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Abstract

The exponential growth of data generates terabytes of very large databases. The growing number of data dimensions
and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools.
Thus, it becomes crucial to have methods able to construct a condensed description of the properties and structure of
data, as well as visualization tools capable of representing the data structure from these condensed descriptions. The
purpose of our work described in this paper is to develop a method of describing data from enriched and segmented
prototypes using a topological clustering algorithm. We then introduce a visualization tool that can enhance the
structure within and between groups in data. We show, using some artificial and real databases, the relevance of the
proposed approach.
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1. Introduction

The exponential growth of data generates terabytes of
very large databases [1]. The growing number of data
dimensions and data objects presents tremendous chal-
lenges for effective data analysis and data exploration
methods and tools. Thus, it becomes crucial to have
methods able to construct a condensed description of the
properties and structure of data [2, 3, 4], as well as visu-
alization tools capable of representing the data structure
from these condensed descriptions.

The purpose of the work described in this paper is to
develop a method of describing data from enriched and
segmented prototypes using a topological clustering al-
gorithm. An important contribution of the proposed ap-
proach is the ability to provide data visualizations via
maps and graphs, to provide a comprehensive explo-
ration of the data structure. We propose here a method
of describing data from enriched prototypes, based on
learning a Self-Organizing Map (SOM) [5]. Prototypes
of the SOM are segmented using an adapted clustering
algorithm. This method is flexible enough to be adapted
to a high variety of different problems. A new coclus-
tering algorithm is proposed to illustrate this flexibility,
and we show an example of real application for this al-
gorithm. We then introduce a visualization tool of en-
riched and segmented SOM that can enhance the struc-
ture within and between groups of data.

The remainder of this paper is organized as follow.

Section 2 presents the learning of the data structure to
obtain a condensed description. Section 3 show a new
SOM-based coclustering algorithm and the results of
an experimental application. Visualization tool is de-
scribed in Section 4 and some examples are shown. A
conclusion is given in section 5.

2. Learning data structure

We propose here a method to learn data structure,
based on the automated enrichment and segmentation
of a group of prototypes representing the data to be an-
alyzed [6]. We suppose that these prototypes have been
previously computed from data thanks to an adapted al-
gorithm, such as Neural Gas (NG) [7] or Self Organiz-
ing Map (SOM) [8, 5]. In this paper we focus on the
use of the SOM algorithm as a basis of data quantiza-
tion and representation. A SOM consists of a set of ar-
tificial neurons that represent the data structure. These
neurons are connected with their neighbors according to
topological connections (also called neighborhood con-
nections). The dataset to analyze is used to organize the
SOM under topological constraints of the input space.
Thus, a correspondence between the input space and
the mapping space is built. Two observations close in
the input space should activate the same neuron or two
neighboring neurons of the SOM. Each neuron is asso-
ciated with a prototype and, to respect the topological
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constraints, neighboring neurons of the best match unit
of a data (BMU, the most representative neuron) also
update their prototype for a better representation of this
data. This update is important because the neurons are
close neighbors of the best neuron.

2.1. Principle

The first step is the learning of the enriched SOM.
During the learning, each SOM prototype is extended
with novel information extracted from the data. This
information will be used in the following step to find
clusters in the data and to infer the density function.
More specifically, the information added to each pro-
totype are:

• Density modes. It is a measure of the data density
surrounding the prototype (local density). The lo-
cal density is an information about the amount of
data present in an area of the input space. We use
a Gaussian kernel estimator [9] for this task.

• Local variability. It is a measure of the data vari-
ability that is represented by the prototype. It can
be defined as the average distance between the pro-
totypes and the represented data.

• The neighborhood. This is a prototype’s neigh-
borhood measure. The neighborhood value of two
prototypes is the number of data that are well rep-
resented by each one.

The second step is the clustering of the data using
density and connectivity information so as to detect low-
density boundary between clusters. We propose a clus-
tering method that directly uses the information learned
during the first stage.

2.2. Prototypes Enrichment

The enrichment algorithm proceeds in three phases:

Input:

• The distance matrix Dist(w, x) between the M pro-
totypes w and the N data x.

Output:

• The density Di and the local variability si associ-
ated to each prototype wi.

• The neighborhood values vi, j associated with each
pair of prototype wi and w j.

Algorithm:

• Density estimate:

Di = 1/N
N∑

k=1

e−
Dist(wi ,x

(k) )2

2σ2

σ
√

2π

with σ a bandwidth parameter chosen by user.

• Estimate neighborhood values:

– For each data x, find the two closest proto-
types (BMUs) u∗(x) and u∗∗(x):

u∗(x) = argmini(Dist(wi, x))

and

u∗∗(x) = argmini,u∗(x)(Dist(wi, x))

– Compute vi, j = the number of data having i
and j as two first BMUs.

• Local variability estimate: For each prototype w,
variability s is the mean distance between w and
the L data xw represented by w:

si = 1/L
L∑

j=1

Dist(wi, x
( j)
w )

The proposed method for estimating the mode den-
sity is very similar to that proposed by [10]. It has been
shown that when the number of data approaches infin-
ity, the estimator D converges asymptotically to the true
density function [11]. The choice of the parameter σ
is important for good results. If σ is too large, all data
will influence the density of all the prototypes, and close
prototypes will be associated to similar densities, result-
ing in decreased accuracy of the estimate. If σ is too
small, a large proportion of data (the most distant pro-
totypes) will not influence the density of the prototypes,
which induces a loss of information. A heuristic that
seems relevant and gives good results is to define σ as
the average distance between a prototype and its nearest
neighbor.

At the end of this step, each prototype is associ-
ated with a density and variability value, and each pair
of prototypes is associated with a neighborhood value.
Much of the information on the data structure is stored
in these values. There is no more need to keep data in
memory.
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2.3. Clustering of prototypes
Various prototypes-based approaches have been pro-

posed to solve the clustering problem [12, 13, 14, 15].
However, the obtained clustering is never optimal, since
part of the information contained in the data is not repre-
sented by the prototypes. We propose a new method of
prototypes’ clustering, that uses density and neighbor-
hood information to optimize the clustering. The main
idea is that the core part of a cluster can be defined as a
region with high density. Then in most cases the clus-
ter borders are defined either by low density region or
“empty” region between clusters (i.e. large inter cluster
distances) [16].

At the end of the enrichment process, each set of pro-
totypes linked together by a neighborhood value v > 0
define well separate clusters (i.e. distance-defined).
This is useful to detect borders defined by large inter
cluster distances (Fig.2(b)). The estimation of the local
density (D) is used to detect cluster borders defined by
low density. Each cluster is defined by a local maxi-
mum of density (density mode, Fig. 2(c)). Thus, a “Wa-
tersheds” method [17] is applied on prototypes’ density
for each well separated cluster to find low density area
inside these clusters, in order to characterize density
defined sub-clusters (Fig.2(d)). For each pair of adja-
cent subgroups we use a density-dependent index [18]
to check if a low density area is a reliable indicator of the
data structure, or whether it should be regarded as a ran-
dom fluctuation in the density (Fig.2(e)). This process
is very fast because generally the number of prototypes
is small. The combined use of these two types of group
definition can achieve very good results despite the low
number of prototypes in the map and is able to detect
automatically the number of cluster (cf. [19]).

The algorithm proceed in three steps:

Input:

• Density values Di.

• Neighborhood values vi, j .

Output:

• The clusters of prototypes.

1. Extract all groups of connected units:
Let P = {Ci}

L
i=1 the L groups of linked prototypes

(see Fig.2(b)):

∀m ∈ Ci,∃n ∈ Ci such as vm,n > threshold

In this paper threshold = 0.

2. For each Ck ∈ P do: :

• Find the set M(Ck) of density maxima (see
Fig.2(c)).

M(Ck) = {wi ∈ Ck | Di ≥ D j,

∀w j neighbor to wi}

Prototypes wi and w j are neighbor if vi, j >
threshold.

• Determine the merging threshold matrix (see
Fig. 1):

S =
[
S (i, j)

]
i, j=1...|M(Ck)|

with

S (i, j) =
(

1
Di
+

1
D j

)−1

Figure 1: Threshold computation

• For all prototype wi ∈ Ck, label wi with one
element label(i) of M(Ck), according to an as-
cending density gradient along the neighbor-
hood. Each label represents a micro-cluster
(see Fig.2(d)).

• For each pair of neighbors prototypes (wi,w j)
in Ck, if:

label(i) , label( j)

and if both

Di > S (label(i), label( j))

and
D j > S (label(i), label( j))

then merge the two micro-clusters (Fig.2(e)).

The effectiveness of the proposed clustering method
have been demonstrated in [19] by testing the perfor-
mances on 10 databases presenting various clustering
difficulties. It was compared to S2L-SOM [20] (using
only neighborhood information) and to some traditional
two levels methods, in term of clustering quality (Jac-
card and Rand indexes [21]) and stability (sub-sampling
based method [22]). The selected traditional algorithms
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(a) Data base (b) Sets of connected prototypes (c) Density modes detection

(d) Subgroups associated to each
mode

(e) Merging of irrelevant subgroups:
final clusters

(f) Data clustering from prototypes
clustering

Figure 2: Example of a sequence of the different stages of the clustering algorithm.

for comparison are K-means and Ascendant Hierarchi-
cal Clustering (AHC) applied (i) to the data and (ii) to
the prototypes of the trained SOM. The Davies-Bouldin
[23] index was used to determine the best cutting of the
dendrogram (AHC) or the optimal number K of cen-
troids for K-means. Our algorithm determines the num-
ber of clusters automatically and do not need to use this
index. In AHC, the proximity of two clusters was de-
fined as the minimum of the distance between any two
objects in the two different clusters. The results for the
external indexes show that for all the databases the pro-
posed clustering algorithm is able to find without any
error the expected data segmentation and the right num-
ber of clusters. This is not the case of the other algo-
rithms, when the groups have an arbitrary form, when
there is no structure (i.e. only one cluster) in the data
or when clusters are in contact. Considering the stabil-
ity, the new algorithm shows excellent results, whatever
the dimension of data or the clusters’ shape. It is worth

noticing that in some case the clustering obtained by the
traditional methods can be extremely unstable.

We present here additional tests that have been done
to compare the new method with other usual clustering
algorithms that generally perform better than K-Means
and AHC. These algorithms are DBSCAN [24], CURE
[25] and Spectral Clustering [26]. In [27], the authors
show that these algorithms fail in resolving some clus-
tering problems, especially when clusters’ shape is not
hyper-spherical or when clusters are in contact. Fig. 3
to 5 show that our method success in resolving this kind
of problems (datasets are the same as in [27]).

To summarize, the proposed method presents some
interesting qualities in comparison to other clustering
algorithms:

• The number of cluster is automatically detected by
the algorithm.

• No linearly separable clusters and non hyper-
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Figure 3: Clustering obtained with (a) DBSCAN and (b) the proposed
method.

Figure 4: Clustering obtained with (a) Spectral Clustering and (b) the
proposed method.

Figure 5: Clustering obtained with (a) CURE and (b) the proposed
method.

spherical clusters can be detected.

• The algorithm can deal with noise (i.e. touching
clusters) by using density estimation.

2.4. Modeling data distributions

The objective of this step is to estimate the density
function which associates a density value to each point
of the input space. An estimation of some values of this
function have been calculated (i.e. Di) at the position of
the prototypes representing a cluster. An approximation
of the function must now be inferred from these values.

The hypothesis here is that this function may be prop-
erly approximated in the form of a mixture of Gaussian
kernels. Each kernel K is a Gaussian function centered
on a prototype. The density function can therefore be
written as:

f (x) =
M∑

i=1

αiKi(x)

with

Ki(x) =
1

N
√

2πhi
e
−

d(wi ,x)2

2hi2

The most popular method to fit mixture models (i.e.
to find hi and αi) is the expectation-maximization (EM)
algorithm [28]. However, this algorithm needs to work
in the data input space. As here we work on enriched
SOM instead of dataset, we cannot use EM algorithm.

Thus, we propose a heuristic to choose hi:

hi =

∑
j

vi, j

Ni+N j
(siNi + di, jN j)∑

j vi, j

di, j is the distance between prototypes wi and w j. The
idea is that hi is the standard deviation of data repre-
sented by Ki. These data are also represented by wi and
their neighbors. Then hi depends on the variability si

computed for wi and the distance di, j between wi and his
neighbors, weighted by the number of data represented
by each prototype and the connectivity value between
wi and his neighborhood.

Now, since the density D for each prototype w is
known ( f (wi) = Di), a gradient descent method can be
used to determine the weights αi. The αi are initial-
ized with the values of Di, then these values are reduced
gradually to better fit D =

∑M
i=1 αiKi(w). To do this, the

following criterion is minimized:

R(α) =
1
M

M∑
i=1

 M∑
j=1

(
α jG j(wi)

)
− Di


2

Algorithm:
1. Initialization:

∀i, αi = Di

2. Error calculation:

∀i, Err(i) =
M∑
j=1

α jG j(wi) − Di

3. Coefficients update:

∀i, αi(t) = max [0 ; αi(t-1) − ε ∗ Err(i)]

with ε the gradient step. Here we use ε = 0.1.
4. As mean(|Err|) > threshold: go to 2, else return

αi. The threshold is chosen by user, here we choose
1% of the mean density.

Thus, we have a density function that is a model of
the dataset represented by the enriched SOM. Some ex-
amples of estimated density are shown on Fig. 6 and
7.
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Figure 6: “Engytime” dataset and the estimated density function.

Figure 7: “Rings” dataset and the estimated density function.

3. An application to coclustering

The algorithms presented in section 2 can be easily
adapted for the analysis of a variety of problems (see
[29, 30]). We propose in this section an adaptation to
coclustering problem and a real application of this adap-
tation.

It can be sometime very interesting to be able to re-
group and visualize the attributes used to describe the
data, in addition to the clustering of these data. This
allows, for example, to combine in a simple way each
cluster of data with the characteristic features of this
cluster, but also to visualize correlations between at-
tributes. Coclustering, biclustering, or two mode clus-
tering is a data mining technique which allows simulta-
neous clustering of rows and columns of data sets (data
matrix) [31]. Given a set of m rows in n columns (i.e.,
an m × n matrix), the coclustering algorithm generates
coclusters - a subset of rows which exhibit similar be-
havior across a subset of columns, or vice versa. The
most popular application for such methods is gene ex-
pression analysis, i.e. to identify local patterns in gene
expression data (see [32]).

The use of SOM to perform coclustering have been
proposed in [33, 34]. However, in these works, each
cluster is represented by an unique prototype of the
SOM, which leads to an inappropriate number of clus-
ters. The proposed method will combine a modified
SOM with a two-level coclustering of the SOM proto-
types ables to detect automatically the correct number
of clusters.

3.1. SOM adaptation for disjunctive data

The basis algorithm of our approach is the KDisj
method proposed in [33]. This algorithm is an adapta-
tion of SOM that allow to project on the map both data
and features used to describe them. This algorithm is
designed for the quantization of qualitative data in the
form of a disjunctive table T : each feature has several
mutually exclusive modalities (e.g. the attribute “color”
may have the modalities “yellow”, “green”, etc ...). Fea-
tures can therefore be encoded as a vector size equal to
the number of modalities with a value of zero in all di-
mensions except one. We can code in the same way sev-
eral attributes by a vector of size equal to all the modal-
ities of the various features with as many non-zero val-
ues as the number of attributes. The main idea of KDisj
is that one can describe a data based on the modalities
associated with (row vector), but it is also possible to
describe a modality based on the set of data (column
vector). All data and modality can then be represented
in a space of dimension A+E (number of modalities for
all features + number of data). A SOM can be learned in
this space by presenting alternately a data and a modal-
ity during the learning. The distance between a data
(size A) and a prototype of the map (size A + E) will
be calculated on the A first dimensions, while the dis-
tance between a modality (size E) and a prototype will
be calculated on the last E dimensions. To ensure a
link between the A first dimensions and the E last, pro-
totypes will be adjusted on all dimensions during the
adaptation phase, by associating to each data its not-
null modality the most characteristic (i.e. the rarest in
the data set). Thus, the first A dimensions of each pro-
totype are adapted based on the presented data and the
last E dimensions are adapted depending on the associ-
ated modality. Note that it is not possible to do this even
when a modality is presented, since there is no rare data
in the description of the set of modalities (each data is
characteristic of exactly as many modalities as the num-
ber of attributes).

3.2. A new Two-Levels coclustering algorithm

The proposed algorithm uses a stochastic learning
process: prototype update and enrichment (limited here
to connections values) are performed incrementally by
presenting data in a random order. Whenever a data
is presented, the value of the connection between the
two most representative prototypes is increased whereas
other connections values are decreased. In the same
time prototypes are updated. The version presented here
is modified to be adapted to data expressed in frequency
or proportion, i.e. we associate a percentage to each
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modality of a feature, the sum of terms for an attribute
is thus equal to 1 (or 100%). This data type is widely
used in many fields (time management, budget, modal-
ity varying in time or space,...). The only difference
with a disjunctive table, in this case, is that you can as-
sociate a characteristic data to each modality. This allow
to update prototypes in all dimensions (A+ E) whatever
is presented (data or modality).

The stochastic coclustering algorithm is the follow-
ing:

1. Initialization:

• Correct disjunctive table T into Tc:

tc
i j =

ti j
√

ti.t. j

with ti. =
N∑

j=1

ti j and t. j =
N∑

i=1

ti j

In that way using euclidean distance on Tc is
similar to use weighted χ2 distance on T [33].

• Initialize randomly the prototypes w j =

(wA j,wE j).

• Initialize to 0 connections values νi j between
each pair of neurons i et j.

2. Present a data x(k): i.e. a row of Tc, randomly
chosen.

• Associate to x(k) modality y(x(k)) defined by

y(x(k)) = Argmax
y

tc
xy

and create vector Z(k)
x = (x(k), y(x(k))).

• Competition step:

– Choose the two most representatives
neurons u∗(x(k)) and u∗∗(x(k)) over the A
first dimensions:

u∗(x(k)) = Argmin
1≤i≤M

‖ x(k) − wAi ‖
2

u∗∗(x(k)) = Argmin
1≤i≤M,i,u∗

‖ x(k) − wAi ‖
2

– Update connection value between
u∗(x(k)) and its neighbors according
to the learning step ε(t), a decreasing
function of time in [0, 1], inversely
proportional to time:

νu∗u∗∗ (t) = νu∗u∗∗ (t-1)-ε(t) (νu∗u∗∗ (t-1)-1)

νu∗i(t) = νu∗i(t-1)-ε(t) (νu∗i(t-1))

∀i , u∗∗, i neighbor of u∗

• Adaptation step:

– Update prototypes w j for each neuron
j on all dimensions, according to the
neighbor function H:

w j(t) = w j(t-1)-ε(t)H ju∗(x(k))(w j(t-1)-Z(k)
x )

3. Present a modality y(k): i.e. a column of Tc, ran-
domly chosen.

• Associate to y(k) modality x(y(k)) defined by

x(y(k)) = Argmax
x

tc
xy

and create vector Z(k)
y = (x(y(k)), y(k)).

• Competition step:

– Find the two best representatives neu-
rons u∗(y(k)) and u∗∗(y(k)) over the E last
dimensions and update connection val-
ues between u∗(y(k)) and its neighbors as
in step 2.

• Adaptation step:

– Update prototypes w j for each neuron j,
according to the neighbor function H:

w j(t) = w j(t-1)-ε(t)H ju∗(y(k))(w j(t-1)-Z(k)
y )

4. Repeat steps 2 and 3 until convergence.

At the end of the clustering process, a cluster is a set
of prototypes which are linked together by neighbor-
hood connections with positive values. Thus,the right
number of cluster is determined automatically.

In comparison to most existing coclustering methods,
our algorithm is able to perform at the same time a fast
clustering of both data and features, and a two dimen-
sional quantization of the data, which allows an easy vi-
sualization of this structure. Moreover, our algorithm is
able to detect automatically the right number of coclus-
ters, whatever the shape of theses clusters. Most proto-
types based coclustering (such as [35] for example) are
unable to detect automatically the number of coclusters
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to find, as this number must be given as a parameter.
They also cannot detect non-hyperspherical clusters and
they do not propose any two-dimensional visualization.
SOM-based algorithms such as [33, 34] allow visual-
ization, but are unable to correctly detect the coclusters,
as the number of coclusters found is always the same
as the number of prototypes in the SOM. Our algorithm
overcomes this problem by learning a coclustering of
the prototypes during the learning of the SOM.

3.3. Application

The application part of this work is to analyze and vi-
sualize biological experimental data. These data comes
from a study on the ants’ spatial and social organiza-
tion [36]. A queen (R), a male (Mc), a young (J) and
43 workers (2-44) were observed in an artificial nest
composed of 9 rooms (Loc2 to Loc10), a tunnel lead-
ing outside (Loc1) and a foraging area (Loc0, see Fig-
ure 8). For each individual, we know the proportion of
time spent in each room and in 20 different activities
extracted from a set of pictures of all individuals in the
nest and the foraging area.

Figure 8: The artificial nest used for the experimental study.

The main goal of this study is to determine the exis-
tence of clusters of similar ants and to link each group
of ants with some characteristic behaviors, in order to
understand the social role of the group, as well as the
relevant location, in order to understand how each group
manage the allocated space to perform its task. The new
algorithm is then a relevant algorithm to perform these
tasks, as it is able to produce cluster regrouping at the
same time individuals and features modalities.

The results obtained with the new algorithm from
these data are shown in Figure 9. The entire learning
process took a few seconds. Codes C0 to C10 repre-
sent the ten rooms. Ants behaviors are represented by
20 activities, each coded with a two or three letters, the
last one giving the general category (T: entry and exit of
the nest, N: Management of food, C: cocoons care, L:
larvae care, O: eggs care).

Figure 9: Clusters of ants (numbers), behaviors (letters) and
location (C + number) obtained automatically. Each hexagon
is a visualization of a neuron of the map. Neurons sharing a
color represent individuals and features belonging to the same
cluster. Grey neurons are not representative and do not belong
to any clusters.

These results show that the queen, the young and a
few other individuals are related to Room 9 and are
characterized by “immobility on eggs and larvae” be-
havior (“blue” cluster). This is relevant as the queen
need to be in a big room far from the entrance (for pro-
tection, [37]). Also, as the queen spend her life to lay
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eggs, there is always in eggs and sometime larvae in her
room, as well as young ants that don’t have any social
activity yet [37]. The “green” cluster regroup rooms
5, 6, 7, 8 and 10 with activity of larvae and cocoons
care. This group is representative of the social role
“nurses” which is essential in the colony’s life. Ants
in this group take care of the brood in order to guaranty-
ing its survival. As during the development of the larva
and the cocoon the need in humidity and temperature
may vary, it have been observed hat the nurses displace
frequently the members of the brood to find optimal lo-
cation [37], it is therefore not surprising to find many
different rooms in this cluster. In the same way, clus-
ter “yellow” is a group of ant managing food in room 3
and 4, not far from the foraging area (where the food is
given). The “red” cluster represent ants spending most
of their time in room 2, without any related social activ-
ities. These kind of ant are known to be “generalist” in
a colony, they are able to perform any task, especially
foraging task, depending on the need of the colony [36].
The last cluster (“Orange”) regroup rooms 0 and 1 (the
tunnel and the foraging area) with input and output be-
havior. Theses relations are obvious. The male is also
in the cluster, which indicate that he is mature to flight
out the nest to find a female and fund a new colony.

One should also note that the linear disposition of the
rooms inside the nest is also kept on the map.

4. Visualization

4.1. Description of the visualization process

The clustering is accompanied by a set of information
that can be used to complete the analysis of data. This
information is the matrix of distances between proto-
types and the density matrix, but also the values of con-
nections that can be used to determine relative impor-
tance of each prototype for the representation of data.
It is possible to represent all this information into a sin-
gle figure for a detailed analysis of the structure of each
group and their relationships (see also [6]):

• The prototypes are projected in a two-dimensional
space (possibly three) using a projection of Sam-
mon, which retains the best initial distances be-
tween prototypes [38].

• The size of the disks representing the prototype
is proportional to the density associated with each
prototype.

• The color of each prototype depends on the cluster
to which it is associated.

• Neighborhood connections (local topology) are
represented by a segment connecting the neighbor-
ing prototypes.

• Local values of density and variability allow us to
estimate the density variations in the representation
space. These variations are represented in the form
of contour lines. The projection of contour lines in
the plane is operated by a projection of the Gaus-
sian mixture in the space of representation.

This visualization provides information on both inter-
group structure (number of clusters, similarities be-
tween clusters) but also intra-group structure (local
topology, local density and density variation within the
cluster, and data variability).

4.2. Visualization examples

We applied this method to eight artificial and real
databases, using a Self-Organizing Map algorithm to
learn prototypes.

Figures 10 and 11 show some visualization examples
that can be obtained from low-dimensional datasets.

Figure 10: “Hepta” dataset (left) and their visualization (right).

Figure 11: “Rings” dataset (left) and their visualization (right).

One notices that the data structure is well preserved
by the quantization and clustering algorithm and is well
represented by the visualization process. The data den-
sity is easily represented by the size of the prototypes
and the level lines. Furthermore, these lines allow two-
dimensional view of the general form of the different

9



clusters and their relative size. Visualization of connec-
tions, added to the different colors associated with the
prototypes, allow for a visual description of the segmen-
tation of data into different clusters. In addition, visual-
ization is sufficiently detailed to allow representation of
complex data distribution, as illustrated in Figures 11.

Figures 12 to 14 show some examples of visualiza-
tions that can be obtained from real data. “ Iris” data
describes three different species of flowers using four
features. The “Ants” data describe the activity of each
individual of a colony of ants (11 features). Finally,
“Children” data is a description of time spent in various
gaming activities in a group of children (8 features).

Figure 12: Visualization of “Iris” data.

The visualization of these databases, which have
small size but dimension greater than three, illustrates
the ability of the visualization method to project the rel-
evant information in a two-dimensional space. For ex-
ample, the “ Iris” data (Fig. 12) are structured into two
distinct groups, one of these groups is further subdi-
vided into two very close subgroups. The three clusters
are automatically discovered by the clustering algorithm
and correspond to three distinct species of flowers.

Regarding “Ants” data (Fig. 13), each cluster de-
tected by the algorithm corresponds to a behavior and a
different social role within the colony (hunters, nurses,
cleaners, guards, etc.. ..). Here, there is no clear sep-
aration in terms of density between the groups, which
means that certain behaviors are possible intermediates.
The existence of these intermediaries are known in biol-
ogy, especially thanks to the presence of generalist ants
which can perform any task, based on the needs of the
colony [37].

Finally, the data “Children” [39] (Fig. 14) represent
the activities of kindergarten children playing at recess.
The data are divided into two sets of density fairly well
separated, each subdivided into two subsets. The central

Figure 13: Visualization of “Ants” data.

Figure 14: Visualization of “Children” data.

subgroup itself is subdivided into three clusters by the
algorithm. It is interesting to note that, overall, group
order from top to bottom corresponds to an increase in
the age of the child and increase the complexity of game
activities. The yellow group is composed almost exclu-
sively of children in the first year of kindergarten, while
the vast majority of children in the last year are in the
brown group. The subdivision of the two intermediate
years into four clusters reflects individual differences
in the dynamics of child development. The decrease
in density between the blue group and the green group
separates the child spending most of their time in so-
cial games (with their peers) of children playing mostly
alone. This indicates that a child who began playing
with others will not return, or rarely, to solitary play.
All this information is in agreement with the domain
knowledge [40, 39].

10



5. Conclusion

In this paper, we proposed a new data structure mod-
eling method, based on the learning of prototypes.

A new coclustering algorithm is also proposed, as an
example of adaptation of the main algorithm to solve
different kind of problems. We applied this algorithm to
analyze characteristics of spatial and social organization
in an ant colony. Obtained results are easy to read and
understand, and are perfectly compatible with biologists
knowledge.

We finally proposed a method of visualization able to
enhance the data structure within and between groups.
We have shown, using some artificial and real examples,
the relevance of the proposed method.
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ponérine néotropicale (Pachycondyla apicalis), Ph.D. thesis,
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