Biologically-inspired characterization of sparseness in natural images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Biologically-inspired characterization of sparseness in natural images

Résumé

Natural images follow statistics inherited by the structure of our physical (visual) environment. In particular, a prominent facet of this structure is that images can be described by a relatively sparse number of features. We designed a sparse coding algorithm biologically-inspired by the architecture of the primary visual cortex. We show here that coefficients of this representation exhibit a heavy-tailed distribution. For each image, the parameters of this distribution characterize sparseness and vary from image to image. To investigate the role of this sparseness, we designed a new class of random textured stimuli with a controlled sparseness value inspired by our measurements on natural images. Then, we provide with a method to synthesize random textures images with a given statistics for sparseness that matches that of some given class of natural images and provide perspectives for their use in neurophysiology.
Fichier principal
Vignette du fichier
Perrinet16EUVIP.pdf (2.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01461404 , version 1 (08-02-2017)

Licence

Identifiants

Citer

Laurent U Perrinet. Biologically-inspired characterization of sparseness in natural images. 6th European Workshop on Visual Information Processing (EUVIP), Oct 2016, Marseille, France. pp.1--6, ⟨10.1109/EUVIP.2016.7764592⟩. ⟨hal-01461404⟩
113 Consultations
154 Téléchargements

Altmetric

Partager

More