N
N

N

HAL

open science

Digital Surface of Revolution with Hand-Drawn
Generatrix

Eric Andres, Lydie Richaume, Gaélle Largeteau-Skapin

» To cite this version:

Eric Andres, Lydie Richaume, Gaélle Largeteau-Skapin. Digital Surface of Revolution with Hand-
Drawn Generatrix. Journal of Mathematical Imaging and Vision, 2017, pp.1-12.

017-0708-6 . hal-01461456

HAL Id: hal-01461456
https://hal.science/hal-01461456v1
Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1007/s10851-

https://hal.science/hal-01461456v1
https://hal.archives-ouvertes.fr

Accepted in JMIV manuscript No.

(Accepted by JMIV - This is a self-edited version by the authors)

Digital Surface of Revolution with Hand-Drawn Generatrix

Digital Surface of Revolution

Eric Andres - Lydie Richaume -

not yet published

Abstract In this paper we present a simple method to
create general 3D digital surfaces of revolution based on
a 2D implicit curve of revolution (therefore not limited
to a circle) and a hand-drawn generatrix. Our method
can handle any sequence of Euclidean 2D points, that
represents a curve, as generatrix. One can choose the
topology of the surface that may have 1-tunnels, 0-
tunnels or no tunnels with applications in 3D printing
for instance. An online tool that illustrates the method
is proposed.

Keywords digital surfaces, implicit functions, surface
of revolution.

1 Introduction

Surfaces of revolution (as a particular class of sweep sur-
faces), are an important class of surfaces in computer
modeling [1]. It allowed early on, with limited user in-
terface capabilities, to design common 3D objects based
on 2D forms (a 2D circle and 2D generatrix): pen, glass,
flower pot, chess piece, ...Moreover, fundamental sur-
faces such as spheres, cylinders, torii, ...can be defined
as surfaces of revolution. A surface of revolution is de-
fined by a 2D revolution curve (classically a circle) and
a curve as profile, most often an explicit function, called
generatriz. In this paper we are interested in digital sur-
faces of revolution with a free-shaped generatrix and an
implicitly defined curve of revolution with some control
on the topological properties of the digital surface. The
digital surface of revolution is defined by a flake digiti-
zation method which is defined as all the flakes centered

Université de Poitiers, Laboratoire XLIM, SIC, UMR CNRS
7252, BP 30179, F-86962 Futuroscope Chasseneuil, France
E-mail: {eric.andres,gaelle.largeteau.skapin } @univ-poitiers.fr,
lydie.richaume@etu.univ-poitiers.fr

Gaelle Largeteau-Skapin

on digital points cut by the continuous surface of revo-
lution.

In our DGCI 2016 paper [2], we proposed a flake
based simple digital surface of generation tool with a
generatrix limited to explicit functions y = g(z) (see
section 1.1 and section 2.3 for more details). This was
somewhat limiting. One of the motivations for our work
on digital surfaces is to propose flexible generation
tools for the general public and a local artist, Aurélie
Mourier, who works with us. Classically for an explicitly
defined generatrix y = g(z), for each z value, there is
one and only one y value. In the present paper, the
generatrix can be any curve represented by an ordered
sequence of 2D continuous points, therefore there can
be more than one y value for a given z. This may cor-
respond to a hand-drawn curve which was the main
motivation for this work (see section 4.1), an open or
closed sampled parametric curve (section 4.2), or a 2D
digital curve (section 4.3).

In order to handle such generatrices, we devised a
surface of revolution generation algorithm with the fol-
lowing steps (see section 3.4):

— The generatrix can be any finite and open sequence
of points. The generatrix is divided into monotonic
explicit or horizontal point sequences. Each genera-
trix section can then be digitized independently.
This works because our method is based on mor-
phological type digitizations: we ensure that way
that the union of the digitizations is the same as
the digitization of the unions.

— For horizontal generatrix sections (see section 3.3)
we simply need the minimum and maximum y value
in the sequence.

— For monotonic explicit sequences of points defining
a section of the generatrix, the sequence is recom-
puted in order to have a sequence of y for integer and

E.Andres et al.

half-integer z values (see section 3.1.1, section 3.1.2
and section 3.2.1). The flake digitization method we
are using only requires to compute y values for inte-
ger and half-integer z values of the generatrix. This
allows a direct O(1) constant time look-up (see sec-
tion 3.1.2) for the generatrix curve values.

— For all (z,y,2) € Z* in the generation window, for
each generatrix section, we test if the corresponding
flake centered in (z,y, z) is cut by the continuous
surface of revolution. If it is, the voxel of coordi-
nates (x,y, z) belongs to the digital surface. There
are however some difficulties that need to be han-
dled. A monotonic generatrix section may be de-
fined only on a finite z domain and thus only par-
tially cut some flakes. We introduce in section 3.2.2
and section 3.2.3 the notion of cropped flake and
cropped adjacency ball that can handle such partial
cuts. Without this, there could be holes at the junc-
tion of two generatrix sections in the surface since
the end of one monotonic sequence will typically be
the beginning of the next monotonic or horizontal
generatrix section. Note that the generatrix curve
does not have to be a closed curve.

To illustrate our method, we propose an on-
line tool (that can be found at: http://xlim-sic.
labo.univ-poitiers.fr/demonstrateurs/DSoR_
Generator/7lang=en), that was used for most of the
examples in this paper, in particular for a 3D printed
chess queen (see Figure 9). After some basic notations
and the analytical implicit surface digitization method
in section two, we present, in section three, how we
handle an explicit finite or an horizontal generatrix. In
section four we propose some results, limitations, an
algorithm and we conclude and provide perspectives in
section five.

1.1 Previous work

There are relatively few papers that have dealt specif-
ically with the problem of defining or generating digi-
tal surfaces of revolution. N. Stolte et al. have defined
a generation method for digital implicit surfaces with
cylindrical and spherical coordinates [3,4]. Their goal
was not so much to define a generation method for
digital surfaces as to propose a visualization method
for implicit surfaces. Their method is limited to super-
cover type surfaces (tunnel-free surfaces) that are de-
fined with cylindrical and spherical coordinates. More
recently, G.Kumar and P.Bhowmick [5,6] proposed a
generation algorithm for digital surfaces of revolution
for the design of virtual pottery. Their idea was to su-
perpose 2D digital annuli since a rasterized horizontal

slice of height one of a surface of revolution corresponds
to a 2D digital annuli. The authors worked with a classi-
cal notion akin to the Bresenham circle [7], defined only
for integer radii and center. The main drawback is that
concentric Bresenham circles of increasing radii leave
points that do not belong to any circle. The authors
therefore determine what they call absentee voxels, to
fill-up the 6-connected holes in the digital surface [8].
The method for filling the holes with absentee voxels is
however very complicated and limited to circular curves
of revolution. One way around this problem could have
been to use Andres circles [9,10,11] that do fill space
and are defined for arbitrary center and radii. Their
method defines only naive type surfaces (2-tunnel free
surfaces). It can be note however, that they allow a gen-
eral form of generatrix akin to the type of generatrix
we are proposing in the present paper.

A surface of revolution can be defined as an implicit
surface [1]. This was the basis for our DGCI 2016 paper
[2], where we proposed an approach based on a mor-
phology type digitization method for implicit nD sur-
faces [12,13] (generalizing the approach of Laine [14]).
The digital surface of revolution presented in [2] was de-
fined by an explicit function y = g(z) as generatrix and
a 2D implicit function r(x,y) = 0 as curve of revolution
(not limited to 2D circles). The method is very sim-
ple and straight-forward to implement. Furthermore,
under some regularity constraints [12], the digitization
method offers a control over the digital surfaces’ topo-
logy by defining k-tunnel free digital surfaces. This al-
lows the design of digital surfaces adapted to specific
applications: for visualization purposes, the thinnest,
so called naive surface, 2-tunnel free surface might be
adequate. For 3D printing however, one might want to
choose 2-connected, so called supercover, tunnel free
surfaces. The present paper is an extension of this last

paper.

2 Notations, basics and recalls

Let {e1,...,en} denote the canonical basis of the n-
dimensional Euclidean vector space. Let Z" be the sub-
set of R™ that consists of all the integer coordinate
points. A digital (resp. Euclidean) point is an element of
Z" (resp. R™). We denote by x; the i-th coordinate of a
point x, that is its coordinate associated to e;. In 3D, for
the sake of simplicity, we will often refer to the classical
xyz coordinate system corresponding to {ej,ea,e3}. A
digital (resp. Euclidean) object is a set of digital (resp.
Euclidean) points. The Chebychev norm of a vector x
is defined by |/x||,, = max (|z;|). The Manhattan norm
of a vector x is defined by ||x||; = > |zi|.

http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en

Digital Surface of Revolution with Hand-Drawn Generatrix

For all k € {0,...,n — 1}, two integer points v and
w are said to be k-adjacent or k-neighbors, if for all ¢ €
{1,...,n}, |v;—w;| <1 and Z;'L:1 lv; —w;j| <n—k. In
the 3-dimensional space, the 0-, 1- and 2-neighborhood
notations correspond respectively to the classical 26-,
18- and 6-neighborhood notations.

A k-path is a sequence of integer points such that
every two consecutive points in the sequence are k-
adjacent. A digital object E is k-connected if there ex-
ists a k-path in E between any two points of E. A ma-
ximum k-connected subset of E is called a k-connected
component. If the complement of a digital object E,
Z" \ E admits exactly two k-connected components Cq
and Cq, i.e. there exists no k-path joining integer points
of C; and Cs, then E is said to be k-separating in Z™.

Let @ be the Minkowski addition, known as dilation,
such that A® B = Upep{a+b:a € A}.

2.1 Adjacency norms

The adjacency norms have been introduced in [15]. Ev-
ery digital adjacency relationship can be associated to
a norm called an adjacency norm defined as follows:

Definition 1 (Adjacency norms [15]) Let n be the
dimension of the space. Let k be a positive integer lower
than n. The k-adjacency norm [-], is defined as:

Ve e R", [z], = max{m”oo, 7'?_”2} .

The name adjacency norms stems for the following
property:

Lemma 1 (Digital adjacency and adjacency
norms [15]) Let v and w € Z™. Then, v and w are
k-adjacent iff [v —w], < 1.

Let B[,]k(%) be the ball of radius 3 under the norm
[-].- The associated distance is denoted by dj. It is easy
to see that the 0-adjacency norm corresponds to the
Chebychev norm and the (n — 1)-adjacency norm to
the Manhattan norm.

2.2 Implicit surface digitization

In this paper we are considering morphological digitiza-
tion schemes [13,15,16,17]. A summary on this type of
digitization schemes and how they can be used to define
digital objects can be found in [13]. The basic idea is to
say that a digital object is defined as the digital points
inside a Minkowksy sum between a structuring element
FE and the, to be digitized, continuous object S:

Fig. 1 (1,2) 2D adjacency balls B[.]O(%) and B (3) ; (3:4,5)
3D adjacency balls B.) (3), By, (5) and By, (3).

Definition 2 (Morphological Digitization) Let us
consider an object S and a structuring element F both
defined in R™. The morphological digitization of S by
FE is defined by :

De(S)=(SoE)NZ"={veZ": (vdE)NS # a}.

Definition 3 (Adjacency Digitization [12,2,15])
The k-adjacency digitization is the DBl-lk(%) morpho-
logical digitization.

There are two fundamental properties that can al-
most immediately be deduced from this definition:

Proposition 1 (Adjacency Norm Digitization
Properties)

- DE(S U T) = DE(S) @] DE(T) [2, 16,17, 18],‘
— if S is a (n-1)-dimensional object, then DBHk(%)(S)
is locally k-tunnel free [2,12,18,15] (see Figure 3).

The first of these properties is very interesting when
it comes to modeling. The second means that we have
some type of control on the topology of a digitized sur-
face (see Figure 3). The problem is that the Minkowsky
sum (or the intersection of a surface and a adjacency
ball) of a continuous object with an adjacency ball can
be difficult to compute (see [15] for the complicated
equations describing the adjacency ball digitization of
3D spheres). In order to simplify the analytical charac-
terization, and subsequently the generation algorithm,
of a digital 3D surface, we introduced the notion of ad-
jacency flakes in [15] and used those to propose a digi-
tization method for digital implicit surfaces [12]. An
adjacency flake can be described as the union of a fi-
nite number of straight segments joining the opposite
vertices of a k-adjacency ball (see Figure 2).

E.Andres et al.

Definition 4 (Adjacency Flake [12,15])
Let 0 < k < 3. A 3D k-adjacency flake, I}, is defined
by:

3
1
F, = {)\u:)\e [0,5] ,u6{71,0,1}3,2\ui| :3k}.

i=1

Fig. 2 F} Adjacency and M} Matryoshka flakes in 3D.

Instead of an adjacency digitization, with an adja-
cency ball as structuring element, we are considering a
digitization with the corresponding adjacency flake for
implicitly defined surfaces. Let S be an implicit sur-
face S = {# € R®: f(x) =0} which separates space
into one (or several) region(s) where f(z) < 0 and one
(or several) region(s) where f(z) > 0:

Definition 5 (Flake Digitization [12,13,15]) The
k-Flake digitization of a 3D surface S is defined by
Dp(S)={veZ: (v F,)NS # o}

When the surface S verifies a regularity condition,
meaning S is r-regular [19] with r > (v/3 — k + v/3) /2
[12], then the k-flake digitization can be analytically
characterized by considering only the vertices of the k-
flake. Let us introduce such a digitization scheme:

Definition 6 (Simple Analytical Flake Digitiza-
tion [12])

and maz{f(z) :z € (v® Fr)} >0

When the surface verifies the regularity conditions
previously mentioned then Ag(S) = Dp, (S) and thus
verifies all the properties of morphological digitizations
and adjacency flake digitizations. Otherwise there are
some differences that may in some cases create topo-
logical problems [12] (see section 4.5 and Figure 11).
This is largely compensated by the fact that Ax(S) is
easy to construct while Dp, (S) may not. Figure 3 il-
lustrates the differences between the three digitizations

Az, Al and .Ao.

Fig. 3 Tllustration of the topological properties with As, A1, Ag
digitizations of a simple surface of revolution.

Let us mention one natural-seeming property that
is missing with the way we have defined the adjacency
flakes: a digitization inclusion property. For the ad-
jacency balls, we have By (3) C By, (3) C B[.]O(%)
which means that for a given Euclidean object .S,
DB[_]2(%)(S) - DB[.]I(%)<S) - DB[-]O(%)(S)' This is not
the case for adjacency balls as we have defined them
since Fy ¢ Fy ¢ Fy. One way around this is simply
to define a sequence of flakes that have the inclusion
property:

Definition 7 (3D Matryoshka Flakes) Three di-
mensional Matryoshka flakes M), are defined by: My =
FQ, M1 = MQ U Fl and Mo = M1 U FQ (Figure 2)

The implicit surfaces digitizated with the M; and
M, Matryoshka flakes still have the same topological
properties than the one digitized with the adjacency
flakes but now we have Dy, (S) € Dy, (S) € Dy, (S).
This can be used to solve some problems with non reg-
ular surfaces (see Figure 11).

2.3 Digital surface of revolution with explicit
generatrix [2]

Classically, a surface of revolution is defined by the ro-
tation of a curve (the generatrix) around a straight line
(the axis). The axis is most often simply the z-axis of
a classical zyz-axis system. In our previous work [2],
we considered the generatrix as an explicit function
y = ¢g(z), defined for all z € R. The horizontal slice
at height z of the surface of revolution is classically a
circle (the curve of revolution) of radius g(z). The gene-
ratrix acts as an homothetic function. It is easy to see
that this definition corresponds to an implicit 3D sur-
face where the curve of revolution is not limited to a
circle:

Digital Surface of Revolution with Hand-Drawn Generatrix

Definition 8 (Implicitely defined Euclidean Sur-
face of Revolution [1,2])

£ Y

S(g,7) = {(z,y,z) ceR? r <g(z), g(z)> = O},

where r(z,y) = 0,(z,y) € [-1,1]> C R?, is an im-
plicitly defined curve of revolution that separates the
window [—1,1]? into regions of opposite signs, and
Vz eR, g(z) > 0.

The implicit surface of revolution can be digi-
tized into a Digital Surface of Revolution with an infi-
nite explicit generatriz using the Aj-digitization. This
corresponds to the DGCI 2016 paper [2].

3 Digital surface of revolution generation
algorithm

In this section we are going to explore our proposed
method of digital surface of revolution generation with
a hand-drawn generatrix. The particularity of a hand-
drawn generatrix is that we cannot assume anything
particular about the generatrix: it may correspond to
an infinite explicit function (defined on the whole height
interval of definition of the surface. Section 2.3), to a fi-
nite explicit curve (section 3.2.1), to an horizontal curve
(section 3.3), or to the union of some or all of those cases
(section 3.4).

9
Explicit y=f(x) (Finite) Explicit -
Section 3.2 generatrix section
* Section33
® T .
/ Hand-drawn
Section 3.1 .

. Horizontal
generatrix section
Section 3.4

completly inside
cropped flake
Section 3.3.1&3.3.2

Generatrix

Flake cut
by the surface

®
+
| |®
f
|
|
|
|

completly
outside flake

Curve of

N *
revolution B a)

&

Flake cut
by the surface

-0
\optct Sl

Fig. 4 Ilustration of the flake digitization for different type of
generatrices.

The input for the algorithm is a curve of revolu-
tion based on an implicit 2D function defined in a
window [—1,1]? and an ordered sequence of Euclidean
points (z;,4:), 1 < i < n, typically following the or-
der in which the generatrix has been drawn and rep-
resenting a sampled curve g(z). In this case there can
be several values g(z) for a given z. The function is
not necessarily explicit anymore. In order to generate

the digital surface of revolution, we will define a fi-
nite window with, in particular, a generation domain
[Zmin, Zmaz) » Zmin, 2maz) € Z2, along the z-axis. For
what follows we will consider only one (connected)
hand-drawn curve but it is easy to expand the method
to work with several different generatrix curves as, by
essence of morphological digitizations each surface of
revolution corresponding to each generatrix curve can
be digitized independently. The different steps of the
digital surface of revolution generation algorithm are
presented in the algorithm 1. Let us detail the different
aspects of this algorithm:

Algorithm 1: Surface of revolution digitization

: A List Gen of 2D Euclidean points as
generatrix, an implicit 2D function Rev as curve
of revolution, a connexity conezx, and a
digitization window W

input

(fminy Tmaz, Ymin, Ymaz, Zmin, Zmaac)~
output: A list V of voxel belonging to the digitization of
the surface of revolution.
begin
Initialize the list V as empty;
GenParts=DivideAndRecompute(Gen) (* see section
3.1%);
foreach digital point P(x,y, z)€ W do
foreach Part in GenParts do
if IsHorizontal(Part) then
if inHorizontal(Rev,conex,x,y,z,Part)
then
L Add the voxel to V;

else
if inMonotonic(Rev,conex,x,y,z,Part)
then

L Add the voxel to V;

return V;

3.1 First step of the Algorithm: divide and recompute
each generatrix section

The generatrix acts as an homothetic factor to the
curve of revolution. For a generatrix defined as a se-
quence of 2D points representing a sampled curve g(z),
there can be more than one such value for a given
z. In order to handle this, the generatrix is divided
into a set of strictly monotonic (in z, increasing or
decreasing) or horizontal sequences. The end point of
one sequence is duplicated as the starting point of the
next sequence. The considered morphological digitiza-
tion methods mean we can simply digitize each se-
quence separately.

E.Andres et al.

Now, let us remark that we need to compute a value
g(z) at the vertices of flakes that have only integer and
half-integer coordinates (with the exception of cropped
flakes that will be introduced in the following section
3.2.2). Each strictly monotonic sequence (not the hor-
izontal sequences) is replaced by a sequence with in-
terpolated y values for integer and half-integer z val-
ues. One can use any kind of interpolation function to
compute a y value for each integer and half-integer z
value. For all of the following figures and for the online
program, we simply used a linear interpolation scheme
between appropriate points of the initial sequence. For
each strictly monotonic sequence, we need to keep the
starting and ending points that define the domain of
definition of the finite explicit generatrix (see subsection
3.2.1). For the horizontal sequences, the points with
minimum and maximum y are the only two points we
need (see subsection 3.3).

3.1.1 Example

Let us give a simple example of this recomputation pro-
cess:

— Let us start with the generatrix defined by the fol-
lowing sequence of (z;,y;) points:

{(16.9,12.15), (17.8,13), (18.1, 14.05), (18.1, 16.95),
(18.1,18.95), (17.2,20.85), (16.4, 22) };

— This is decomposed into three

{(16.9,12.15), (17.8,13), (18.1, 14.05)},
{(18.1,14.05), (18.1,16.95), (18.1, 18.95) },
and {(16.4,22),(17.2,20.85), (18.1,18.95)}.
The first and the last of those sequences are strictly
monotonic: one with increasing z values and one
with decreasing z values which is reversed to allow
a uniform treatment for all monotonic sequences.
The second sequence corresponds to an horizontal
sequence (in z).

— The first strictly monotonic sequence is interpolated
and replaced by:

{(16.9,12.15), (17.,12.24), (17.5,12.72),
(18.,13.7),(18.1,14.05) };

— The horizontal sequence is replaced by:
{(18.1,14.05), (18.1,18.95)}. We do not need the
other values;

— The last strictly monotonic sequence is interpolated
and replaced by:

{(16.4,22), (16.5,21.86), (17.,21.14), (17.5,20.22),
(18.,19.16), (18.1,18.95)}.

sequences

3.1.2 Direct access to a monotonic sequence value

The interesting thing about recomputing a strictly
monotonic sequence in such a way is that given

the 2z value, one can immediately determine the
place in the sequence in a O(1) constant time look
up: let us say that we have a monotonic sequence
{(21,91), (22,92),-- -, (2n,yn)}: the index in the list to
return is:

— If 2 < z5 then the index to return is 1 ;
— if 2 > z,_1 then the index to return is n ;
— otherwise the index to return is 2z — [221] + 2.

Where [x] is the ceiling of = (i.e. the smallest integer
greater than z). For example, in the last monotonic
sequence in the previous example, for z = 17.5, we have
2%17.5—[2+16.4] + 2 = 4. This allows a direct access
to the value we are looking for. The formula should be
modified according to the starting index.

3.2 Handling strictly monotonic generatrix sequences

A first simple case comes when the strictly monotonic
sequence is defined on the whole z generation domain:
Let us assume now that we have a strictly monotonic se-
quence of Euclidean points {(z1,41),- .-, (zn, yn)} with
21 < < z, and a generation domain interval
[Zmins Zmaz) along the z-axis. If z1 < zp4, and z, >
Zmazs We are in the case where the generatrix defined
by the sequence of points can be handled as an infi-
nite explicit generatrix just as we did in [2] with the
appropriate interpolation and resampling as presented
in subsection 3.1. It gets more complicated when this is
not the case.

Algorithm 2: inMonotonic(see section 3.2.1)

input : An implicit function Rev, a connexity conex, a
voxel center Vx,Vy, V; and a Euclidean point
list Part which is a strictly monotonic increasing
part of the generatrix .

output: A boolean that is True if the voxel is in the

digitization of this part of the surface
(Rev x Part) and false otherwise.

begin

Compute the flake vertices of the voxel for the chosen

connexity (* see section 3.2.3 and 3.2.2 *);

Compute the values Lvalues by applying the

revolution function on these flake vertices using the

homothetic factor found in Part;

if min(Lvalues)<0 and maz (Lvalues>0) then
| return(TRUE);

else
| return(FALSE);

3.2.1 Explicit finite generatric

Let us now consider a strictly monotonic sequence of
Euclidean points {(z1,91), ..., (2n,yn) } wWith 2 < ... <

Digital Surface of Revolution with Hand-Drawn Generatrix

Zn, and a generation domain interval [Zmin, Zmaz] along
the z-axis such that zy > 2z O 2, < Zmae- This case
needs to be handled specifically because a digitization
of the surface of revolution by a digitization scheme Ay
supposes that we are able, for all points in %Zg, to com-

pute a value for r (ﬁ, ﬁ) where r is the implicitly
defined curve of revolution and g is the interpolated
generatrix function. In the finite case, when testing a
voxel, it is possible that one or several vertices of the
k-flake fall outside the definition domain of the gener-
atrix: g(z) is not defined for such a vertex. While it
seems logical that the voxel is not part of the digital
surface if ¢ is not defined for any of the vertices of a
flake, when some vertices of the flake are inside the def-
inition domain of the generatrix and some not then the
voxel may be simply partially cut (see 2D illustration
in Figure 5.2-8) and not simply crossed by the continu-
ous surface of revolution (see 2D illustration in Figure
5.1). Simply ignoring the vertices for which we have no
value can lead to many wrongly discarded voxels and
lead to holes at the junction of consecutive generatrix
sequernces.

To get these values, we can choose substitute points,
to better adjust to the domain of the function. For this
we introduce cropped flakes and cropped adjacency balls.
These points are actually easy to choose since the do-
main is restricted along only one coordinate: the z-axis.

3.2.2 Cropped flakes

There are two ways of considering alternate flake ver-
tices. The first method consists simply in considering
only the parts of the flake that are inside the domain.
The considered vertices for the computations are the
endpoints of the cropped flake line segments. For the
sake of clarity, Figure 5 shows all the different configu-
rations in 2D for an A; digitization (it is easy to extend
to A; and Ap). An example, Figure 5.9 shows the con-
figuration of Figure 5.2 in 3D.

3.2.3 Cropped adjacency ball

The second method consists in considering the vertices
of the cropped adjacency ball which the k-flake approx-
imates. There are a few more points for the A4; and A,
digitizations, but the results are much closer to what
we would get by computing the intersection between
the surface and the adjacency balls.

Again, for the sake of clarity, Figure 6 shows, in
2D, which points should be computed in every possible
configuration for the A, digitization. Figure 6.9 shows
the corresponding 3D configuration to Figure 6.2.

Fig. 5 The different configurations that can occur in the digi-
tization process when cropping flakes.

Fig. 6 The different configurations that can occur in the digi-
tization process when cropping balls.

3.3 Handling a horizontal generatrix

Let us mnow consider an horizontal sequence
{(20,91),---,(20,yn)}. As shown in the example
of section 3.1.1, we only keep the minimum and
maximum of the y values: Ymin = min (y1,...,Yn),
Ymaz = max (yY1,...,Yn)- An horizontal generatrix
would be defined by z = 2y, 20 € R on an interval
Y € [Ymins Ymaz) C R. Such a generatrix, associated to
a circle as the curve of revolution, would result in an
annulus as the generated surface. To determine if a
voxel is part of this annulus, we simply need to know if
it is inside the large circle (radius = ymae) and outside
the small one (radius = Ymin). This works of course
exactly in the same way for any implicitly defined
curve of revolution. We can test this simply using the
Ay digitization. The main difficulty is the same as
in 3.2.1: it will most likely be impossible to compute
the value corresponding to any vertices, since only
one value is possible for z. Using the same solution as
before we will get a slice of adjacency ball (or a slice of
flake) defining the substitute points we should use.

E.Andres et al.

Algorithm 3: inHorizontal (see section 3.3)

input : An implicit function Rev, a connexity conex, a
voxel center Vx,Vy, V; and a Euclidean point
list Part which is an horizontal part of the
generatrix .

output: A boolean that is True if the voxel is in the

digitization of this part of the surface
(Rev X Part) and false otherwise.

begin

if The horizontal Part crosses the vozel

(|Part; — V5| < 0.5) then

Compute the flake vertices of the voxel for the

chosen connexity (* see section 3.2.3 and 3.2.2 *);

Compute the values Lwvalues by applying the

revolution function on these flake vertices using

the homothetic factor found in Part;

if min(Lvalues)<0 and maz (Lvalues>0) then
| return(TRUE);

else
| return(FALSE);

else
L return (FALSE);

3.4 Additional considerations

We have now all we need to generate the surface (see
algorithm 1). Since the basis of the generation is a mor-
phological type digitization scheme, Proposition 1 al-
lows us to generate each single sequence independently
as described in the previous sections. The most im-
mediate approach is simply to test if each voxel, in
a 3D finite generation window, belongs to the surface
of revolution of a generatrix point sequence. One can
also determine a starting point as seed and generate
the surface by neighborhood propagation. This is the
main generation method proposed in our online tool.
This is usually faster but there is no guarantee that the
surface of revolution is formed by only one connected
component or that it is not composed of all the voxels
of the generation window. In terms of complexity, we
test each voxel of the 3D window where we generate
the digital surface of revolution, and this for each of
the sequences in the set of generatrix point sequences.
For a generation window of size n® with a set of m
generatrix point sequences, the worst case complexity
would be O(m.n3) with no absolute limit on m (one
can think of a generatrix based on a function such as
z = sin(1/y)). There could be some improvement im-
plemented here in future works. There are some obvi-
ous optimizations that help during the generation: if
a point (x,y,z) is part of the digital revolution sur-
face for one generatrix point sequence, there is no need
to test further if it belongs also to the digital surface
of another generatrix point sequence. Moreover, each
generatrix point sequence is defined on some interval

Zmin < 2 < Zmaz- We only need to test the voxels
(z,y, 2) verifying zmin — 0.5 < 2 < zyae + 0.5.

4 Results

In this section we present results of our digital gener-
ation algorithm with various ways to obtain the point
list for the generatrix.

4.1 Hand-drawn generatrix and online creation tool

The first way to create a generatrix as a list of points is
to consider a hand-drawn curve defined by a sequence
of 2D Euclidean points. This was the main incentive for
this work: proposing a natural method to create a digi-
tal surface of revolution. We developed an online digital
surface creation tool that can be found at the following
address: http://xlim-sic.labo.univ-poitiers.
fr/demonstrateurs/DSoR_Generator/7lang=en. A
screenshot of the interface with an example of hand-
drawn generatrix can be seen in Figure 10. Some other
examples of surfaces generated by the online tool are
presented in Figure 14. In Figure 9 we show the work
of a local artist, Aurélie Mourier, who used our online
tool to create a set of chess pieces. We printed out the
White Queen piece in two halfs so as to show that it
is an actual surface we are creating (see Figure 9). In
this case, the surface is based on the M0 Matrioshka
flake in order to have a robust 2-connected tunnel free
surface.

4.2 Parametric generatrix

An alternative way of generating a list of points as gen-
eratrix is to sample a parametric function. You will
find two examples in Figure 7. An adaptative sampling
might be useful depending on the curve [20].

4.3 Digital curve as generatrix

A generatrix (or a set of generatrices) can also be
extracted from a digital image as a (set of) digital
curve(s). This can be done in many different ways. The
main problem here is extracting an ordered list of dig-
ital points which depends on the type of digital curves
present in the image. The main idea for handling such
digital curves is to decompose them into a set, of digital
line segments and then taking the continuous analog of
those digital line and regenerate the y values for integer
and half-integer z values. Other types of interpolation

http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en

Digital Surface of Revolution with Hand-Drawn Generatrix

G(t) = (22+22.(1.1-t/5n).sin(t),
22+22.(1.1-4/5n).cos(t)

G(t) = (24+20:sin(t), 22+22.cos(3t))

t=kn/30,0<k <61
t=3k/10,0< k<53

Fig. 7 Two examples of surfaces of Revolution with a parametric
curve as generatrix and a circular curve of revolution.

schemes can of course be used as well. The important
thing here is not simply to consider the set of digital
points as input to the algorithm otherwise the surface
may not look smooth. In Figure 8, we decomposed a
digital curve into line segments with a regular line seg-
ment recognition method [21]. For each digital line of
analytical equation 0 < az — by + ¢ < max (|a|, |b]), we
considered the continuous line ax — by —c — 10| /2 =0
or ax — by — ¢ — |a| /2 = 0 depending on the orienta-
tion. A little care has to be taken for the end points
of the different digital line segments. If the intersection
of two consecutive line segments lies outside of the dig-
ital starting/end point of the respective line segment
then a little patch function has to be added (see [22])
or one has to use an adapted line recognition where this
problem does not occur [23]. This creates a piecewise
defined generatrix. Figure 8 shows a digitized sinusoid
that we have decomposed into digital line segments. In
this example, the curve of revolution is a circle.

Fig. 8 A digital generatrix decomposed into digital straight
segments (left) and the resulting revolution surface (right) using
the unit implicit circle as revolution curve.

4.4 Crenelated digital surfaces

As shown in Figure 12.2, the digitization of an implicit
surface can lead to a crenelated surface edge. Figure
12.2 has been obtained with the Ay digitization (with
the direct mathematical approach presented in [2]) of
the implicitly defined surface shown in Figure 12.1. This
proves that this is not a side effect of our present ap-
proach, which, of course, may also create crenelated sur-
faces. The explanation for this crenelation can be seen
in Figure 12.3: when, locally, the generatrix is defined
on a finite domain, for instance for z < zy, for some
zo € R, then the corresponding surface of revolution
might only cut a disconnected set of adjacency balls on
layer z = Lzo + %J This leads to a crenelated result.

4.5 Limitations

The main limitation of this digital revolution surface
generation method is that the analytical digitization
may miss some points. This may happen if the surface
is not r-regular [19] with r > (V3 —k+v/3) /2 [12].
As mentioned in section 2.2, if the continuous surface
of revolution is not r-regular, the digitization where we
consider only the vertices of the flakes is not equivalent
to the one with the whole flakes and the topological
properties may be lost. Figure 11.1 illustrates this with
a curve that crosses a voxel but the vertices of the flake
are all on the same side of the implicit curve of revolu-
tion. The voxel is therefore wrongly discarded from the
digitization result and disconnections or holes appear.
This is classically dealt with interval arithmetics [24]
but interval arithmetics works only for digitizations cor-
responding to Fy-adjacency flakes. One way to reduce
the occurrence of such problems is to use Matryoshka
flakes as illustrated in Figure 11. In figure 11.3 we have a
0-adjacency flake digitization with a lemniscate as curve
of revolution (Figure 11.2). The surface is disconnected.
The use of the Matryoshka Mj-flake (figure 11.4) solves
the problem. Of course, there will always be cases where
the topological properties can not be guaranteed. As a
concluding remark, let us note that a flake digitization
does not guarantee and optimal k-tunnel free surface
even though the regularity conditions are met. There
can be simple points with regard to the k-tunnel free-
ness property. Ensuring topological optimality is still
an open question.

5 Conclusion and perspectives

In this paper we proposed a simple algorithm to gener-
ate a large class of surfaces of revolution based on an im-

10 E.Andres et al.
R G = P o= o= o E=l ==
— ~ T T
7T YD) (Y
| _}, \ /
S LA P O Q
| SIS . = : b= MWcp e - | B = [

Fig. 9 Set of chess pieces and example of 3D printed White Queen. First row: the generatrices; second row: the revolution curves;
third row: the resulting surfaces; last row: several views of the 3D printed White Queen.

B cp

Fig. 10 A hand-drawn generatrix and the obtained sur-
face of revolution using the unit implicit circle as revolution
curve. Online tool can be found at : http://xlim-sic.labo.univ-
poitiers.fr/demonstrateurs/DSoR _Generator/?lang=en .

plicit 2D curve as curve of revolution and a hand-drawn
generatrix. Any ordered sequence of points representing

Fig. 11 1. Case where flake misses a point. 2. Lemniscate curve
of revolution 3. Disconnected 2-connected surface. 4. 2-connected
surface with Matrioschka Mo-flake.

a 2D curve can be used to define a generatrix. Given
some regularity conditions for the surface, we control
the topology of the resulting digital surface: the type
of tunnels that appear in the surface can be defined,
which allows to generate surfaces that are adapted for

Digital Surface of Revolution with Hand-Drawn Generatrix

11

Fig. 12 1. Animplicit 3D surface. 2. Its A2 digitization. 3. Only
some adjacency balls are cut by the surface.

Fig. 13 Two examples of some other surfaces we can build with
our algorithm.

various applications (rendering, 3D-printing, etc.). We
propose an online tool that illustrates the proposed
method and that can be used to create surfaces and
export them into various formats including 3D printing
formats. The online tool can be found at the following
address: http://x1lim-sic.labo.univ-poitiers.fr/
demonstrateurs/DSoR_Generator/7lang=en. We set
up an imgur animated gif repository for some of our
digital surface creations : http://imgur.com/a/eDFbY.
Let us be noted that the repository holds not only digi-
tal surfaces of revolutions but also swept tubes and may
contain examples of future extensions. The methods we
propose are not limited to digital surfaces of revolution
and can be adapted to more general types of surfaces.
For example the generatrix can be used as central axis
for the revolution curve (see the left of Figure 13):

Definition 9

S(g,r) ={z,y,z € R®, r(z,y—g(2)) =0}.

We can also combine an homothetic function h(z)
and two translation functions ¢(z),u(z) for the center
of the revolution curve (see the right of figure 13):

Definition 10

S(h,t,r) = {x,y,z ER3, r (% —u(z), % —t(z)) = 0}.

This will be handled in a forthcoming work. One of
the next steps will be to consider hand-drawn curves of
revolution which will allow further control of the types
of surfaces that can be generated.

Acknowledgement: This work has been sup-
ported by the CPER 2015-2020, NUMERIC Program
and FEDER-FSE MODEGA Project of the Nouvelle-
Aquitaine Region, France. we would like to thank Au-
rélie Mourier, http://www.aureliemourier.net/, a
local artist, that worked with us on the online tool and
on creating the chess pieces.

References

1. Salomon, D.:
Springer (2006)

2. Andres, E., Largeteau-Skapin, G.: Digital Surfaces of Rev-
olution Made Simple. In: Discrete Geometry for Computer
Imagery: 19th TAPR International Conference, DGCI 2016,
Nantes, France, April 18-20, 2016.Volume 9647 of the series
Lecture Notes in Computer Science. Springer International
Publishing (2016) 244-255

3. Stolte, N., Kaufman, A.E.: Novel techniques for robust vox-
elization and visualization of implicit surfaces. Graphical
Models 63(6) (2001) 387-412

4. Yongsheng, L., Stolte, N.: Robust voxelization based ray
tracing of implicit surfaces. In: Proc. 6th Sixth IASTED
Honolulu, Hawaii (USA). (2003) 177-180

5. Bhowmick, P., Bera, S., Bhattacharya, B.B.: Digital cir-
cularity and its applications. In Wiederhold, P., Barneva,
R.P., eds.: Combinatorial Image Analysis, 13th International
Workshop, IWCIA Playa del Carmen, Mexico, November 24-
27,2009. Proceedings. Volume 5852 of Lecture Notes in Com-
puter Science., Springer (2009) 1-15

6. Kumar, G., Sharma, N.K., Bhowmick, P.: Wheel-throwing in
digital space using number-theoretic approach. IJART 4(2)
(2011) 196-215

7. Bresenham, J.: A linear algorithm for incremental digital
display of circular arcs. Commun. ACM 20(2) (1977) 100-
106

8. Bera, S., Bhowmick, P., Bhattacharya, B.B.: On the charac-
terization of absentee-voxels in a spherical surface and vol-
ume of revolution in Z3. Journal of Mathematical Imaging
and Vision (2016) 1-19

9. Andres, E.: Discrete circles, rings and spheres. Computer
and Graphics 18(5) (1994) 695-706

10. Andres, E., Jacob, M.A.: The discrete analytical hyper-
spheres. IEEE Trans. on Vis. and Comp. Graphics 3(1)
(1997) 75-86

11. Andres, E., Roussillon, T.: Analytical description of digital
circles. In: 16th DGCI, Nancy (France). Volume 6607 of
LNCS., Springer (2011) 235-246

12. Toutant, J., Andres, E., Largeteau-Skapin, G., Zrour, R.: Im-
plicit digital surfaces in arbitrary dimensions. In: 18th DGCI,
Siena (Italy). Volume 8668 of LNCS., Springer (2014) 332—
343

13. Andres, E.: Digital Analytical Geometry: How Do I Define a
Digital Analytical Object? In: Combinatorial Image Analy-
sis: 17th International Workshop, IWCIA 2015, Kolkata, In-
dia, November 24-27, 2015. Volume 9448 of the series Lecture
Notes in Computer Science. Springer International Publish-
ing (2015) 3-17

14. Laine, S.: A topological approach to voxelization. Computer
Graphics Forum 32(4) (2013) 77-86

15. Toutant, J., Andres, E., Roussillon, T.: Digital circles,
spheres and hyperspheres: From morphological models to an-
alytical characterizations and topological properties. Dis-
crete Applied Mathematics 161(16-17) (2013) 2662-2677

Curves and surfaces for computer graphics.

http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://xlim-sic.labo.univ-poitiers.fr/demonstrateurs/DSoR_Generator/?lang=en
http://imgur.com/a/eDFbY
http://www.aureliemourier.net/

12

E.Andres et al.

Hand-Drawn Generatrix

Curve of Revolution

Digital Surface of Revolution

4 08 48 04 92

08
08
04
9
N
28 Q
23

o o2 a4 05 08 1

4 98 05 94 92 0

02 o4 05 08 1

4 08 05 4t a2

(O

o oz

s

06 08 1

O
(|
|
E

4 03 05 94 02 0

o5
o5
o
a2
0
2
e
<5
<5

04 @

s 05 1

Fig. 14 Examples of hand-drawn generatrix, implicit curve of revolution and the corresponding digital surface of revolution.

16.

17.

18.

19.

20.

Heijmans, H.: Morphological discretization. In: Geometri-
cal Problem in Image Processing, U. Eckhardt and al. Eds,
Akademie Verlag, Berlin. (1991) 99-106

Heijmans, H., Toet, A.: Morphological sampling. Graphics
and Image Processing: Image Understanding 54(3) (1991)
384-400

Andres, E.: The supercover of an m-flat is a discrete analyt-
ical object. Theor. Comput. Sci. 406(1-2) (2008) 8-14
Stelldinger, P., Kéthe, U.: Towards a general sampling theory
for shape preservation. Image and Vision Computing 23(2)
(2005) 237248

de Figueiredo, L.H.: Adaptive sampling of parametric curves.
Graphics Gems V 5 (1995) 173-178

21

22.

23.

24.

. Debled-Rennesson, I., Reveillés, J.: A linear algorithm for
segmentation of digital curves. IJPRATI 9(4) (1995) 635-662
Breton, R., Sivignon, I., Dupont, F., Andres, E.: Towards an
invertible euclidean reconstruction of a discrete object. In:
11th DGCI Naples (Italy). Volume 2886 of LNCS., Springer
(2003) 246-256

Sivignon, I., Breton, R., Dupont, F., Andres, E.: Discrete
analytical curve reconstruction without patches. Image and
Vision Computing 23(2) (2005) 191-202

Duff, T.: Interval arithmetic recursive subdivision for implicit
functions and constructive solid geometry. In: Proceedings
of the 19th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1992. (1992) 131-138

	Introduction
	Previous work

	Notations, basics and recalls
	Adjacency norms
	Implicit surface digitization
	Digital surface of revolution with explicit generatrix Andres16

	Digital surface of revolution generation algorithm
	First step of the Algorithm: divide and recompute each generatrix section
	Example
	Direct access to a monotonic sequence value

	Handling strictly monotonic generatrix sequences
	Explicit finite generatrix
	Cropped flakes
	Cropped adjacency ball

	Handling a horizontal generatrix
	Additional considerations

	Results
	Hand-drawn generatrix and online creation tool
	Parametric generatrix
	Digital curve as generatrix
	Crenelated digital surfaces
	Limitations

	Conclusion and perspectives

