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Abstract The effect of diffusive processes on the structure of passive vector and
scalar gradient fields is investigated by analyzing the corresponding terms in the
orientation and norm equations. Numerical simulation is used to solve the trans-
port equations for both vectors in a two-dimensional, parameterized model flow.
The study highlights the role of molecular diffusion in the vector orientation pro-
cess, and shows its subsequent action on the geometric features of vector fields.
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1 Introduction

Transport of vectors in fluid flows is closely connected to the properties and to
the very structure of velocity fields and scalar fields. It is therefore a basic issue in
fluid dynamics. In addition, it is relevant to many fields, including microfluidics,
process engineering, combustion, turbulent mixing, mixing protocols, geophysical
flows, astrophysical flows, etc. However, the kinematics of vectors undergoing the
mechanical action of a velocity field is not that simple; it may even be very intri-
cate when an active vector such as vorticity, the magnetic field, or the gradient
of a non-passive scalar is considered [1–3]. In three-dimensional flows, even the
characteristics of the gradient of a passive scalar bear the stamp of the interaction
between strain and vorticity [4].

As far as inertial processes – inviscid vortex stretching, advection of tracers,
kinematic dynamo – are considered, the purely mechanical aspect can be inves-
tigated in itself by dropping viscous and diffusive effects while keeping the rich
phenomenology unchanged. This approach, however, does not include the full me-
chanical process; as viscosity and molecular diffusion are felt beyond their respec-
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tive length scales, there is a range of scales where the mechanics of transported
vectors is itself actually not free from the viscous and/or the diffusive influence.

More specifically, viscous and diffusive effects not only limit the growth of vec-
tors norm, but also affect their geometric features such as orientation in the strain
basis, which in turn determines the production of norm as well as the structure
of the vector field. In this respect, viscosity was shown to directly influence vor-
ticity alignment (see [5] and references therein) and vortex lines geometry [6,7].
In two-dimensional turbulence, the role of molecular diffusion on the orientation
dynamics of scalar gradient and vorticity gradient was analyzed by Lapeyre et al.

[8]; Protas et al. [9] studied the Reynolds-number dependence of the vorticity gra-
dient alignment. In three-dimensional turbulence, the effects of both the Reynolds
and Schmidt numbers on the alignment of the scalar gradient were examined by
Vedula et al.[10]. Brandenburg et al. [11] addressed the influence of the magnetic
diffusivity on the alignment of flux lines of the magnetic field.

Viscous and diffusive effects, however, still deserve special attention. On the
theoretical level, especially, a better understanding of small-scale phenomena is
needed. One also has to face the problem of molecular processes when modelling
vector and tensor fields [12–14]. In this study, the influence of molecular diffusion
on the geometric characteristics and structure of passive vector and scalar gradient
fields is scrutinized by directly considering the relevant terms in the orientation
and norm equations. Plainly, the latter have remained unexplored, for it seems that
a few studies tackled the question in this way [6–8]. In passing, only Constantin
et al. [7] analyzed the diffusive terms by splitting them into a linear, Laplacian
part, and a non-linear part resulting from norm/orientation interaction; this was
for vorticity in special, basic cases.

The present work, then, specifically addresses the following questions: regard-
ing the alignment mechanism, how strong are diffusive processes as compared with
the mechanical action of the flow? What is the overall action of molecular diffu-
sion in this respect? Is there any connection between diffusive processes and flow
structure? How great are diffusive non-linear terms in comparison to linear ones?
Do the passive vector and the scalar gradient differ from one another in all these
respects?

The equations for the orientation and norm of the passive vector and of the
scalar gradient are given in Section 2. The two-dimensional model flow and the
numerical method are described in Sections 3 and 4, respectively. Section 5 is
devoted to the discussion of the numerical results, and conclusions are drawn in
Section 6.

2 Vector field equations

2.1 Equations for the passive vector

The general, Eulerian equation for a passive vector, B, in an incompressible flow-
field, u, is:

∂B

∂t
+ u.∇B = A.B+D∆B, (1)

where A is the velocity gradient tensor, and D is a diffusion coefficient. The mag-
netic field evolution in a flow is given by Eq. (1) as well. The passive vector is
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actually a good model of the magnetic field in the kinematic regime [15] – i.e.
when the magnetic field is too weak to backreact on the flowfield through the
Lorentz force.

Orientation and norm are more suitable than Cartesian coordinates for ana-
lyzing a vector field. This formalism uses invariants – the vector orientation in
the strain eigenframe and the vector norm –, and is connected to the structure
of the vector field. This approach was used to study the fine structure of the
scalar gradient field and small-scale mixing mechanisms [16,17]. Vector B is de-
fined by its norm, B, and its orientation, θ, in the fixed frame of reference as:
B = B(cos θ, sin θ). The Eulerian equations for B and θ are derived from Eq. (1):

∂B

∂t
+ u.∇B =

σ

2
sin[2(θ+ Φ)]B +D∆B −D|∇θ|2B, (2)

∂θ

∂t
+ u.∇θ = 1

2
{ω + σ cos[2(θ + Φ)]}+D∆θ + 2D

∇B.∇θ
B

, (3)

where σ = (σ2
n + σ2

s)
1/2

is the strain intensity, with σn = ∂u/∂x − ∂v/∂y and
σs = ∂u/∂y + ∂v/∂x, the normal and shear strain components, respectively; ω =
∂v/∂x−∂u/∂y is the vorticity and Φ, given by tan(2Φ) = σn/σs, is the orientation
of the strain principal axes in the fixed frame of reference, (x, y).

Special alignments of the passive vector are θd = −Φ+ π/4 (extensional strain
direction), for which the norm growth rate reaches its maximum value, σ/2, and
θc = −Φ − π/4 (compressional strain direction), for which it takes the minimum
value −σ/2.

In Eqs. (2) and (3), convection is represented by the second term on left-hand
side. In addition to convection, these equations show the effects of the flow and
of molecular diffusion on the vector norm and orientation. The action of the flow
consists of the straining of the vector norm – first term, denoted by A(B), on the
right-hand side of Eq. (2) –, and changes in angle θ due to strain and rotation –
first term, denoted by A(θ), on the right-hand side of Eq. (3).

Diffusive terms split up into linear, Laplacian terms, and non-linear terms. The
former, D∆B = Dl(B) and D∆θ = Dl(θ), express diffusive smoothing; the latter,
−D|∇θ|2B = Dnl(B) and 2D(∇B.∇θ)/B = Dnl(θ), express dissipation caused
by angle gradients, and diffusive tilting resulting from the interaction between
norm gradient and orientation gradient. Note that the complete diffusive terms,
Dl(B)+Dnl(B) and Dl(θ)+Dnl(θ), are the components of the vectorial Laplacian
D∆B along the directions parallel and orthogonal to vector B, respectively [6].
Diffusive terms clearly make the analytic approach for the orientation and norm
equations [16,18] untractable in a realistic flow. Moreover, with molecular diffusion,
the universal nature of local equilibrium alignments, strictly determined by the
local velocity gradient tensor, is lost.

While there is a simple one-way coupling between the norm and the orienta-
tion of a non-diffusive vector – the straining of the vector depends on its alignment
in the strain eigenframe –, molecular diffusion brings about a tighter interaction.
Term Dnl(B) shows that molecular diffusion strongly wipes out the vector field
in disorganized regions, where large angle gradients prevail. In addition, diffusive
tilting – expressed by Dnl(θ) – should be weak for the largest vectors. As a re-
sult, molecular diffusion is likely to arrange the vector field so that disorganized
regions correspond to small vector norm, while alignment with the largest vectors
is promoted by diffusive smoothing of angle in their vicinity [7].
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2.2 Equations for the gradient of a scalar

In an incompressible flow, the equation for the gradient, G = ∇Θ, of a scalar Θ is:

∂G

∂t
+ u.∇G = −A

T .G+D∆G, (4)

and the equations in terms of norm and orientation of vector G = G(cos θ, sin θ)
are:

∂G

∂t
+ u.∇G = −σ

2
sin[2(θ + Φ)]G+D∆G−D|∇θ|2G, (5)

∂θ

∂t
+ u.∇θ = 1

2
{ω − σ cos[2(θ+ Φ)]}+D∆θ + 2D

∇G.∇θ
G

. (6)

The diffusive terms take the same form as for the passive vector. The action of the
flow on the scalar gradient, however, is different; this time, the maximum norm
growth rate σ/2 is reached for G parallel with the compressional strain direction,
and the minimum growth rate −σ/2 for G parallel with the extensional strain
direction.

3 Model flow

The flow belongs to the family of flows defined by Tanner and Hughes [19]. It is
a combination of the Galloway-Proctor, circularly polarized, unsteady flow [20],
with a steady, two-dimensional, cat’s-eye-type flow [21]. It is specialized to a two-
component velocity field, namely (u, v, w) = (∂ψ/∂y,−∂ψ/∂x,0), with the general
form of the streamfunction, ψ, given by:

ψ = α{cos[y + cos(t)] + sin[x+ sin(t)]}+ δ[cos(y)− sin(x)], (7)

where α =
√

3/2− δ2. When δ spans the range [0,
√

3/2] the flow characteristics
are continuously shifted from those of the circularly polarized flow to those of
the cat’s-eye flow. The structure of these flowfields was thoroughly analyzed by
Galloway [22] and Courvoisier et al. [23], respectively – see also references therein.
This family of parameterized flows was also used to study the role of alignment
dynamics in the growth of a diffusionless passive vector [24]. Strain intensity,
vorticity, and orientation of strain principal axes are easily obtained from the
velocity field resulting from the streamfunction defined by Eq. (7).

The study was made for δ = 0 – unsteady, Galloway-Proctor flow. Figure 1
displays the velocity field and the Okubo-Weiss parameter, Q = σ2 − ω2; the
latter shows the flow structure in terms of hyperbolic (Q > 0) and elliptic (Q < 0)
regions, for δ =

√

3/2. When δ = 0 the flowfield has a similar, but unsteady spatial
structure.

4 Numerical solution

Equations (1) and (4) were solved for components Bi and Gi, respectively. The lat-
ter were subsequently used to derive the orientation and norm of vectors B and G.
The angle derivatives were not computed directly, but from the vector components
derivatives. The numerical domain was a 2π × 2π square with periodic boundary
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Fig. 1 Okubo-Weiss parameter, Q, and velocity field for δ =
√

3/2; the white dashed lines –
on which Q = 0 – separate the hyperbolic from the elliptic regions of the flow.

conditions. As the computation of diffusive terms needed good accuracy, the finite
difference scheme was sixth-order in space [25]. The resolution was explicit in time.

The initial conditions for B and G were:

B1(x, y, 0) = sin y ; B2(x, y, 0) = cosx, (8)

and
G1(x, y, 0) = sinx ; G2(x, y, 0) = cos y. (9)

The main parameter for analyzing the structure and evolution of vector G is
the Péclet number, Pe = UL/D, where U and L are a velocity- and a lengthscale,
respectively. For vector B, this number is denoted by ReB which is reminiscent of
the magnetic Reynolds number when B is a model for the magnetic induction. In
this study, L = 2π and U =

√
3 – the value around which the maximum velocity

within the field oscillates. The convective timescale, L/U , is denoted by Tc. All
quantities, then, are nondimensional.

To keep up the vector fields, a forcing term, fBB (resp. fGG), was added to Eq.
(1) [resp. Eq. (4)]. This term affects the norm equation, but not the orientation
equation. The stabilizing value of fB (resp. fG) is a priori unknown and was thus
derived by trial and error.

5 Results and discussion

Four values of ReB (resp. Pe), namely 10, 20, 40, and 80, were considered in the
unsteady flow. The mesh size was 150× 150, 200× 200, 300× 300, and 400× 400,
respectively.
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Figures 2 to 5 show the statistics for the passive vector. The smallest vectors
(B2 < 10−3) are discarded, but this hardly affects the statistical results. Figure
2 shows the statistics of R1 = |Dnl(B)|/(|A(B)|+ |Dnl(B)|); this ratio compares
the destruction rate of norm, due to the non-linear diffusive term, to the straining
rate. Unconditioned spatial averaging as well as averaging conditioned on small
– 〈R1|B < 〈B〉〉 – and large – 〈R1|B > 〈B〉〉 – vector norm is achieved over the
computational domain at each time step. The magnitude of |Dnl(B)| relative to
straining, expressed by ratio R1, clearly grows on average as ReB is decreased.
In addition, it is greater for small vectors, which is consistent with the finding of
Constantin et al. [7] that in non-aligned regions – large |∇θ| – vector norm should
be small.
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Fig. 2 Spatial average of R1 (passive vector); (a) ReB = 80; (b) ReB = 40; (c) ReB = 20;
(d) ReB = 10; (1) unconditioned averaging; (2) 〈R1|B < 〈B〉〉; (3) 〈R1|B > 〈B〉〉; the dash
dotted line indicates statistically comparable values of |Dnl(B)| and |A(B)|.

The diffusive terms of the orientation equation [Eq. (3)] are investigated through
ratios R2 = |Dt(θ)|/(|A(θ)|+ |Dt(θ)|) – with Dt(θ) = Dl(θ) + Dnl(θ) –, R3 =
|Dnl(θ)|/(|A(θ)| + |Dnl(θ)|), and R4 = |Dnl(θ)|/(|Dl(θ)| + |Dnl(θ)|). Figure 3
shows that both R2 and R3 grow as ReB is decreased, which was expectable.
For ReB = 80, R2 fluctuates within the range 0.3 - 0.4. Even for this value of
ReB , then, the diffusive rates are far from negligible in comparison to the mechan-
ical rate resulting from strain and rotation. Interestingly, R4 fluctuates around
0.4, which shows that in the orientation equation the linear and the non-linear
diffusive rates are of the same order of magnitude; the former just slightly exceeds
the latter on average. Since 〈R2〉 < 〈R3〉, terms Dl(θ) and Dnl(θ) also tend to
oppose each other.
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Fig. 3 Spatial averages of R2 – bold solid line –, R3 – thin solid line –, and R4 – dashed line
– (passive vector); (a) ReB = 80; (b) ReB = 40; (c) ReB = 20; (d) ReB = 10.

In Fig. 4, the diffusive tilting rate corresponding to the non-linear term Dnl(θ)
is compared to the mechanical rate A(θ) while conditioning on either small or
large vectors. Clearly, diffusive tilting resulting from the interaction between norm
gradient and orientation gradient is more efficient for small vectors than for large
ones. This result, too, agrees with the analysis of Constantin et al. [7]. The total
diffusive tilting, Dl(θ)+Dnl(θ), displays the same trends (and is thus not shown),
consistently with the study of Lapeyre et al. [8] in two-dimensional turbulence.
Figure 4 also shows that the ratio of non-linear diffusive rate to mechanical rate is
significant for small vectors whatever the value of ReB ; indeed 〈R3|B < 〈B〉〉 ∼ 0.5
at least. Large vectors, by contrast, need strong diffusion to feel diffusive tilting;
〈R3|B > 〈B〉〉 grows from ∼ 0.2 to 0.4 - 0.5 as ReB is decreased from 80 to 10.

Finally, statistics conditioned on local flow structure show that the total dif-
fusive tilting rate – when measured against the mechanical rate – is greater in
strain regions than in rotation regions. This is displayed in Fig. 5 which shows
〈R2|Q > 0〉 and 〈R2|Q < 0〉 for ReB = 20, 40, and 80.

Similar results were derived for the scalar gradient, as shown in Figs. 6 to 8
which must be compared with Figs. 2, 4, and 5, respectively.

As regards the effect of molecular diffusion on vector orientation, the statistics
derived in this simple flow for a passive vector and the gradient of a scalar bear
out the major conclusions of the few studies which addressed this question [7,
8]. Disorganized regions – large angle gradient – correspond to small vectors, and
diffusive tilting is weaker for large vectors than for small ones. This gives support
to the idea that molecular diffusion promotes the alignment of the largest vectors.
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Fig. 4 Spatial average of R3 (passive vector); (a) ReB = 80; (b) ReB = 40; (c) ReB = 20;
(d) ReB = 10; (1) unconditioned averaging; (2) 〈R3|B < 〈B〉〉; (3) 〈R3|B > 〈B〉〉; the dash
dotted line indicates statistically comparable values of |Dnl(θ)| and |A(θ)|.
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Fig. 5 Spatial average of R2 conditioned on the local structure (passive vector); (a) prevailing
strain; (b) prevailing rotation; (1) ReB = 80; (2) ReB = 40; (3) ReB = 20; the dash dotted
line indicates statistically comparable values of |Dt(θ)| and |A(θ)|.

6 Conclusion

The influence of molecular diffusion on vector alignment was analyzed for a passive
vector and for the gradient of a scalar. For both of them, molecular diffusion is
expressed by two types of terms in the norm and orientation equations, namely
linear Laplacian terms, and non-linear terms resulting from the interaction between
norm gradient and angle gradient.
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Fig. 6 Spatial average of R1 (scalar gradient); (a) Pe = 80; (b) Pe = 40; (c) Pe = 20; (d)
Pe = 10; (1) unconditioned averaging; (2) 〈R1|G < 〈G〉〉; (3) 〈R1|G > 〈G〉〉; the dash dotted
line indicates statistically comparable values of |Dnl(G)| and |A(G)|.
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Fig. 7 Spatial average of R3 (scalar gradient); (a) Pe = 80; (b) Pe = 40; (c) Pe = 20; (d)
Pe = 10; (1) unconditioned averaging; (2) 〈R3|G < 〈G〉〉; (3) 〈R3|G > 〈G〉〉; the dash dotted
line indicates statistically comparable values of |Dnl(θ)| and |A(θ)|.
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Fig. 8 Spatial average of R2 conditioned on the local structure (scalar gradient); (a) prevailing
strain; (b) prevailing rotation; (1) Pe = 80; (2) Pe = 40; (3) Pe = 20; the dash dotted line
indicates statistically comparable values of |Dt(θ)| and |A(θ)|.

These diffusive processes were numerically investigated in a parameterized flow-
field. In this study, the flow was an unsteady, Galloway-Proctor flow. Although the
model flowfield was analytic and specialized to a two-dimensional case, it included
the essential features of local flow structure, and was shown to be useful for ex-
ploring the physics of transported vectors.

Specifically regarding the influence of molecular diffusion, the following results
were derived for the passive vector and the scalar gradient alike:

– overall, the total diffusive tilting is far from negligible as compared with the
mechanical action of the flow on vector orientation. Even for the highest value
of ReB (and Pe) tested, the diffusive tilting rate amounts to 30% of the total
rate of angle variation;

– disorganized regions – large angle gradients – are correlated with small vectors.
This feature directly results from the strong lessening of vector norm caused by
molecular diffusion where angle gradients are large, and is significant whatever
the value of ReB or Pe considered in the study;

– large vectors are less affected by diffusion-induced angle variations than small
ones. This result, together with the previous one, shows that molecular diffusion
promotes the alignment of the largest vectors, in agreement with the findings
of previous studies.

A further analysis of the diffusive terms of the orientation equation also showed
that:

– when measured against the flow mechanical action, the effect of molecular
diffusion on vector orientation is greater in strain regions than in rotation
regions;

– on average, the linear and the non-linear terms are of the same order of mag-
nitude; the former just slightly exceeds the latter;

– these terms do not reinforce, but rather tend to oppose each other.

The findings of this study are valid for ReB and Pe numbers ranging from
small to moderate values, which is relevant to several types of flow. As part of
the results are consistent with previous numerical simulations of two-dimensional
turbulence, one can surmise that the conclusions of this work might also hold in
turbulence.
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Finally, the study suggests new challenges for including this physics in the mod-
elling of transported vectors. In a future work, a further insight could be brought
by analyzing the influence of molecular diffusion on the alignment dynamics, es-
pecially if considered from a Lagrangian view.
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