerate the y values for integer

and half-integer z values. Other types of interpolation

http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
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G(t) = (22+22.(1.1-t/5π).sin(t), 
22+22.(1.1-t/5π).cos(t))

t = kπ/30, 0≤ k ≤ 61 
t = 3k/10, 0≤ k ≤ 53

G(t) = (24+20.sin(t), 22+22.cos(3t))

Fig. 7 Two examples of surfaces of Revolution with a parametric
curve as generatrix and a circular curve of revolution.

schemes can of course be used as well. The important

thing here is not simply to consider the set of digital

points as input to the algorithm otherwise the surface

may not look smooth. In Figure 8, we decomposed a

digital curve into line segments with a regular line seg-

ment recognition method [21]. For each digital line of

analytical equation 0 ≤ ax− by + c < max (|a| , |b|), we
considered the continuous line ax − by − c − |b| /2 = 0

or ax − by − c − |a| /2 = 0 depending on the orienta-

tion. A little care has to be taken for the end points

of the di�erent digital line segments. If the intersection

of two consecutive line segments lies outside of the dig-

ital starting/end point of the respective line segment

then a little patch function has to be added (see [22])

or one has to use an adapted line recognition where this

problem does not occur [23]. This creates a piecewise

de�ned generatrix. Figure 8 shows a digitized sinusoid

that we have decomposed into digital line segments. In

this example, the curve of revolution is a circle.

Fig. 8 A digital generatrix decomposed into digital straight
segments (left) and the resulting revolution surface (right) using
the unit implicit circle as revolution curve.

4.4 Crenelated digital surfaces

As shown in Figure 12.2, the digitization of an implicit

surface can lead to a crenelated surface edge. Figure

12.2 has been obtained with the A2 digitization (with

the direct mathematical approach presented in [2]) of

the implicitly de�ned surface shown in Figure 12.1. This

proves that this is not a side e�ect of our present ap-

proach, which, of course, may also create crenelated sur-

faces. The explanation for this crenelation can be seen

in Figure 12.3: when, locally, the generatrix is de�ned

on a �nite domain, for instance for z ≤ z0, for some

z0 ∈ R, then the corresponding surface of revolution

might only cut a disconnected set of adjacency balls on

layer z =
⌊
z0 +

1
2

⌋
. This leads to a crenelated result.

4.5 Limitations

The main limitation of this digital revolution surface

generation method is that the analytical digitization

may miss some points. This may happen if the surface

is not r-regular [19] with r >
(√

3− k +
√
3
)
/2 [12].

As mentioned in section 2.2, if the continuous surface

of revolution is not r-regular, the digitization where we

consider only the vertices of the �akes is not equivalent

to the one with the whole �akes and the topological

properties may be lost. Figure 11.1 illustrates this with

a curve that crosses a voxel but the vertices of the �ake

are all on the same side of the implicit curve of revolu-

tion. The voxel is therefore wrongly discarded from the

digitization result and disconnections or holes appear.

This is classically dealt with interval arithmetics [24]

but interval arithmetics works only for digitizations cor-

responding to F0-adjacency �akes. One way to reduce

the occurrence of such problems is to use Matryoshka

�akes as illustrated in Figure 11. In �gure 11.3 we have a

0-adjacency �ake digitization with a lemniscate as curve

of revolution (Figure 11.2). The surface is disconnected.

The use of the Matryoshka M0-�ake (�gure 11.4) solves

the problem. Of course, there will always be cases where

the topological properties can not be guaranteed. As a

concluding remark, let us note that a �ake digitization

does not guarantee and optimal k-tunnel free surface

even though the regularity conditions are met. There

can be simple points with regard to the k-tunnel free-

ness property. Ensuring topological optimality is still

an open question.

5 Conclusion and perspectives

In this paper we proposed a simple algorithm to gener-

ate a large class of surfaces of revolution based on an im-
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Fig. 9 Set of chess pieces and example of 3D printed White Queen. First row: the generatrices; second row: the revolution curves;
third row: the resulting surfaces; last row: several views of the 3D printed White Queen.

Fig. 10 A hand-drawn generatrix and the obtained sur-
face of revolution using the unit implicit circle as revolution
curve. Online tool can be found at : http://xlim-sic.labo.univ-
poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en .

plicit 2D curve as curve of revolution and a hand-drawn

generatrix. Any ordered sequence of points representing

Fig. 11 1. Case where �ake misses a point. 2. Lemniscate curve
of revolution 3. Disconnected 2-connected surface. 4. 2-connected
surface with Matrioschka M0-�ake.

a 2D curve can be used to de�ne a generatrix. Given

some regularity conditions for the surface, we control

the topology of the resulting digital surface: the type

of tunnels that appear in the surface can be de�ned,

which allows to generate surfaces that are adapted for
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1 2 3

Fig. 12 1. An implicit 3D surface. 2. Its A2 digitization. 3. Only
some adjacency balls are cut by the surface.

Fig. 13 Two examples of some other surfaces we can build with
our algorithm.

various applications (rendering, 3D-printing, etc.). We

propose an online tool that illustrates the proposed

method and that can be used to create surfaces and

export them into various formats including 3D printing

formats. The online tool can be found at the following

address: http://xlim-sic.labo.univ-poitiers.fr/

demonstrateurs/DSoR_Generator/?lang=en. We set

up an imgur animated gif repository for some of our

digital surface creations : http://imgur.com/a/eDFbY.

Let us be noted that the repository holds not only digi-

tal surfaces of revolutions but also swept tubes and may

contain examples of future extensions. The methods we

propose are not limited to digital surfaces of revolution

and can be adapted to more general types of surfaces.

For example the generatrix can be used as central axis

for the revolution curve (see the left of Figure 13):

De�nition 9

S(g, r) =
{
x, y, z ∈ R3, r (x, y − g(z)) = 0

}
.

We can also combine an homothetic function h(z)

and two translation functions t(z), u(z) for the center

of the revolution curve (see the right of �gure 13):

De�nition 10

S(h, t, r) =

{
x, y, z ∈ R3, r

(
x

h(z)
− u(z),

y

h(z)
− t(z)

)
= 0

}
.

This will be handled in a forthcoming work. One of

the next steps will be to consider hand-drawn curves of

revolution which will allow further control of the types

of surfaces that can be generated.
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