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An Adaptive Non-Local-Means Filter for Real-Time
MR-Thermometry

Cornel Zachiu, Mario Ries, Chrit Moonen, and Baudouin DemsS&nneville

Abstract—Proton resonance frequency shift-based magnetic Image denoising through non-local means (NLM) was orig-
resonance thermometry is a currently used technique for moni- jnally proposed by Buadest al. in the context of SNR
toring temperature during targeted thermal therapies. Howeve, restoration for digital images and video sequences altbyed

in order to provide temperature updates with very short latency . . . . . .
times, fast MR acquisition schemes are usually employed, which white Gaussian noise [8]. A pixel denoised with the NLM

in turn might lead to noisy temperature measurements. This Method is basically a weighted average of all the pixels & th
will, in general, have a direct impact on therapy control and noisy image. The weights themselves are proportional to the

endpoint detection. In the current study we address this problem gray-level intensity similarity between the local neigh@ods
through an improved non-local filtering technique applied on the of the pixel under study and the pixel contributing to the

temperature images. Compared to previous non-local filtering ] - .
methods, the proposed approach takes into account not only 2VErage: the more similar the two neighborhoods are, tyedar

spatial information, but also exploits temporal redundancies. The the weight, hence the greater the impact a pixel has on the
method is fully automatic and designed to improve the precision resulting denoised value. Since the most important camtrib

of the temperature measurements while at the same time main- tions in denoising a pixel are provided by pixels that are tmos
taining output accuracy. Additionally, the implementation was similar to it, the NLM filter is more prone to preserve high-

optimized in order to ensure ree_1|-time a_ve_;lilabil_ity of the temper- frequency image content such as edges and/or small sisctur
ature measurements while having a minimal impact on latency. a Yy g g

The method was validated in three complementary experiments: compared to other denoising techniques [8]. However, the
a simulation, an ex-vivo and an in-vivo study. Compared to the fact that the NLM method is based on spatial similarities

original non-local means filter and two other previously employed js also the source of one of its major drawbacks. In case a
temperature filtering methods, the proposed approach Shows 4 ricylar structure/pixel lacks self-similarity in an age, it

considerable improvement in both accuracy and precision of the . L . . .
filtered data. Together with the low computational demands of the might end-up being insufficiently/poorly denoised. Sucthis

numerical scheme, the proposed filtering technique shows great case, for example, of the focal point and its surroundingben
potential for improving temperature measurements during real- temperature images acquired during targeted thermaliaidat
time MR thermometry dedicated to targeted thermal therapies. The focal point in particular has a high chance of being
unique in the image. In its attempt to denoise the tempezatur
Index Terms—Image denoising, MR-thermometry, Real-time at the focal point, the NLM filter, due to its functioning
system. principle, will perform a weighted average between diskimi
pixels, which might result in a blurred/biased measuremeant
addition, since the filter performs on the quantification laé t
image (i.e the color domain) and not on its sampling support
Magnetic resonance (MR) thermometry using proton resg-e the pixel domain), the filtering results fully depend tbe
nance frequency shifts (PRFS) is one of the currently usgflage content. Therefore, contrary to other existing fitgr
mechanisms for temperature monitoring during thermal—ablgpproaches (such as convolution-based or (in)finite-isepul
tions of pathologies inside the human body [1]-[3]. Howevefesponse techniques), a theoretical characterizationhef t
such interventions typically require a good spatial cogeragyerall filtered results becomes, from a mathematical point
of the heated region and/or temperature updates with a higy, a challenging task. It is thus difficult to evaluatéifeste
temporal resolution [4], [5]. For this reason, fast MR-INT&Y  the inherent resulting bias on the filtered data. Although th
sequences are in general necessary, which might lead tocgRsideration is of minor interest for digital photograpdry
acquisition having a low signal-to-noise ratio (SNR), 1889  video sequences, it becomes of major importance in the field
in noisy temperature measurements [6], [7]. This is expettte of medical imaging, for which both the accuracy and precisio
have a direct impact on therapy control and endpoint detecti of the guantitative image information are important.
which might lead to the over or under-treatment of therevious studies have addressed the issue of filtering PRFS-
pathology. In the current study we address this issue througiermometry images through so-called predictive methods.
a non-local image filtering technique as a means to improggy example, Roujokt al. [9] proposed a temperature filter-
the SNR of the PRFS-based temperature measurements. jng/prediction technique relying on the model-based Kaima
Cornel Zachiu, Mario Ries, Baudouin Denis de Senneville &idit filter [10]. The OUtp.Ut of the filter was a linear Compinaﬁon
Moonen are With’the Imaging bivision, UMC Utrecht, UtrechietNerlands, of the measured noisy data and a temperature evolution model
(e-mail: {c.zachiu,m.ries,c.moonen,b.desenney@mcutrecht.nl). (the bioheat transfer equation (BHTE)). While showing great
Baudouin I?enis de Senneville is also with the “Institut deth&matiques filtering capabilities for high-frame-rate PRFS thermoryet
$e Bordeaux” (IMB), UMR 5251 CNRS/University of Bordeaux;3B400 (>10 images/s), the performance of the method is expected
alence, France. )
Manuscript received ...; revised ... to deteriorate as the temperature update frequency desteas

I. INTRODUCTION
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Nevertheless, an NLM filter should be seen as complementay The non-local means filter applied to thermal maps

to such an approach rather than a replacement. Depending on ) ) ) .
the application, one might out-perform the other. The NLM filter proposed in this stud){ used as a starting
In this work we propose an improved NLM filtering method?CiNt the formulation suggested by Caugt al. in [11].

for dynamic PRFS thermometry during targeted thermal thefgomPared to the original version of Buades [8], Ceep al.

pies. Performance analysis of the method was conducted ugioPosed an improved approach in which the filtration stieng
simulations, ex-vivo data acquired during a radiofrequency® cOmputed in a deterministic way rather than empirically.

(RF) thermal ablation experiment on a calf liver ainevivo hile their study focused on 3D diagnostic brain images, the

data acquired on a porcine kidney during an MR-guided h@yrrent technical limitations of MR systems and the computa
I

intensity focused ultrasound (MRg-HIFU) ablative soritat onal time of NLM filters, notorious for their high proceggi
The contribution of this study is fourfold: latency, make real-time 3D PRFS-thermometry paired with a

o ~ non-local filtering method a challenging task. For this oggs
1) We propose denoising PRFS temperature maps usingha cyrrent study was conducted solely for 2D temperature
variation of the.NLM filter which during the restorationmaps. According to the formulation proposed by Cewg
process takes' into account not only §pat|al mforma'tlogl_, the filtered temperatur@’ (;) at pixel 7 = (z;,y:) is
but also exploits temporal redundancies. More premsemven by the weighted average of all the noisy measurements

each new incoming temperature map is also filtergf the temperature imag#,, (principle which is graphically
based on information available from previous measurgymmarized in Fig. 1):

ments. This is expected to improve the resulting filtered
data compared to the original approach, especially in
the focal point and its surroundings, since more reliable Ty (73) = Zw (73,75) T (75) (1)
temperature information in this area is available in the jEQ
temporal dimension rather than in the spatial one. .

2) The proposed spatio-temporal NLM filter is furtheMith:
enhanced by dynamically adapting its filtration strength, . 1 _w
through an optimization process, such that the accuracy w(73,75) = —-e 265 ()2 [N; | 2)
of the resulting temperature measurements is maximized
(i.e. the blur/bias on the filtered temperature is minwhere Q is the image grid,Z; is a normalization constant
mized). ensuring thaty >, w (r7,75) = 1, |N;| is the size of a local

3) The performance of the NLM filter can usually beneighborhood around;, &(r;) is an estimation of the local
improved if prior knowledge on the noise distributiorstandard deviation of the noise afids a constant that needs to
in the image is available [8], [11], [12]. Therefore, inbe manually tuned. As mentioned in [11], for Gaussian noise,
the current study, we propose a fully automatic methdtithe estimation ofs is correct, the value of is theoretically
that estimates ‘on-the-fly’ the amount of noise alteringlose to 1. However, the automatic dynamic adjustment of
the temperature measurements. will be the keystone of the adaptive NLM strategy proposed in

4) An implementation with real-time capabilities was perthis study. Additionally, note that, while in theory the dited
formed for the proposed methods in order to providealue is a weighted average of all the noisy measurements in
improved temperature measurements while having the image, in practice the contributing pixels are limitedat
minimal impact on latency. For a smooth MR tempersmaller window around the filtered pixel.
ature monitoring work-flow, the computational time of
the methods has to lie well beneath the time interval
between two temperature measurements.

Il. METHOD DESCRIPTION

Initially, section II-A provides a brief mathematical deipe
tion of the basic NLM filter together with the manner in which
it can be applied for denoising MR thermal maps. Section II-B
details the proposed improvements to the NLM filter which are
intended to compensate for the shortcomings of the origi

| . . .
version in the context of dynamic MR-thermometry. The se 19. 1: Noisy temperature map acquired during a targeted

tion also includes a description of the proposed method hvhiﬁrl]er?atl tdhe;ﬁpydul)o_n V\:jh'crll thefptrr:nmplepc’)ft;r;ﬁ NLM f;::e(rj IS
allows dynamic characterization of the noise distribution tiustrated. The denoised value ot the pixerals the weighte

the temperature measurements. Finally, section II-C desscr average of the pixels af;, with the weights computed based

the protocol used to evaluate the performance of the pr(nboé)@ thf i'myﬁmy betwegn_flh e|tr nte |3hb(?rhfooks:§ and];fi-L.;qr
variations to the original NLM filter and that of the noise> PICIY, the process Is Tustrated only for three v 7

characterization method, together with implementatiotaitie rather than the entire image domain
of the proposed methods.
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B. Improvements of the non-local means filter corresponding tested value. The optimal value(s) fof ()
1) Extension of the NLM filter to dynamic MRInstead was(were) obtained for each pixel individually as follows:

of relyi_ng solely on spatial inf_orma_ltion in order to filter B(;) =  argmax e ()| 8)

the noisy temperature maps, in this work we propose an {B8,]e(7)|<20.(7)}

extension of the NLM technique also to include the tempor.

dimension. In effect, a filtered pixel is the weighted avera

of the noisy measurements not only from the current dynam onding to the values qﬁg(;). Intuitively, the proposed adap-

but also from the previousy dy“a”ﬁ'cs- Th'? results in Wr_'attive NLM method can be summarized as follows: Search for
we have (_:alled . NI.‘M'(ZDH) filter, having the foIIowmgthe value of3 (¥) which leads to a maximal amount of filtering
mathematical formulation: (denoted by the drgmax” in Eq. (8)), while minimizing
Nl accuracy losses (imposed by the constraint illustratedgn E
Ty (73, t) = Z Zw (7,755t =n) Ton (75,6 =n) - (3) (7)). For the remainder of the manuscript we will refer to

?"he final filtered temperature map was reconstructed on a
ixel-by-pixel basis using the previously stored data eorr

n=0jeq this filter as the adaptive NLM-(2D+t), abbreviated as ANLM-
with: (2D+t).
1 T )T vy =2 3) Dynamic characterization of the temperature noise dis-
w (7, 75,t—n) = 7€ 285(%)2|N; | (4) tribution: As illustrated by Eq. (2), the NLM filter requires
g prior knowledge of the noise distribution in the image. Bea
wheret is the temporal index of the current dynamic. note that for a zero-mean Gaussian noise, as assumed in the

2) Adaptive NLM strategyDue to its underlying principle current study, the noise distribution is fully characteday its
(i.e. averaging in the color domain), the NLM filter will standard deviation. For this reason, throughout this naipis
unavoidably introduce a certain amount of blurring in thee will use the terms of noise distribution and standard alevi
filtered data, which might lead to inaccurate temperatut@n interchangeably. A number of methods have already been
measurements. The filtering strength of the NLM is mainlgroposed to estimate the noise distribution directly frdma t
controlled by the denominator in the exponential defined lnage itself. However, for the particular case of tempegatu
Eq. (2). In particular, the? factor plays the most important roleimages, the estimation process might be hampered by several
in this regard, since the other parameters are usually fb@d. factors such as pixels with low magnitude/signal or phase
example, whiles = 0 implies that no filtering is performed, aartifacts due to susceptibility/temporal drift of the matjo
value of 3 equal tol results in filtering performed assumingfield [13]-[15]. Since the magnitude component of the MR-
a standard deviation equal ta In this work, we propose an signal is less prone to the such artifacts, we decided to use
optimization scheme fop such that for every pixel of eachthe latter to estimate the noise distribution in the temipeea
new incoming temperature map, the filter ensures a maximahps. This was achieved by first estimating the standard
output accuracy. deviation of the noise in the phase image by making use of
Filter accuracy was evaluated on a pixel-by-pixel basis hye formula proposed by Conturo in [13]:
computing, for each new incoming image, the temperature bia (M)

e () over a temporal window. At instart the bias at pixel o(op(7) = — 9)
of coordinates” was calculated as follows: | M (7]
| Nl where ¢ and M are the phase and the magnitude of the
e() = — Z [T, (7t — n) — Ty (7, t — n)] (5) complex MR-signal and is the spatial location. Based on the
N n—=0 noise distribution estimated in the phase image, the stdnda

whereT,, (7, t) is the measured (noisy) temperature at Iocatio‘iiwe\’iation of the noise in the. temper_aturq maps was then
7 and instantt and T(7) is the filtered output. For ideally cCOMPuted based on the following relationship between phase
filtered thermal maps¢ (7) is a Gaussian centered randonf"d temperature:
variable of standard deviation:
o) = Va7 o)

(6) Wherek is the PRFS-thermometry constant [3].
The standard deviation of the noise in the magnitude image ca
be estimated through several methods, depending on whether
the noise is assumed to be homogenous [11], [16] or spatially
variant [12]. In the current study, since the noise was assum
e (7)| < 20.(7) (7) to be homogeneously distributed over the field of view, the

standard deviation of the noise in the magnitude image was

The value 2o (i) could thus be taken as an upper boungdstimated via the wavelet-based approach proposed in [16]:
for |e (7)| in order to warrant the output accuracy. For each

temperature map, an exhaustive enumeratiors afas per- Test( M) =
formed between 0 and 1 with an incrementlgf The resulting 0.6745

filtered data and the associated error maps) were stored where e M) is the estimated value of the noise standard
in a map data structure, for which the entry key was ttaeviation in the magnitude image apdare the high frequency

(10)

In such an ideal cas@5% of the realizations of (¥) comply
with the following inequality:

median|y;| (11)
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coefficients of the first level wavelet decomposition of th&he performance of the filters was evaluated in three comple-
image. The method was chosen due to the good compromisentary studies:

between computational time versus quality of the estimaitio a) Simulation study:Temperature maps resulting from a
has shown during our experiments. Note that since the standellFU energy delivery were simulated using the BHTE model.
deviation of the noise in the magnitude image is not expect&tie simulation extended over a duration of 100 s and 250 W
to vary significantly over time, the estimation in Eq. (11pf acoustic power was applied in a single point during the
can be carried-out only for one image in the thermometf0 s; 60 s] time interval. The spatial and temporal evolutio
sequence. of the temperature resulting from the acoustic energy esfiv
For the rest of the manuscript, unless specified otherwisewas given by the solution of the BHTE, solved using finite
refers to the standard deviation of the noise in the tempezatelements on a x Imm? lattice and with a temporal resolution

maps. of 1 s. The simulated temperature maps were subsequently
corrupted by additive white Gaussian noise with increasing
C. Experimental setup standard deviation. The latter was varied betwedD @nd 4C

e\mEh a regular sampling step of 0.6. The noisy temperature

1) Performance assessment of the proposed filtering m X : .
| R : X maps were then filtered using the approaches enumerated in
ods: The following filtering techniques were compared in the . :
) . Section 11-C1 and their performance was assessed base@ on th
context of dynamic MR-thermometry during a targeted thérma__ . . . .
therapy: metric described therein. The gold standard was the sieuilat

o unaltered temperature maps. Note that the assessment was
« An infinite-impulse-response (IIR) temporal low-pasgyeraged over 10 experiments with different realizatiohs o

Cauer filter of the g order. The pass-band and stop-bandise ‘in order to reduce random impact on the overall result
were adjusted to result in an overall temporal resolution b) Ex-vivo study: A heating ex-vivo experiment was

divided by a factor 2. _ conducted on a calf liver. The heating itself was the result
. A_2D spatial Gaussian filter (kernel size equaldtec 3, of gelivering 20 W of RF power via a bipolar electrode, for
0=0.5). a duration of~50 s. The energy delivery was carried-out

« The 2D spatial NLM filter proposed by Coéet al.in nqer MR-guidance with MR-thermometry being performed
[11]. For the remainder of the manuscript we will refepetore, during and after heating the tissue. The MR-aciipiisi

to this filter as the NLM-2D. was performed via a dual-shot gradient recalled echo-plana
« The proposed NLM-(2D+1) filter. imaging (EPI) sequence with TE = 13 ms, TR = 70 mg;cN
« The proposed ANLM-(2D+1) filter. =1, image size 128128 and a 1.51.5x5 mn¥ voxel size,

The first two methods were selected as they represent tW@ulting in an image being acquired every 140 m4g.15
previously employed strategies for real-time dynamic MRHKz). The intense and quick heating induced by the RF energy
thermometry [17]-[19]. Itis expected that the two will pid®  delivery lead to notable local gray-level intensity dropghe
a similar SNR improvement by a factar2, since each of magnitude image in the close vicinity of the heated region.
them imply a reduction of the resolution by a factor 2, one iMihe purpose of this particular experiment was to analyze the
the temporal and the other in the spatial domain. The othgipact of a noise distribution in the temperature maps with
3 methods have the purpose to evidence the improvemeatspatio-temporally varying standard deviation. When heati
provided by the proposed NLM filtering methods comparegssues, relaxation times get longer and the magnitude ef th
to the existing one. For all the NLM filters, the patch sizegIR-signal changes. According to Eq. (9) and (10) this leads
|N;| and | N;| were chosen equal to 25 & 5). Additionally, to local spatio-temporal variations in the standard déwiat
each pixel was filtered using the contribution of the noisyf the noise in the MR-temperature maps. This effect might
measurements situated within7a< 7 encompassing window. end-up having an impact on the quality of the filtered data
The size of the latter and also the patch size were chosenpgsvided by the proposed methods.
to provide the best compromise between quality of the filterez high-SNR dataset was derived from the original sequence
data and Computational time. FO”OWing the same reasonirlgﬁ a centered S||d|ng tempora| averaging apphed on both
the temporal windowV (see Eqg. (3)) was chosen equal to &he magnitude and the phase components of the MR signal,
Since the main concern was output accuracy, the performanggowed by a temporal subsampling, such that the output
of the tested filters was assessed quantitatively by evafpatdata had an equivalent temporal frequency~df Hz. This
the time averaged absolute difference between the outputopferation lead to an average SNR of the magnitude image of
the filters and a gold standard. The construction of therlati¢iore than 40 (SNR computation was restricted to the liver).
will be further detailed in future sections. The performancThe MR temperature maps were then recalculated based on
assessment was conducted in two different regions: the averaged phase images and set as a goldstandard for the
« In a region of interest covering x 7 pixels, centered on current experiment. In order to evaluate the performance of
the focal point position, over the entire duration of théhe compared denoising methods in this particular experime
thermal energy deposition. In this manner, the assessmanhoisy dataset was constructed based on the temporally
is performed within an area excluding background pixelveraged magnitude and phase images. The latter were used to
which are not of great interest. recalculate the real and imaginary channels of the MR sjgnal
« At the focal point itself (i.e in a single pixel located atupon which a Gaussian noise with a standard deviation of
the focal point position). 10% of the maximum intensity in the magnitude image was
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then added. The noisy real and imaginary parts were then was then compared to the true standard deviation in terms of

combined to compute the noisy magnitude and phase imagésg, percentage relative error (denoteddyy:

after which a set of noisy temperature maps was constructed,

based on the noisy phase images. The denoising methods 0, = 100 x

were then applied on the resulting temperature maps and the

filtered data was compared in terms of accuracy against Mberes ando are the estimated and respectively the true value

goldstandard. of the noise standard deviation added to the magnitude isnage
c) In-vivo study:An MRg-HIFU shot was performeith- Subsequently, the percentage relative estimation erensus

vivo on a porcine kidney, which consisted in the deliverthe SNR of the image was analyzed. Note that the estimation

of 250 W of acoustic power over a duration of 50 s. Therrors were averaged over 1000 realizations of each noise

animal was under general anesthesia, with the targeted deyl. Note that assessment and processing was performed

only exhibiting minimal motion. Thus no correction of matio exclusively for the slice containing the primary focal spot

related temperature errors was required. The MR-thermymet 3) Implementation:A C++ multi-threaded implementation

acquisition protocol consisted of a multi-slice image, hwit(8 threads) was performed for all filtering methods enuneetrat

each slice being acquired visstice-selectivesingle-shot echo in section 1I-C1 on an Intel 3.2 GHz i7 workstation (8 cores)

planar imaging sequence employing the following pararsetewith 16 GB of RAM. In the scope of this study, the filtering

TE=25 ms,TR=1143 ms flip angle=35, FOV=142.5 x 285 process was restricted to a region of interest around thal foc

mm?, bandwidtheag = 2078 Hz and voxel size=x 3 x 6mm?. point. The size of the region was chosen in accordance with

Each dynamic included a total of 9 coronal slices, symmehe spatial extent of the heating. This was decided both for

rically distributed around the focal spot. This would emsurcomputational time considerations and, in the scope of this

the coverage of the entire kidney and part of the near-fieltudy, for the lack of interest in the pixels outside the adat

in order to detect any secondary heating spots. A total of 1a&ea.

dynamics were acquired over a duration of 200 s, providing

temperature information during pre-sonication, the eneier IIl. RESULTS

livery itself and respectively post-sonication. The terapere  gociion 1A illustrates the performance during the sim-

measurements provided by the middle slice (which includqﬁation study (see section 1-Cla for details) of the fileri

the primary focal spot) were filtered using the approaChﬁ?ethods enumerated in [I-C1 including: an example of the

enumerated in section II-C1 and their performances Welfyiia| distribution of the accuracy errors introduced bygte

compared based on the metric described therein. ¢ \ho methods, the performance of the filters for increasing
The gold standard was obtained as follows: A pIXG|WISF§b

.
g

12)

o oise levels and the sensitivity of the proposed ANLM-
temporal centered sliding average was performed on .4 method to errors of the noise estimation algorithm.

temper.ature data. provided by the middle slice with a SP&ction 111-B displays the results obtained during thevivo
extending over S|x'temper'atl'1re maps followed by a 6'fOIé]g(periment described in section 1I-C1b. Of interest hereewe
temporal subsampling. This increased the SNR by a facigl 4ccyracy errors introduced by the compared methodgin th
245 and resulted in a dynamic sequence with a tempofghqence of heating-induced spatio-temporal SNR variatio
resolution equal to0.15 Hz. Note that the original noisy in the MR magnitude images. Finally, section 111-C illuses

image sequence was also temporally subsampled such tatyf, performance of the filters for data obtained during the

frequency rTatches the one of'the go[d standard. SUbseﬁ’uiml-vivo experiment (detailed in section 11-C1c) together with
a Mann-Whitney test was carried out in order to study whethgp Jsqessment of the noise estimation algorithm (see ssctio

the differences between the noisy and the filtered data §{3 anq 11-c2) and the computational requirements of the
statistically significant. A significance threshold pf= 0.05 proposed methods

was used.

The animal experiment was conducted in agreement with the )

European law on animal experimentation and in complianée Simulation study

with the institution’s rules for animal care and use. 1) Performance assessment of the proposed NLM-(2D+t)
2) Performance analysis of the noise estimation algorithnand ANLM-(2D+t) filtering methods:Fig. 2 illustrates the

A high-SNR image was initially computed by temporally avertemperature bias introduced by the compared filtering nitho

aging all the corresponding magnitude images acquired wigtnumerated in section 11-C1), aiming to reflect the acourac

the protocol described in section [I-Clc. After normalgin of the resulting filtered data. Fig. 2(a) shows the tempeeatu

the resulting image to thé0, 1] interval, increasing levels spatial distribution 40 s into the heating simulation dethi

of Gaussian noise were added to it, progressively lowerimg section 1I-Cla. This played the role of gold standard in

its SNR. The standard deviation of the added noise wasmparing the performance of the filtering methods. Fig.

varied betweer0.005 and 0.06 with an increment 00.005. 2(b) displays the gold standard temperature map altered by a

Note that, according to Eq. (9) and (10), this leads to @aussian noise with 2°C standard deviation, while Fig. 2(c)-

standard deviation in the temperature maps that variesdeetw(g) display the filtered temperature measurements provided

~ 0.5°C and ~ 4.5°C'. For each noise level, the standardy each approach. The resulting temporally averaged atesolu

deviation was then estimated in the magnitude images usiagors are illustrated in Fig.2(h)-(m). From a visual inspmn

the algorithm specified by section II-B3. The estimated @allit already becomes apparent that, in the focal point and its
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close proximity, the NLM-(2D+t) and respectively the ANLM-for any of the analyzed noise levels. The rest of the filtering
(2D+t) methods provide the lowest errors, observation thatethods, on the other hand, at least in some particular cases
will be further confirmed by subsequent results. Fig. 3 arattually end-up altering the temperature measurements eve
4 compare in terms of accuracy the proposed ANLM-(2D+further compared to when no filtering is performed.

against the IR and respectively the Gaussian filter. Fig. 32) Robustness of the ANLM-(2D+t) to calibration errors:

in particular illustrates the temperature evolution in theal As illustrated by Eqg. (2) and (4), the NLM, NLM-(2D+t) and
point over the duration of the simulation. Fig. 3(a) trades t the ANLM-(2D+t) filters require the noise standard deviatio
gold standard temperature evolution in the focal pointdblaas an input parameter, which has to be estimated (see section
curve) overlapped with its noisy version (red curve). Th#-B3). Fig. 6 displays for the ANLM-(2D+t) in particularst
noise standard deviation in this experiment was se3@. sensitivity to noise estimation errors. The figure illusisa
The filtered data together with the gold standard is displayéhe mean absolute error of the filtered temperature as a
in Fig. 3(b). It can be observed that the intrinsic temporélinction of the percentage relative estimation error ofrthise

lag of the IIR filter, which becomes evident especially istandard deviation. The analysis was conducted in both the
the proximity of the starting and end point of the energfocal point (red curve) and the area around the focal point
delivery, leads to a consistent amount of bias in the filter¢dlue curve) for temperature maps altered by a noise with a
data. A consistent amount of bias can also be observed for thendard deviation of°C. It can be observed that an under-
Gaussian filter, which by construction has a blurring effatt estimation of the noise, while the accuracy of the filterethda
the filtered measurements. A visual analysis of the tracesignstill improved, precision is being hampered, indicated b
Fig. 3(b) would indicate that the ANLM-(2D+t) filter (blue the fact that the difference between the filtered and theynois
curve) provides the most accurate results. This is confirmgmperature becomes less evident. Note, however, thattthe fi
in Fig. 4, where the mean absolute error of the filterestill remains reliable for noise estimation errors of up>69%
temperature versus the simulated noise standard devigtiornin either direction.

plotted. Note that analysis was performed for the samedilter

as in Fig. 3, but separately for the focal point (Fig. 4(a))l an ,

the area surrounding the focal point (Fig. 4(b)). While tt 1 B- EX-vivo study

(red line) and the spatial Gaussian (green line) filters feahi  Fig. 7 displays the performance of the analyzed filtering
similar tendencies in terms of accuracy of the filtered datmethods following the MR-guideex-vivoRF thermal ablation
the ANLM-(2D+t) outperforms both for all the analyzed noisestudy conducted on a calf liver (described in 11-C1b). Fig.
levels, especially in the focus point for low noise levelbeT 7(a) in particular, illustrates one of the temporally age@
black line corresponds to the mean absolute error of thg/nolsigh-SNR MR magnitude images, calculated prior to starting
data. As a side-note, the comparable performance of the Hfe energy delivery (see section 1I-C1b for details). Fdtdre
and the spatial Gaussian filter can be explained by theitaimivisibility, the treated area (identified by the red dashadhse)
approach in improving the SNR of the noisy image. They botias been magnified, while at the same time indicating through
reduce the information resolution by a factor of 2 (see sactiblue arrows several pixels that were of interest during the
[I-C1), one however operates in the temporal while the othek-vivo study. Points (1) and (2), for example, correspond
in the spatial domain, in order to improve the SNR of tho the approximate position of the tips of the RF-emitting
image. needles, while points (3) and (4) were selected such that
Fig. 5 shows the accuracy of the temperature filtered usittte former would be in close proximity to one of the focal
the ANLM-(2D+t) (blue line) compared to the original NLM spots while the latter is completely outside the heated.area
(red line) and to the non-adaptive NLM-(2D+t) (green line)The precise purpose of points (3) and (4) will be detailed in
The analysis was conducted for several noise levels in bd#ter paragraphs. Fig. 7(b) and 7(c) display the gold stahda
the focal point (Fig. 5(a)) and the area around the focwmperature distribution and its noisy version, 80 s inte th
point (Fig. 5(b)). Note that the blue curves correspondimg experiment. Fig. 7(d)-7(h) showcase the effect each of the
the ANLM-(2D+t) filter are identically the same as the onefltering methods have on the noisy temperature map from
as in Fig. 4(a) and 4(b) respectively. Except for very lowig. 7(c), while Fig.7(i)-7(n) illustrate the bias introckd
noise levels € 0.5°C), where all three filters have a similarin the filtered data by each of the approaches. Consistent
performance, the original NLM is constantly outperformgd bwith the observations made during the simulation study is
the other two filters. As already anticipated from Fig. 2(he fact that both the NLM-(2D+t) and the ANLM-(2D+t)
and 2(m), the NLM-(2D+t) and the ANLM-(2D+t) have aoutperform the other filtering methods, with the ANLM-(20p+t
similar performance, particularly if the errors are avethg performing slightly better than the NLM-(2D+t), especyaiih
over the area surrounding the focal point or if the noiseltevehe proximity of the focal spots. This is further confirmed
are low. However, for a noise standard deviation larger théy Fig. 8 where the temperature evolution during éxevivo
2°C, the ANLM-(2D+t) clearly outperforms the NLM-(2D+t) experiment is traced for point (3) in the absence (Fig. 8(a))
when analysis is conducted in the focal point, especialthé and in the presence (Fig. 8(b)) of a filtering method. It can be
rightmost part of the graph in Fig. 5(a). Note that the black | observed from the latter that compared to the ANLM-(2D+t),
corresponds to the errors in the noisy data. A noteworthiy fabe Gaussian and the IIR filter have indeed a tendency to
that can be observed from both Fig. 4 and 5 is that the ANLMAtroduce additional bias in the filtered data.

(2D+t) filter does not yield higher errors than the noisy dataVhat sets theex-vivoexperiment apart from the simulation
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Fig. 2: Example of thermometry results obtained during tineukation study. (a): The gold standard noise-free tentpesa
map; (b): Corresponding noisy map (standard devia®itf); (c)-(g): Filtered temperature maps; (h)-(m): Spatiatdbution
of the temporally averaged absolute errors for each figenmethod.

Unfiltered temperature evolution Filtered temperature evolution Temperature error at the focal point Temperature error in the heated region
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Fig. 3: Temperature time curve obtained in a single pixé&lig. 4: Accuracy of the ANLM-(2D+t) filter (blue line) versus
located at the focal point. (a): The noisy time temperatuthe IIR (red line) and respectively spatial Gaussian (giize)
evolution (red curve, standard deviati@iC). (b): Filtered filter. The two figures illustrate the mean absolute errora as
temperature values obtained using the proposed ANLM(2D+t)nction of the simulated noise standard deviation (a):hia t
method (blue curve), the spatial Gaussian filter (greeneunfocal point; (b): In the surrounding area of the focal point.
and the temporal IR filter (red curve). The gold standard

temperature illustrated in (a) and (b) by the black curve.
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standard deviation according to Eq. (9) and (10). Fig. 9
study is the fact that the temperature maps in #xevivo displays the temporal evolution of the gray-level intensit
experiment are altered by a noise with a spatially variaat points (3) and (4) respectively. It can be noted that, as
standard deviation, which was constant during the simarati the temperature at point (3) increases, the signal intensit
The variation of the noise standard deviation stems maindgcreases, while at point (4), which was chosen outside the
from the signal drops induced in the MR magnitude imagéwated area, the signal intensity remains more or lessamnst
by the heating process, factor which, for the sake of siritplic Nevertheless, even in such conditions the proposed fitferin
was not taken into account during the simulation study. Theethods outperform the existing ones, as shown in Fig. 7 and
local signal drops lead to an increase in the temperatu8e
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Temperature error at the focal point Temperature error in the heated region

errors in the filtered data. The spatial Gaussian also biages

o
EN

T g|—* mowso 4 T || temperature measurements due to its intrinsic blurringceff
5 |l== Ao el 5 3ll= Miweon " The ANLM-(2D+t) seems to provide the highest fidelity to the
s’ P N - gold standard data.
N K ) g 2) Statistical analysis of the filtering errorsThe pixel-
c? ! oSt - _<«-===1 wise errors illustrated in Fig. 10(h)-(m) were all pooled in
S 4 A " 8 B e 2T e . )
= T = SRR b a set, separately for each filtering method, and displayed as
% 3 s % 1 2 3 4+ boxplots in Fig. 12. The analysis was performed both in
SD of the simulated noise [°C] SD of the simulated noise [°C] the focal pOint (Flg 12(8)) and in a % 7 area arOUnd the
(@ (b) focal point (Fig. 12(b)). It can be observed that, compared

. ) ) to the other filters, the ANLM-(2D+t) and the NLM-(2D+t)
Fig. 5: Accuracy of the ANLM-(2D+1) filter (blue line) versus ., iqe the best performance in terms of both accuracy and
the original NLM (red line) and the NLM-(2D+1) (green Iine)precision. A marginal improvement in the focal point can
filter. The mean absolute temperature errors are reported fo. Jbserved for the ANLM-(2D+t) over the NLM-(2D+t).
various r_noise levels (a):_ In the focal point; (b): In the aregyple | reports thep-values provided by a Mann-Whitney
surrounding the focal point. test applied on the data illustrated in Fig. 12. The test
indicates whether the improvement or alteration induced by
the filters, compared to the case when no filtering is applied,
is statistically significant or not. The null hypothesis what
there are no statistically significant differences betwé®n
errors found in the noisy and respectively the filtered data.

ANLM-(2D+t) calibration error

=
I

—>— No filtering
—<4 ANLM-(2D+t) at the focal point
— % ANLM-(2D+) in the heated region

I
[N

[

Mean absolute error [°C]

Y SN N I When analysis is conducted in the area around the focal point
o8 \\\\,ﬂ__*w,(’ (right column), of interest are the entries associated o th

‘ K NLM-(2D+t) and the ANLM-(2D+t) filters. Theip-values are

0.4 B ae e beneath the threshold, confirming that the improvement due t

-100 -50 0 50 100
Simulated calibration error [%]

filtration is statistically significant. In the focal poirtself (left
column), however, the differences between the aforemeadio
Fig. 6: Robustness of the proposed ANLM-(2D+t) filter agtingilters and the noisy data are not statistically signific&ot.the
potential calibration errors for a nominal noise standada ||R and spatial Gaussian, even though fhealue confirms the
tion of 1°C'. The mean absolute temperature errors are reporigebrnate hypothesis, it is obvious from Fig. 12 that, asiéa
for various relative noise estimation errors. the focal point, they actually end up deteriorating rathemt
improving the data.

C. In-vivo study Filtering method p-value at the| p-value in the
focal point heated region
1) Performance _ass_essment of the prqposed NLM-(2D+t) Temporal TR filter 0.0155 19 x 10-5
and ANLM-(2D+t) filtering methodsFig. 10 illustrates the ac- Spatial Gaussian filter 2.2 x 1076 | 3.7 x 10712
curacy of each of the compared filtering methods (see section Ntll\l;lw(lé%D ) 00-286 19% x 11%*168
; g ; ; -(2D+t . 8x 10~
[I-C1) when applied on th&an-vivo dataset. Details concerning ANLM-(2D+1) 0.3 9.7 % 10-5

the in-vivo experiment can be found in section 1I-Clc. Fig.
10(a) and 10(b) correspond to the gold standard temperathABLE I: Statistical significance of the temperature error
map and its noisy version, respectively, after 50 s of utinés  distributions obtained for each filtering method testedrdyr
energy delivery. Fig. 10(c)-(g) display the filtered tengiare the in-vivo experiment, as compared to the scenario when no
map using each of the compared methods. The accuracy of filtering is performed.

filters is shown in Fig. 10(h)-(m), where the spatial digitibn

of the temporally averaged absolute errors is illustrafiecst 3) Computational performance of the ANLM-(2D+t) algo-
as in the simulation and thex-vivo experiments, a visual rithm: In terms of computational performance, our multi-
analysis of the results indicates that the NLM-(2D+t) angl tHhreaded C++ implementation of the ANLM-(2D+t) filter
ANLM-(2D+t) outperform the other approaches. Fig. 11(aequired 31310 ms per image, with processing times ranging
and 11(b) illustrate the temperature evolution in the fegmaht from 297 ms to a maximum of 385 ms. Note that the reported
over the duration of thén-vivo experiment. The black andvalues were obtained following a total of 1000 executions of
the red curves in Fig. 11(a) correspond to the gold standdhe algorithm.

and to the noisy temperature measurements, respectivedy. T 4) Assessment of the noise estimation algoritiigure 13
filtered values are displayed in Fig. 11(b), where the reger illustrates the percentage relative noise estimatiorrgxersus

and blue curves correspond to the IIR, spatial Gaussian ahd SNR of the noisy magnitude images. Details concerning
the ANLM-(2D+t) filter, respectively. The black curve agairthe images and the computation of the noise estimationserror
represents the gold standard temperature. Similar to thétse can be found in section II-C2. Noteworthy is the fact that as
provided by the simulation and thex-vivo experiment, the the SNR of the image increases, the noise estimation errors
temporal lag of the IIR filter introduces consistent accyra@lso have a tendency to increase, exceediig for an SNR



JOURNAL OF ETgX CLASS FILES, VOL. 11, NO. ..., MAY 2016 9

Magnitude image Goldstandard

"""""" : 25
1
“ «@® »
' .
, : 10
<oy | il 5
1
T 1 0
1
(1) @ s -
o e E e -10
(a) (b)
No filtering Temporal lIR filter Spatial Gaussian filter NLM-2D NLM-(2D+t) ANLM-(2D+t)
25 25 25 25
20 20 20 20
15 15 15 15
10 10 10 10
5 5 5 5
0 0 0 0
= -5 -5 -5 -5
- -10 -10 -10 -10
(© (f) (9) (h)
No filtering Temporal IIR filter Spatial Gaussian filter NLM-2D NLM-(2D+t) ANLM-(2D+t)

ok N W A O O w4 ®
or N W & O O N ®
SR N W & O 0w ®

(i) () (k) U (m) (n)

Fig. 7: Performance of the analyzed filtering methods folhmgMmhe ex-vivostudy. (a): High SNR MR magnitude computed
prior to the energy delivery together with a magnificationttod treated area (red dashed square) upon which severds poin
of interest are indicated by blue arrows; (b), (c): The gdlthdard temperature map together with its noisy versiop(Hd
Filtered temperature maps; (i)-(n): Spatial distributmfnthe temporally averaged absolute errors for each filgenrethod.
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o ) ] ] _Fig. 9: The effects of heating on the magnitude of the MR
Fig. 8: Temperature time curve at point (3) from Fig. 7(a): (asjgnal during theex-vivo experiment: Temporal evolution of

The noisy time temperatgre evo!ution (red curve). (b)eféd e signal intensity at points (3) (red curve) and (4) (blue
temperature values obtained using the proposed ANLM(ZDJEQ"VG) from Fig. 7(a).

method (blue curve), the spatial Gaussian filter (greenejurv
and the temporal IIR filter (red curve), respectively. Thédgo
standard temperature illustrated in (a) and (b) by the black IV. DISCUSSION

curve. This study proposes an improved non-local filtering method

for real-time dynamic PRFS thermometry. The technique was

designed using the NLM formulation proposed by Cewb

al. in [11] as a starting point, in addition to which, temporal

information was also exploited in order to improve SNR.

Moreover, an adaptation technique is proposed such that, th
of 30. amount of filtration is dynamically optimized as to maximize
Concerning computational demands, the algorithm required output accuracy. Compared to previously employed filtratio
average 16 ms per image, evaluated from a total of over 100®@thods for real-time thermometry, such as the IIR [17] and
estimations. the spatial Gaussian [18], [19], the proposed technique has
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Fig. 10: Accuracy of the compared filtering methods onitheivo porcine dataset. (a): The gold standard temperature map; (b
Noisy temperature map; (c)-(g): Filtered temperature negpprovided by the compared methods; (h)-(m): Spatialidigton
of the temporally averaged absolute errors for each figenmethod.
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Fig. 11: Temperature time curve obtained in the focal poiftig. 12: Statistical analysis of the absolute errors iniczil
during thein-vivo experiment. (a): The noisy time temperatur®y each filtering method for thia-vivo experiment (a): In the
evolution (red curve). (b): Filtered temperature valuemimied focal point; (b): In the area surrounding the focal point.
using the proposed ANLM-(2D+t) method (blue curve), the

spatial Gaussian filter (green curve) and the temporal ItBrfil

(red curve). The gold standard temperature is illustrate@) ) ) o
and (b) by the black curve. thermometry. While the exclusion of other filtering methods

can be seen as somewhat of a limitation, a criterion had to

be established when selecting the filtering methods to declu

This is due to the fact that there is an entire branch of digita
shown improved performance in all tested scenarios. Homvevienage processing dedicated to denoising methods, prapasin
this was to be expected since, while the IR and the Gaussiast number of algorithms. Thus, it seemed a justified choice
filters exploit either temporal or spatial information, pes- to only select methods that have been previously used in the
tively, the proposed NLM-(2D+t) and ANLM-(2D+t) exploit context of MR-thermometry and allow the analysis of other
simultaneously both sources of information. filtering methods to be the object of future studies.
As specified throughout this work, the spatial Gauss filtel afPerformance comparison between the analyzed filtering-meth
the 1IIR were included in the study due to their prior useds was performed in terms of the temporally averaged
for denoising temperature measurements during real-tilrRe Mabsolute error, which quantifies the accuracy errors in the
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Noise estimation algorithm - Estimation errors In the current work, the simulation and thex-vivo studies
= 138 were carried out at a framerate of 1 Hz, while in ihevivo
g 80 experiment the sampling frequency was 0.15 Hz. Low MRI
g Zg : framerates become problematic especially for pure tenhpora
g 5 filters such as the IIR evaluated in this study. As it can also
7 gg be observed from Fig. 3, 8 and 11, the intrinsic temporal
% 20 lag and the low temporal resolution will lead to considegabl
2 10 errors in the results provided by the IIR. It is expected that
% 10 20 30 20 for low MRI framerates, due to low temporal redundancies,
SNR the proposed NLM-(2D+t) and the ANLM-(2D+t) will also
Fig. 13: Percentage relative noise estimation errors geifse1 suffer a decrease in performance. However, as seen in the
SNR of the magnitude images. results corresponding to the-vivo experiments, the proposed

filtering methods remain reliable even at frequencies asaew

0.15 Hz. This is an important aspect since, for example rakve
(un)filtered temperature measurements. Depending on the pre-clinical MRg-HIFU ablation protocols in moving organs
plication, alternate criteria could be used such as, fompte, involve respiratory gating, resulting in imaging frequierscof
a thermal dose-based metric. However, the main purpose0a? - 0.4 Hz [23], [24].
this study was to propose a novel denoising method for reédlnother important aspect that needs to be taken into consid-
time MR-thermometry in general. Thermal dose becomesegation when exploiting temporal information in the coritex
relevant factor only for applications involving temperas of NLM filters is motion. In theory, when denoising a pixel
above ~ 43°C [20], which, for example, is rarely the casevia the NLM filter, the search for redundancies extends over
for near-field heating surveillance or low-power test-shotthe entire image. In such a case, motion is unlikely to have
Moreover, some approaches dedicated to quantifying tHermaa impact on filter performance. In practice, however, due to
damage rely on detecting a certain temperature threshiblerra computational considerations, a pixel is usually filtereddu
than on thermal dose [21], [22]. In such cases of interest arely on its neighbors within a particular search window (gthi
the precision and accuracy of the temperature measuremesitsiost of the times significantly smaller than the image)size
themselves. Thus, the impact of noise and filtering on oth&mce the latter is usually fixed in space, motion might lead
factors such as the thermal dose is a topic in itself and camsimilar/identical pixels exiting/entering the searcmaow.
be the subject of future studies, dedicated to more specifaturally, this is expected to affect filter performancew-o
applications. ever, during dynamic MR-thermometry, the acquired images
The original version of the NLM relies on the redundancieare often registered/aligned to a reference position irerotal
found in an image in order to improve its SNR. Since usualilow a proper analysis of the temperature evolution in each
the temperature in the focal point is unique, it is natural feixel (which is particularly important in applications wiee
expect the underlying filtration errors to be large. Thiseas$p the thermal dose is of interest). Thus, when applied in such
is reflected very well throughout the majority of the result@ context, motion is not expected to have an impact on the
This drawback is compensated, however, by using informatiperformance of the proposed NLM-(2D+t) and ANLM-(2D+t)
regarding the temperature in focal point from the previousters.
dynamics, as is the case of the NLM-(2D+t) and the ANLMOne of the inputs required by the filtering methods proposed
(2D+t). Additionally, the NLM filter recovers the signal in ain this study is the standard deviation of the noise altetitgg
pixel as the weighted average of pixels with similar neighboimages. The details concerning its estimation can be found
hoods. This will unavoidably introduce blurring effecteat in section II-B3. While the noise estimator provided good
lead to inaccuracies/biasing of the filtered data. The ANLMesults for low-SNR images, the performance of the algorith
(2D+t) circumvents this issue by optimizing the weightsha# t starts to deteriorate as the images become less noisy (see
pixels used for signal recovery in such a way that accuraBjgure 13). We hypothesize that this is due to the fact that
of the filtered temperature is maximized. In the extreme ,cashe anatomical structures start to become more apparent in
when noise levels are low, a pixel might even be left unfilerethe MR-images and the gray-level transitions from one to the
One of the key points in comparing the performance of thaher start being interpreted as noise. However, as it can be
different filtering techniques in the current study was thebserved from Figure 6, the proposed ANLM-(2D+t) filter
construction/selection of a proper gold standard. This isramains reliable even for relative noise estimation erafrs
particularly challenging task during-vivo experiments, since 50%. The curve in Figure 13 indicates that such errors only
obtaining a completely noise-free temperature map is hardiccur for an SNR higher than 30, which for the magnitude
feasible. In the current work temperature maps with oniynages provided by real-time thermometry is rarely the case
improved SNR were adopted as gold standard. Neverthelegssy example, given the MR acquisition sequence employed
this was sufficient to quantify the performance of the pregbos during thein-vivo experiment, a noise standard deviation of
filtering methods and to show the statistical significancthef 1°C in the temperature images would lead, according to
improvement over the existing ones (see Fig. 12 and TableEq. (9) and Eg. (10), to an SNR in the magnitude images
Since temporal data is used in the filtration process, imaggual to 10. This translates to a percentage relative noise
sampling/acquisition frequency becomes an importanteissestimation error ofv 20% (see Fig. 13), value which is within
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acceptable margins, as previously noted. Any value of tieused, the global noise estimation method should be reglac
noise standard deviation in the temperature images higher t with an approach that estimates the noise standard daviatio
1°C will translate to an even lower SNR of the magnituden the MR-magnitude image on a pixel-by-pixel basis.
images, further reducing the uncertainty on the estimadéskn As we have shown, the proposed NLM filtering methods can
distribution. Moreover, for low noise levels<(1°C), while be used on their own to improve the SNR of temperature
the relative estimation errors may be large, the absoluteer maps. However, they also show great potential to be used
will be small. Thus, we anticipate that for a high SNR of then conjunction with other methods previously employed to
magnitude imagesx 30), noise estimation errors of up to oneémprove/enhance PRFS thermometry. For example, as men-
order of magnitude will still have only a minimal impact ortioned earlier in the manuscript, the output of the Kalman
the performance of the filter. predictor-based filter proposed by Rougblal.in [9] is a linear

In the current study, the noise altering the temperaturesmagpmbination of the measured noisy data and a temperature
was assumed to follow a Gaussian distribution. In theomgyolution model, which is obviously noise-free. The resgit
however, the noise distribution is somewhat more complefiitered data, thus, unavoidably contains a certain amoéint o
PRFS temperature maps depend linearly on the differenuaise. We anticipate that the approach can be further eeldanc
between a current phase image and a reference acquired grprcoupling the output of the Kalman filter with the NLM
to heating. Thus, it is safe to assume that the noise disitsibu methods proposed in the current study. Another instance in
in the phase images and the temperature maps follow the saminéch the proposed filters could aid is in the context of the
statistics. The MR phase image is computed as the investadies conducted by Toddt al. in [27]. They propose a
tangent of the ratio between the imaginary and the real artroethod to accelerate MR-image acquisition, with the goal
the complex MR-signal. While the two channels are indeaaf rendering real-time 3D PRFS-thermometry feasible. While
subjected to Gaussian noise [13], the resulting expressi@sults have shown the great potential of the method, some
for the noise distribution in the phase image itself becomémitations were encountered due to noisy measurements af-
fairly complicated. It was shown, however, by Gudbjartssdiecting the precision and accuracy of the resulting termtpeza
and Patz in [25] that in practice, as long as the SNR ofta, which prevented further acceleration of the acdoisit
the magnitude image remains above 3, the noise distributiprocess. We again speculate that used in conjunction with on
in the phase images is approximately Gaussian. For MBfthe NLM filters illustrated in our study, the method could
thermometry acquisition sequences, this is almost alwiags be improved.

case in the heated region, since a sequence that providesmportant aspect that needs to be taken into consideriio

a magnitude image with an SNR beneath 3 is practicalbpmputational latency, i.e. the delay between the actoa ti
unusable to begin with. Thus, our assumption that the noigkthe measurement and the availability of the information.
in the temperature images follows a Gaussian distributson This includes the remaining acquisition time after the pgss
justified. In addition, estimation of the noise standardakeon of the k-space center (equal to half the echo time), the data
in the temperature maps was computed based on the regalhsport duration and the image processing time (which in
of a noise estimation algorithm applied on the magnitudbe current study is the computational time of the ANLM-
image. The algorithm is built on the assumption that th@D+t) filter). Considering the MR-sequence and the hardwar
noise follows a Gaussian distribution. Theoretically, ttigse employed for thein-vivo study, half the echo time together
distribution in the MR magnitude image is Rician, however, with the data transport delay amount 4®22.5 ms. With an
was shown in previous studies that for SNR values highaverage computational time 6300 ms for the ANLM-(2D+t)
than 3, it is well approximated by a Gaussian distributiofilter, the total latency reaches322.5 ms per slice. In order
[25], [26]. Nevertheless, these SNR limits need to be takdéo ensure a smooth temperature monitoring work-flow, this
into consideration when denoising MR-temperature maps walue must lie well beneath the time interval between two MR
the proposed methods, since beyond these boundariesanquisitions. This constraint is fulfilled with a considela
guarantees can be made on the quality of the filtered dat@argin for the application considered in this study, sines r

In case an application involves MR images with a severepiratory gated MR-thermometry usually provides tempegatu
low SNR, alternate methods may have to be considered. updates with a frequency of 0.2 - 0.4 Hz (corresponding
Throughout the experiments performed in the current wortq the respiratory frequency). Note that the ANLM-(2D+t)
the noise distribution in the MR magnitude images (basditter can be even further accelerated by visiting the values
on which the noise in the temperature measurements vadss (see Eq. (4)) in parallel, contrary to the exhaustive
calculated via Eq. (9) and (10)) was assumed to be spatiadlgarch performed in the current work. We anticipate that
invariant. However, this hypothesis is likely to be violhtethis would lead to an average processing time of the filter
in case MR-thermometry is performed using parallel imagirtgeneath 30 ms. Under such conditions the total latency would
techniques such as SENSE or GRAPPA [12]. Depending amount to~52.5 ms, allowing high-frame-rate MR-imaging.
how the MR-signal received by the multi-coil system is reAdditionally, an implementation of the ANLM-(2D+t) on a
combined/reconstructed, the noise standard deviatiorhtmigraphical processing unit is expected to provide even short
end-up varying across the MR-magnitude image. Since themputational times.

noise estimation method employed in our study operates on a

global scale, this may lead to the proposed filtering methods

provide sub-optimal results. Thus, in case parallel adtipiis
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