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Abstract

Clustering is a very powerful tool for automatic detection of relevant sub-groups
in unlabeled data sets. In this paper we focus on interval data: i.e. where the
objects are defined as hyper-rectangles. We propose here a new clustering al-
gorithm for interval data, based on the learning of a Self Organizing Map. The
major advantage of our approach is that the number of clusters to find is de-
termined automatically; no a priori hypothesis for the number of clusters is
required. Experimental results confirm the effectiveness of the proposed algo-
rithm when applied to interval data.
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1. Introduction

Unsupervised classification, or clustering, is a very powerful tool for auto-
matic detection of relevant sub-groups (or clusters) in unlabeled data sets, when
one does not have prior knowledge about the underlying structure of these data.
Patterns in the same cluster should be similar to each other, while patterns in
different clusters should not (internal homogeneity and external separation).
Clustering plays an indispensable role for understanding various phenomena

described by data sets and is considered as one of the most challenging tasks
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in unsupervised learning. Various approaches have been proposed to solve the
problem [? 2 7 7 7 |].

However, most clustering algorithms are defined to deal with vectorial data
in RY. This kind of representation is frequently used to analyze data from
physical measurements, counts or indices, but there are many other kinds of
information that can not be described with vectors. This is the case of complex
data described for example with a text, a picture or a hierarchical structure.
In this paper we focus on interval data (also known as symbolic interval data).
In a vectorial space, interval data are defined by hyper-rectangles. A given
data z is thus defined as a closed and bounded interval in R?, characterized
by two vectors, the lower bound (x; = [xj1,...,214]) and the upper bound
(y = [Tu1, ..., Tud]), such that Vj € [1,...,d],2;; < xy;. Intervals are often
used to model quantities which vary between two bounds, upper and lower,
without further assumptions on the distribution between these bounds [? ? ?
? ].Several clustering methods are available for interval variables. For example,
[? | presented an iterative relocation algorithm to partition a set of symbolic
objects into classes so as to minimize the sum of the description potential of the
classes. [? ] proposed partitioning clustering methods for interval data based
on city-block distances. SCLUST [? ] is a partitioning clustering method and a
symbolic extension of the well-known Dynamical Clustering method [? |. DIV
[? ] is a symbolic hierarchical monothetic divisive clustering procedure based
on the extension of the within class sum-of-squares criterion. SCLASS [? | and
SPART [? ] are symbolic hierarchical monothetic divisive methods based on the
generalized Hypervolumes clustering criterion. Hardy [? ] developed a module
called SHICLUST containing the symbolic extensions of four well-known classic
hierarchical clustering methods: the single linkage, complete linkage, centroid
and Ward methods. The corresponding aggregation indices used the L1, Lo,
Hausdorff and De Carvalho [? ] dissimilarity measures [? ? |. The hierarchical
component of Hipyr [? ] also contains extensions of the four classic hierarchical

clustering methods. Other clustering methods for interval data can be found in
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We present here a new clustering algorithm for interval data, based on the
learning of a Self Organizing Map (SOM) [? ]. This unsupervised learning
algorithm is a popular nonlinear technique for dimensionality reduction and
data visualization, with a very low computational cost. It can be seen as a
K-means algorithm with topological constraints, usually with a better overall
clustering performance [? ]. Bock [? ? ] proposed a visualization of symbolic
interval data by constructing a SOM. In the SODAS software [? ], such a map is
constructed in the SYKSOM module. SYKSOM assumes a data table of n items
that are described by p interval-type variables. The n items are first clustered
into a smaller number of mini-clusters (reduction step), and these mini-clusters
are then assigned to the vertices of a fixed, prespecified rectangular lattice £
of points in the plane such that similar clusters (in the original data space) are
represented by neighboring vertices in the lattice £. Other papers concerning
SOM algorithms for interval-valued data can be found in the literature [? 7 ?
? 7 ? ]. For example, [? | uses a distance based on Hadamard product and
[? ] proposes a fuzzy representation based on Gowda and Diday’s dissimilarity
measure [? |. All these algorithms can be seen as vector quantization and
visualization tools for symbolic interval data, and cannot be used directly to
obtain a clustering of the data.

The proposed algorithm is a two-level clustering method for interval data.
The key idea of the two-level clustering approach based on SOM is to combine
the dimension reduction and the fast learning capabilities of SOM in the first
level to construct a new reduced space, then to apply a clustering method in
this new space to produce a final set of clusters in the second level (see [? 7 ] for
examples with vectorial data). The two-level methods are known to reduce the
computational time and allow a visual interpretation of the clustering results
[? ]. In particular, the use of SOM+K-means or SOM+Hierarchical clustering
gives better results than the use of K-means or a Hierarchical clustering alone
[? ? ]. The major advantage of the new algorithm in comparison to existing
methods is that the number of clusters to find is detected automatically, i.e.,

no a priori hypothesis for the number of clusters is required. This problem,



also known as the model selection problem, is one of the most challenging in
clustering. Indeed, the existing clustering algorithms for interval data need to
have the number of clusters as a user-given parameter [? ? ? ? |, which is
usually very difficult to determine a priori.

The remainder of this paper is organized as follows. Section 2 presents
an adaptation of SOM allowing an automatic two-level clustering. Section 3
describes the new algorithm for interval data. In section 4 we present the
experimental protocol and results are shown in section 5. In section 77, we
compare the new algorithm with existing methods on artificial and real datasets.

Conclusions are given in section ?7.

2. Simultaneous Two-Level clustering of Self-Organizing Map

Kohonen’s Self-Organizing Map (SOM) can be described as a competitive
unsupervised learning neural network [? |. When an observation is recognized,
the activation of an output cell - competition layer - inhibits the activation
of other neurons and reinforces itself. It is said that it follows the so called
“Winner Takes All” rule. Actually, neurons are specialized in the recognition
of one kind of observation. A SOM often consists of a two-dimensional map
of neurons which are connected to n inputs according to n weight connections
wl = (w{, e wfi) and to their neighbors with topological links. A training set
is used to organize these maps under topological constraints of the input space.
Thus, a mapping between the input space and the network space is constructed;
two close observations in the input space would activate two close units of the
SOM. An optimal spatial organization is determined by the SOM from the input
data, and when the dimension of the input space is lower than three, both the
position of weight vectors and direct neighborhood relations between cells can be
represented visually. Thus, a visual inspection of the map provides qualitative
information about the map and the choice of its architecture. The winner neuron
updates its prototype vector, making it more sensitive for later presentation of

that type of input. This allows different cells to be trained for different types of



data. To achieve a topological mapping, the neighbors of the winner neuron can
adjust their prototype vector towards the input vector as well, but at a lesser
degree, depending on how far away they are from the winner. Usually a radial
symmetric Gaussian neighborhood function Kjj, between two neurons ¢ and j,
is used for this purpose.

The key idea of the two-level clustering approach based on SOM is to com-
bine the dimension reduction and the fast learning capabilities of SOM in the
first level to construct a new reduced vector space, and to apply another clus-
tering method in this new space to produce a final set of clusters in the second
level. Although the two-level methods are more interesting than the traditional
approaches (in particular by reducing the computational time and by allowing
a visual interpretation of the partition result [? ? ? ? ]), the data segmen-
tation obtained from the SOM is not optimal, since part of the information
is lost during the first stage (dimension reduction). Moreover, this separation
in two stages is not suited for a dynamic (incremental) segmentation of data
which move in time, in spite of important needs for analysis tools for this type
of data. The S2L-SOM algorithm (Simultaneous Two-Levels -SOM, [? ]) has
been proposed to overcome these problems by simultaneous performing learning

and clustering of the SOM from data information.

2.1. The S2L-SOM algorithm

In the S2L.-SOM algorithm, it is proposed to associate to each neighborhood
connection a real value v;; which indicates the relevance of the connected neu-
rons ¢ and j. This value is representative of the data distribution between i
and j, and can be viewed as the number of data having 7 and j as the two best
representatives neurons. Given the organization constraint of the SOM, both
closest prototypes of each data must be connected by a topological connection.
This connection “will be rewarded” by an increase of its value, whereas all other
connections from the winner neuron “are punished” by a reduction of their val-
ues. The values of v will be used to create sets of connected prototypes; each

set not connected to the others is representative of one cluster. Thus, at the end



of the training, a set of inter-connected prototypes will be an artificial image of
a relevant sub-group of the whole data set.

Connectionist learning is often presented as a minimization of a cost function.
In our case, it will be carried out by the minimization of the distance between the
input samples and the map prototypes, weighted by a neighborhood function
K;;. To do that, we use a gradient algorithm [? ]. The cost function to be

minimized is defined by:

N M
ZZ @y | w? —2®) |2 (1)
k: j=1

where N represents the number of learning samples, M the number of neurons
in the map, v* () is the neuron having the closest weight vector to the input
pattern z(*), and K;; is a positive symmetric kernel function: the neighborhood
function [? ]. The relative importance of a neuron i compared to a neuron j is

weighted by the value of the kernel function K;; which can be defined as:

1 _d3Gi,9) )
K,: = —— x A= ()
) )\(t) e ( )

where A(t) is the temperature function modeling the topological neighborhood
extent, defined as:

Mp) = M) Q

7

where \; and Ay are the initial and the final temperature respectively. tp,qq
is the maximum number allocated to the time (number of iterations for the
x learning sample). dy(Z,7) is the Manhattan distance defined between two

neurons ¢ and j on the map grid, with coordinates (k, m) and (r, s) respectively:
di(i,g) =|lr =kl +[s=—m]. (4)

The S2L-SOM training process is highly similar to the Competitive Hebbian
Learning (CHL) approach [? ]. The difference lies in that the CHL method
does not change reference vectors at all (which could be interpreted as having a
zero learning rate), it only generates a number of neighborhood edges between

the units of the SOM without values. In the S2L-SOM we associate a real value



to each neighborhood connection, which indicates the relevance of the connected
couple for the local neuron prototype vector. The value of this connection is
adapted during the learning process. It was proved by Martinetz [? ] that
the so generated graph is optimally topology-preserving in a very general sense.
In particular each edge of this graph belongs to the Delaunay triangulation [?
] corresponding to the given set of reference vectors. The S2L-SOM learning

algorithm proceeds essentially in three phases:

1. Initialization Step :

e Define the topology of the SOM.
o Initialize the prototypes w.
e Initialize to 0 connection values v;; between each pair of prototypes
7 and j.
2. Competition Step :

e Present a data #(®) randomly chosen.

e Among the M prototypes, choose u*(z(®)) and u**(x(¥)) the two best
representatives for this data according to a distance metric d (usually
the Euclidean distance):

uw* () = Argmin d(z™®, w?)
1<i<M

w2 = Argmin  d(z® w?).
1<i<M, itu*

e Increase the connection value between v*(z(*)) and w**(z(*)), accord-
ing to the learning rate £(t), a decreasing function of time between
[0,1], proportional to 1/t (see [? ]). Decrease the values of other

connections involving u*(z*):

yu*u**(t) = V’u,*u**(t — 1) - E(t)r(t) (Vu*u**(t — 1) — 1)

Uyi(t) = vy=i(t — 1) — e(t)r(t) (vy=i(t — 1)) Vi € neighbors of u*



with :

3. Adaptation step :

e Update prototypes w:
w! (t) = w (t — 1) — e(t) K jyo ooy (w? (£ — 1) — 2¥)).

4. Repeat step 2 and 3 until ¢t = t44z-

5. Final clustering : Determine P = {C;};=1,.. 1, the set of L groups of
connected prototypes such that v > 0. Each data z(®) belongs to the
cluster of u*(x(k)). The final prototype clustering provides a disjoint data

clustering, as each data point is represented by an unique prototype u*.

3. A new two-level clustering algorithm for interval data

In this paper we propose an extension of our previous algorithm S2L.-SOM
to interval data. The main idea is to define a prototype w’ of the SOM as an

interval, i.e. a pair of vectors: lower and upper bounds.

w! = [w],wi] € T={[a,b]la,b € R, a; <b;i=1,...,d} (5)

During the learning of the SOM, the two bounds of each prototype will be
updated to improve data representation (see Figure 2 for an example).

The algorithm works as follows:

Let X = {z(¥},_; n be aset of interval data where z(?) = [xl(i), ng)], d(x,y)

is a distance between two intervals (see section 4.1) and t,,4,; the maximum

number of iterations.

1. Initialization Step :

e As in 2.1, but the prototypes are now intervals: w’ = [w],w].



d

Figure 1: lower (1) and upper (u) bounds of an interval data in 3 dimensions.

i

Figure 2: Example of prototypes update (red intervals) when a data (in plain blue) is pre-

sented.

2. Competition Step :

e Asin 2.1, using an adapted distance metric d (see section 4.1) instead

of the Euclidean distance.
3. Adaptation step :

e Update prototype bounds w/:
w] (t) = w (t = 1) = () K jy- ooy (w] (¢ = 1) — 2"
wh(t) = wi(t = 1) = e(t) K jy= (oo (wi(t = 1) — 2.

4. Repeat step 2 and 3 until t = t,,,4,-



5. Final clustering : Determine P = {C;};=1,.. 1, the set of L groups of
connected prototypes such as v > 0. Each data z(*) belongs to the cluster

of u*(z(®).

In this study we used the default parameters of the SOM Toolbox [? ] for
the learning of the SOM and we use tyq, = maxz(N,50 x M) as in [? ]. One
can note that the lower and upper bounds of the prototypes are always updated
toward respectively a lower and upper bound of a data point. In that case, no
inversion is possible and the prototype’s upper bound is always greater or equal
to the lower bound. At the end of the clustering process, a cluster is a set of
prototypes which are linked together by neighborhood connections with positive

values. Thus, the number of clusters is determined automatically.

4. Experimental Protocol

We propose to test the effectiveness of the new algorithm for three types of

distances between interval data and three types of initialization of the proto-

types.

4.1. Distances measures

Many distance measures have been defined to compare intervals [? ]. For this
work, we have selected three distances that require little computational power:
the distance to vertices and the Hausdorfl-type L1 and L2 distances (noted
L1 and L2 in the paper). Let d be the dimension of the data representation
space (i.e. the number of interval variables). The distance to vertices dg(x, ")
is proportional to the sum of the Euclidean distances between the two upper

bounds and the two lower bounds:

ds(w,a") = 27" (| w1 — 2] I + || 20 — 2, [|?) -

u

L1 distance is defined by:

d
dy(z,2') = Zmaxﬂxlj — @y, [Tuy — 27,40}

j=1
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L2 distance is defined by:

d
dpa(z,2') = [maa{|zi; — ], |2us

— ;3%
J

1

Figure 3 shows an example of measure of distance L1 and L2.

bs
X
',
bi
bs'
=
2 X'
m, it
s
Figure 3: Example of measure of distance L1 and L2. Here dpi(z,2’) = m1 + m) and
dpa(z,2’) = \fmi? + mb2.

4.2. Initialization of the prototypes
Three types of initialization have been tested. The “data-based” initializa-

[

tion randomly selects M data points without repetition as initial prototypes.

-

L

Figure 4: Example of “data-based” initialization.

“Points” initialization first determines the smallest hyper-rectangle enclos-
ing all the data points. Then M points are selected randomly in this hyper-

rectangle. It may be noted that a point is a hyper-rectangle having the lower
and upper bounds equal.

11
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Figure 5: Example of “Points” initialization.

The last initialization, “Linear”, also uses points as initial prototypes. To
determine their positions, a Principal Component Analysis (PCA) [? ] is per-
formed from the position of the centers of the data hyper-rectangles. Prototypes
are placed linearly on the plane defined by the two first components (see Figure
6). The main difference with the previous two initializations is the fact that the

map generated in this way is already organized.

iy

R I &

n=

Figure 6: Example of “linear” initialization. On the right one can see that the map is already

organized.

4.3. Experimental datasets

In this paper the quality of clustering was evaluated using two external
criteria (Jaccard index [? ] and Corrected Rand index [? ]); both are frequently
used [? ]. These indices are used if data-independent labels (categories) are
available, to evaluate how well a given cluster solution corresponds to these
external labels. The main difference between Jaccard and Rand is that the

Jaccard index computes the proportion of pairs of objects where both objects
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Database Number of Number of | Number of Clusters
Name data points clusters variables properties

2Dim 200 2 2 Convex clusters,

well separated

3Dim 400 4 3 Convex clusters,
well separated

5Dim 400 4 5 Convex clusters,

well separated,

different sizes

Sun 195 5 2 Convex clusters,
well separated,

different shapes

Hooks 60 6 2 Convex clusters,

touching intervals

Cross 60 3 2 Convex clusters,

overlapping intervals

Target 250 2 2 Non Convex clusters,

non linear separations

Table 1: Description of the seven artificial datasets

belong to the same label and to the same cluster, whereas the Rand index also
takes into account the number of pairs of objects where both objects belong to
different labels and to different clusters. Jaccard index gives values between 0
(no match) and 1 (perfect match). Corrected Rand index gives values between
-1 and 1. We launched the algorithm 100 times on each database, then we
computed the mean and the standard deviation values of the indices to check
the validity of the results.

To test the new algorithm, we created seven artificial datasets of various
difficulty (Table 1).

“2Dim” consists of two groups of 200 data points each, separated linearly
in two dimensions. Each group is in a square and the number of data in each
group is the same. “3Dim” consists of four groups of equal size arranged on the
vertices of a tetrahedron in a three-dimensional space. In “5Dim”, the groups
are of various shapes and sizes in a space with five dimensions.

The data “Sun” consists of five classes oriented in different ways. This set

contains 195 data points in two dimensions. The data set “Hooks” consists of
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six groups of intervals which are in contact with each other. “Cross” consists of
three intersecting groups, with a group of squares around the center, a group of
elongated vertical intervals and the last interval elongated horizontally. Finally,
“Target” consists of squares of equal sizes, divided into two groups, one forming

a ring and the second at the center of this ring.

5. Results

5.1. Quality

All the results for the three distances and the three initializations are sum-

marized in Tables 2 and ?7.

Jaccard Linear Data-based Points
Vertexes L1 L2 Vertexes L1 L2 Vertexes L1 L2
Sun | 0.990 (0.016) | 0.998 (0.005) | 0.989 (0.019) | 0.971 (0.038) | 0.977 (0.030) | 0.972 (0.038) | 0.979 (0.026) | 0.972 (0.046) | 0.974 (0.038)
Hooks | 1.000 (0.000) | 1.000 (0.000) | 1.000 ( 0.000) | 0.909 (0.140) | 0.884 (0.126) | 0.931 (0.108) | 0.709 (0.166) | 0.705 (0.164) | 0.693 (0.159)
Cross  0.986 (0.056) | 0.989 (0.041) | 0.972 (0.075) | 0.966 (0.067) | 0.973 (0.060) A 0.971 (0.062) | 0.988 (0.061) | 0.989 (0.059) | 0.977 (0.110)
Target | 0.988 (0.074) | 0.990 (0.060) | 0.987 (0.067) | 0.663 (0.227) | 0.628 (0.227) | 0.669 (0.230) | 0.641 (0.222) | 0.591 (0.204) | 0.664 (0.248)
2Dim | 0.971 (0.068) | 0.935 (0.091) | 0.913 (0.125) | 0.622 (0.187) | 0.783 (0.168) | 0.672 (0.102) | 0.996 (0.013) | 0.909 (0.100) | 0.940 (0.122)
3Dim | 0.994 (0.012) | 0.981 (0.075) | 0.994 (0.011) | 0.993 (0.018) | 0.979 (0.066) | 0.992 (0.017) | 0.991 (0.036) | 0.975 (0.070) | 0.992 (0.017)
5Dim | 0.990 (0.015) | 0.993 (0.011) | 0.994 (0.012) | 0.954 (0.086) | 0.950 (0.087) | 0.952 (0.087) | 0.982 (0.045) | 0.967 (0.064) | 0.971 (0.064)
Total _ 0.988 (0.034) | 0.984 (0.040) | 0.978 (0.044) | 0.868 (0.109) | 0.882 (0.109) | 0.880 (0.092) | 0.898 (0.081) | 0.873 (0.101) | 0.887 (0.108)

Table 2: Clustering quality using the Jaccard index for each database with different initializa-
tion and different measures of distances between intervals: mean (standard deviation). The

Total row is the global mean quality.

Rand Linear Data-based Points

an Vertexes K] L2 Vertexes K] L2 Vertexes ] ]
Sun | 0.997 (0.004) | 0.999 (0.001) | 0.997 (0.005) | 0.992 (0.010) | 0.995 (0.007) | 0.993 (0.010) | 0.995 (0.006) | 0.993 (0.013) | 0.994 (0.010)
Hooks | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) | 0.980 (0.037) | 0.977 (0.026) | 0.987 (0.022) | 0.926 (0.056) | 0.926 (0.056) | 0.920 (0.065,
Cross | 0.994 (0.025) | 0.996 (0.013) | 0.989 (0.035) | 0.989 (0.021) | 0.991 (0.019) | 0.991 (0.020) | 0.994 (0.032) | 0.995 (0.032) | 0.982 (0.098

Target ~ 0.993 (0.044

) ) )
) ) )
0.992 (0.054) | 0.992 (0.040) | 0.790 (0.148) | 0.764 (0.154) | 0.798 (0.144) | 0.774 (0.146) | 0.721 (0.159) | 0.794 (0.155
) ) )
) ) )
) ) )

)
)
)
0.971 (0.060)
)
)

) )
2Dim | 0986 (0.033) | 0.968 (0.045) | 0.958 (0.061) | 0.815 (0.092) | 0.894 (0.083) | 0.839 (0.050) | 0.998 (0.006) | 0.955 (0.049
3Dim | 0.999 (0.003) | 0.993 (0.028) | 0.999 (0.003) | 0.998 (0.004) | 0.993 (0.024) | 0.998 (0.004) | 0.997 (0.013) | 0.992 (0.025) | 0.998 (0.004
5Dim | 0.997 (0.004) | 0.998 (0.003) | 0.998 (0.003) | 0.988 (0.022) | 0.987 (0.023) | 0.988 (0.023) | 0.995 (0.012) | 0.991 (0.016) | 0.992 (0.017

Total | 0.995 (0.016) | 0.993 (0.020) | 0.990 (0.021) | 0.936 (0.048) | 0.943 (0.048) 0.942 (0.039) | 0.954 (0.039) | 0.939 (0.050) | 0.950 (0.058)

Table 3: Clustering quality using the Rand index for each database with different initialization
and different measures of distances between intervals: mean (standard deviation). The Total

row is the global mean quality.

The values of the external criteria show that, for these data, the algorithm
is able to find without error the correct number of groups and to produce a
good segmentation of the data set. Tables 2 and ?? and Figure 77 show that on
average the used distance measure does not significantly influence the quality of

the results, even if the distance to vertices seems to be slightly better on these
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datasets. However, the initializations chosen can affect the clustering quality.
In particular, the “Linear” initialization gives better results on average than the
others (Figure ?77?), especially for the datasets “2Dim”, “Hook” and “Target”.
The main explanation is that the linear initialization avoids a “twist” of the
map that may appear with other initializations, increasing the topological error

and thus decreasing the quality of the clustering.

Hooks

Vertexes
— |1
L2

Cross 3Dim

Target 2Dim

Figure 7: Clustering quality using the Rand index for each database with different measures
of distances between intervals, using a linear initialization. The index values are plotted along

the axis for each database.

Linear
Data-based
Points

Target 2Dim

Figure 8: Clustering quality using the Rand index for each database with different prototypes
initializations, using the distance to vertices. The index values are plotted along the axis for

each database.

The visualization of the clusters obtained with a linear initialization and us-

ing the distance to vertices confirms the quality of the clustering algorithm
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adapted to interval data (Figures ?? to ??). In particular, the algorithm
is able to detect clusters of different orientation and shape, potentially non-
convex (“Target”), even if they are in contact (“Hooks”, “Cross”). Unlike all
K-means based algorithms (e.g. SCLUST), this algorithm can deal with non
hyper-spherical clusters, non convex clusters and non linear separation between
clusters. It is also the only algorithm of this type that doesn’t need the final
number of clusters to be chosen as a parameter, as it is detected automatically

during the learning.

Figure 10: Clusters obtained for data “Sun” and “Hooks”.

5.2. Visualization

The results are also confirmed by visual inspection. Indeed, the SOM-based
clustering algorithm is a powerful tool for visualization of the obtained segmen-
tation in two dimensions. Clusters are easily and clearly identifiable, as well as
regions without data (unconnected neurons). As one can notice from figures ??,

the results obtained by the new algorithm can be visualized in two dimensions
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Figure 11: Clusters obtained for data “Cross” and “Target”.

using the mapping obtained with SOM. This allows visualizing the clustering
of databases having more than two dimensions, as the “5Dim” database (Fig.
?7).

In Figure 77, each hexagon represents a prototype of the SOM together with
its associated data. Hexagons showing the same color are in the same cluster.

Dark blue hexagons are not part of any cluster.

6. Comparison on artificial and real datasets

In the previous section, we showed the effectiveness of the proposed algo-
rithm to solve various clustering problems. The capability to automatically
detect the number of clusters is an undeniable advantage. However, it is impor-
tant to test its performances in comparison to the existing interval clustering

algorithms.

6.1. Artificial datasets

In this section, we compared the quality of the clustering and the processing
speed of our algorithm in comparison to six other methods described in [? |:
DIV, SCLUST and the four hierarchical methods contained in SHICLUST (a
symbolic extension of single linkage, complete linkage, centroid and Ward).

We applied each algorithm 20 times on each dataset and kept the best result
according to an external criterion as in [? |. We chose the Jaccard index and

the Corrected Rand index as quality criteria. We used a linear initialization and
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(a) Dataset “2Dim” (b) Dataset “5Dim”

(c) Dataset “Sun” (d) Dataset “Target”

Figure 12: Segmentation visualization for data “2Dim”, “5Dim”, “Sun” and “Target”.

the distance to vertices for our algorithm. Whereas our method automatically
detects the number of clusters, we gave the true number of cluster as a parameter

to the other algorithms. The results are shown in Tables 77 and ?77.

Jaccard ‘ Proposed ‘ DIV SCLUST SINGLE CENTROID WARD COMPLETE
2Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cross 1.00 0.29 1.00 1.00 1.00 1.00 1.00
Hook 1.00 1.00 0.67 1.00 1.00 1.00 1.00

Sun 1.00 0.70 0.70 1.00 1.00 1.00 1.00
Target 1.00 0.41 0.41 1.00 0.42 0.43 0.42

Table 4: Clustering quality using the Jaccard index for each database using different clustering
algorithms. The index range is [0, 1], with 1 denoting a perfect match between the obtained

and the expected solutions.
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Rand Proposed DIV SCLUST SINGLE CENTROID WARD COMPLETE

2Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5Dim 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cross 1.00 0.62 1.00 1.00 1.00 1.00 1.00
Hook 1.00 1.00 0.93 1.00 1.00 1.00 1.00
Sun 1.00 0.92 0.92 1.00 1.00 1.00 1.00
Target 1.00 0.51 0.51 1.00 0.50 0.55 0.53

Table 5: Clustering quality using the Rand index for each database using different clustering
algorithms. The index range is [0, 1], with 1 denoting a perfect match between the obtained

and the expected solutions.

Our algorithm gives the expected clustering for all these datasets. We can
see that DIV and SCLUST methods perform well when the clusters are convex
and well separated, but fail otherwise. The quality of the hierarchical methods
is much better for these datasets. In particular, the single linkage method also
gives the expected clustering for all these datasets. Other methods fail to detect
the non-convex and non linearly separable clusters in the “Target” dataset.

Regarding the exponential increase of the size of the databases in recent
years [? |, the algorithms’ complexity becomes a substantial issue for most real
applications. It is expected for data-mining tools to have at most a linear com-
plexity in the number of data points, i.e. that the processing time increases
linearly with the number of data. Figure 7?7 shows the result of the processing
time of our algorithm, SCLUST and SHICLUST. The four methods in SHI-
CLUST have the same processing time. DIV presents a complexity similar to
SCLUST and is not shown in the figure for clarity. Our algorithm was tested
from a Matlab script, the others are part of the SODAS software.

From these results, we see that DIV, SCLUST and our algorithm clearly have
a linear complexity in the size of the dataset, whereas SHICLUST present an
exponential complexity. Our algorithm seems slightly slower than SCLUST, but
the SODAS software is compiled and therefore more optimized than a Matlab
script.

These experiments show that the quality of our algorithm is better than the
DIV and SCLUST methods and similar to SHICLUST. However, the proposed

algorithm reaches this quality in a linear complexity, which is not the case of
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Figure 13: Processing time of the three methods depending on the number of data points.

SHICLUST. We therefore propose a method capable of excellent results in a

low processing time, outperforming the existing algorithms in this trade-off.

6.2. Real dataset

In order to test our algorithm on a real dataset and to compare its effi-
ciency in comparison with other clustering methods, we performed a clustering
of a well-studied database (“Long-Term Instrumental Climatic Data Bases of
the People’s Republic of China” ). This dataset is derived from instrument
measurements at 60 meteorological stations and consists of monthly intervals of
temperatures, minimum and maximum, during one year (1988), for a total of
12 interval variables.

In [? ], several interval clustering algorithms were used to analyze the cli-
matic dataset, in particular SCLUST and the four methods contained in SHI-
CLUST. All these algorithms were applied many times to the dataset, with a

Ihttp://rda.ucar.edu/datasets/ds578.5/
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SYKSOM | SYKCLUST | Our Algorithm

Jaccard 0.17 0.83 0.85
Rand 0.55 0.90 0.92
Number of clusters 12 2 2*

Table 6: Quality of the clusterings obtained with three methods. *: our algorithm detects
this number automatically, whereas for the other methods the number of clusters has been

user-defined.

range of values for the choice of the number of clusters varying from 2 to 10. All
the obtained clustering results have been compared using internal quality in-
dices (i.e.: Calinski and Harabasz, Duda-Hart and Beale indices [? ]). Based on
these indices, the “best” clustering results were defined. In particular, the best
number of clusters is 2 for this dataset. We used this clustering as a reference
in this paper, as we don’t have any a priori clustering for these data.

We compared our algorithm with a SOM-based method for interval data,
SYKSOM, and an adaptation of SYKSOM, called SYKCLUST, allowing a final
clustering of the prototypes using SCLUST [? ]. We used a linear initialization
and the distance to vertices for our algorithm. The chosen topology is a 3x4
map with hexagonal neighborhood for the three methods. We computed the
Jaccard and the Corrected Rand index for the clustering of the three methods
in comparison to the reference clustering (Table ?77).

It is clear that SYKSOM cannot approach the reference clustering, as the
number of obtained clusters is the number of chosen prototypes (i.e. 12 in that
case). The SYKCLUST extension uses SCLUST on the prototypes to reduce
the number of clusters. However, we have to define this number before the
learning. Here we chose the expected value (2 clusters) and we obtained a
similar clustering to the reference, with a Jaccard and a Rand index above 80%.
Finally, the quality of our algorithm is very good, equivalent to SYKCLUST for
these indices, but the most important aspect is that the right number of clusters
has been found automatically, this property being valuable for the analysis of

real datasets when we do not have knowledge about the clustering structure.

21



7. Conclusion

The results confirm the effectiveness of the proposed algorithm to deal with
interval data. The main advantages of this method are: the number of clusters
is automatically determined, the algorithm is able to classify groups of non-
convex shape; the process is reliable and fast. Indeed, the complexity is linear
in the number of data. In the case of interval data, we note that the algorithm
discriminates perfectly groups of intervals of different shapes, even if there is
contact between groups of intervals and even in the case where the centers of
the intervals are the same. These properties are very significant for this type
of data. Moreover, the algorithm takes advantage of all the visualization tools
developed for SOM-based methods.

The tests show that the algorithm is relatively insensitive to the distance
used to compare data and prototypes. On the contrary, the initialization of the
prototypes is important for the quality of the final result; a linear initialization
gives better results (it is usually true in SOM in general [? ]).

Once a distance and a prototype are defined, the adaptation of SOM to any
type of data seems perfectly appropriate in order to obtain a classification of
the data. We plan to work on new adaptations for the analysis of other types of
complex data (such as multi-valued, modal or structured data). Furthermore,
in the case of mixed data clustering (real-valued + interval-valued), we plan
to propose an extension of our method by considering an objective function
composed of several terms: one term for each data type. Each term of this
composite objective function uses an appropriate distance for each type of the
data involved. The optimization of the objective function can be done in a
global manner. Finally, we wish to use the Shrinkage-Divergence Proximity
(SDP) redesign distance framework [? ] to redefine a meaningful distance

function in order to adapt our clustering algorithm to high-dimensional spaces.
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