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An Adaptive Non-Local-Means Filter for Real-Time
MR-Thermometry

Cornel Zachiu, Mario Ries, Chrit Moonen, and Baudouin Denis de Senneville

Abstract—Proton resonance frequency shift-based magnetic
resonance thermometry is a currently used technique for moni-
toring temperature during targeted thermal therapies. However,
in order to provide temperature updates with very short latency
times, fast MR acquisition schemes are usually employed, which
in turn might lead to noisy temperature measurements. This
will, in general, have a direct impact on therapy control and
endpoint detection. In the current study we address this problem
through an improved non-local filtering technique applied on the
temperature images. Compared to previous non-local filtering
methods, the proposed approach takes into account not only
spatial information, but also exploits temporal redundancies. The
method is fully automatic and designed to improve the precision
of the temperature measurements while at the same time main-
taining output accuracy. Additionally, the implementation was
optimized in order to ensure real-time availability of the temper-
ature measurements while having a minimal impact on latency.
The method was validated in three complementary experiments:
a simulation, an ex-vivo and an in-vivo study. Compared to the
original non-local means filter and two other previously employed
temperature filtering methods, the proposed approach shows
considerable improvement in both accuracy and precision of the
filtered data. Together with the low computational demands of the
numerical scheme, the proposed filtering technique shows great
potential for improving temperature measurements during real-
time MR thermometry dedicated to targeted thermal therapies.

Index Terms—Image denoising, MR-thermometry, Real-time
system.

I. I NTRODUCTION

Magnetic resonance (MR) thermometry using proton reso-
nance frequency shifts (PRFS) is one of the currently used
mechanisms for temperature monitoring during thermal abla-
tions of pathologies inside the human body [1]–[3]. However,
such interventions typically require a good spatial coverage
of the heated region and/or temperature updates with a high
temporal resolution [4], [5]. For this reason, fast MR-imaging
sequences are in general necessary, which might lead to an
acquisition having a low signal-to-noise ratio (SNR), resulting
in noisy temperature measurements [6], [7]. This is expected to
have a direct impact on therapy control and endpoint detection,
which might lead to the over or under-treatment of the
pathology. In the current study we address this issue through
a non-local image filtering technique as a means to improve
the SNR of the PRFS-based temperature measurements.
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Image denoising through non-local means (NLM) was orig-
inally proposed by Buadeset al. in the context of SNR
restoration for digital images and video sequences alteredby
white Gaussian noise [8]. A pixel denoised with the NLM
method is basically a weighted average of all the pixels in the
noisy image. The weights themselves are proportional to the
gray-level intensity similarity between the local neighborhoods
of the pixel under study and the pixel contributing to the
average: the more similar the two neighborhoods are, the larger
the weight, hence the greater the impact a pixel has on the
resulting denoised value. Since the most important contribu-
tions in denoising a pixel are provided by pixels that are most
similar to it, the NLM filter is more prone to preserve high-
frequency image content such as edges and/or small structures,
compared to other denoising techniques [8]. However, the
fact that the NLM method is based on spatial similarities
is also the source of one of its major drawbacks. In case a
particular structure/pixel lacks self-similarity in an image, it
might end-up being insufficiently/poorly denoised. Such isthe
case, for example, of the focal point and its surroundings inthe
temperature images acquired during targeted thermal ablations.
The focal point in particular has a high chance of being
unique in the image. In its attempt to denoise the temperature
at the focal point, the NLM filter, due to its functioning
principle, will perform a weighted average between dissimilar
pixels, which might result in a blurred/biased measurement. In
addition, since the filter performs on the quantification of the
image (i.e the color domain) and not on its sampling support
(i.e the pixel domain), the filtering results fully depend onthe
image content. Therefore, contrary to other existing filtering
approaches (such as convolution-based or (in)finite-impulse
response techniques), a theoretical characterization of the
overall filtered results becomes, from a mathematical pointof
view, a challenging task. It is thus difficult to evaluate/estimate
the inherent resulting bias on the filtered data. Although this
consideration is of minor interest for digital photographyor
video sequences, it becomes of major importance in the field
of medical imaging, for which both the accuracy and precision
of the quantitative image information are important.
Previous studies have addressed the issue of filtering PRFS-
thermometry images through so-called predictive methods.
For example, Roujolet al. [9] proposed a temperature filter-
ing/prediction technique relying on the model-based Kalman
filter [10]. The output of the filter was a linear combination
of the measured noisy data and a temperature evolution model
(the bioheat transfer equation (BHTE)). While showing great
filtering capabilities for high-frame-rate PRFS thermometry
(>10 images/s), the performance of the method is expected
to deteriorate as the temperature update frequency decreases.
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Nevertheless, an NLM filter should be seen as complementary
to such an approach rather than a replacement. Depending on
the application, one might out-perform the other.
In this work we propose an improved NLM filtering method
for dynamic PRFS thermometry during targeted thermal thera-
pies. Performance analysis of the method was conducted using
simulations,ex-vivo data acquired during a radiofrequency
(RF) thermal ablation experiment on a calf liver andin-vivo
data acquired on a porcine kidney during an MR-guided high
intensity focused ultrasound (MRg-HIFU) ablative sonication.
The contribution of this study is fourfold:

1) We propose denoising PRFS temperature maps using a
variation of the NLM filter which during the restoration
process takes into account not only spatial information,
but also exploits temporal redundancies. More precisely,
each new incoming temperature map is also filtered
based on information available from previous measure-
ments. This is expected to improve the resulting filtered
data compared to the original approach, especially in
the focal point and its surroundings, since more reliable
temperature information in this area is available in the
temporal dimension rather than in the spatial one.

2) The proposed spatio-temporal NLM filter is further
enhanced by dynamically adapting its filtration strength,
through an optimization process, such that the accuracy
of the resulting temperature measurements is maximized
(i.e. the blur/bias on the filtered temperature is mini-
mized).

3) The performance of the NLM filter can usually be
improved if prior knowledge on the noise distribution
in the image is available [8], [11], [12]. Therefore, in
the current study, we propose a fully automatic method
that estimates ‘on-the-fly’ the amount of noise altering
the temperature measurements.

4) An implementation with real-time capabilities was per-
formed for the proposed methods in order to provide
improved temperature measurements while having a
minimal impact on latency. For a smooth MR temper-
ature monitoring work-flow, the computational time of
the methods has to lie well beneath the time interval
between two temperature measurements.

II. M ETHOD DESCRIPTION

Initially, section II-A provides a brief mathematical descrip-
tion of the basic NLM filter together with the manner in which
it can be applied for denoising MR thermal maps. Section II-B
details the proposed improvements to the NLM filter which are
intended to compensate for the shortcomings of the original
version in the context of dynamic MR-thermometry. The sec-
tion also includes a description of the proposed method which
allows dynamic characterization of the noise distributionin
the temperature measurements. Finally, section II-C describes
the protocol used to evaluate the performance of the proposed
variations to the original NLM filter and that of the noise
characterization method, together with implementation details
of the proposed methods.

A. The non-local means filter applied to thermal maps

The NLM filter proposed in this study used as a starting
point the formulation suggested by Coupé et al. in [11].
Compared to the original version of Buades [8], Coupé et al.
proposed an improved approach in which the filtration strength
is computed in a deterministic way rather than empirically.
While their study focused on 3D diagnostic brain images, the
current technical limitations of MR systems and the computa-
tional time of NLM filters, notorious for their high processing
latency, make real-time 3D PRFS-thermometry paired with a
non-local filtering method a challenging task. For this reason,
the current study was conducted solely for 2D temperature
maps. According to the formulation proposed by Coupé et
al., the filtered temperatureTf (~ri) at pixel ~ri = (xi, yi) is
given by the weighted average of all the noisy measurements
in the temperature imageTm (principle which is graphically
summarized in Fig. 1):

Tf (~ri) =
∑

j∈Ω

w (~ri, ~rj)Tm (~rj) (1)

with:

w (~ri, ~rj) =
1

Zi

e
−

‖Tm(Ni)−Tm(Nj)‖
2

2βσ̂(~ri)
2|Ni| (2)

where Ω is the image grid,Zi is a normalization constant
ensuring that

∑

j w (~ri, ~rj) = 1, |Ni| is the size of a local
neighborhood around~ri, σ̂(~ri) is an estimation of the local
standard deviation of the noise andβ is a constant that needs to
be manually tuned. As mentioned in [11], for Gaussian noise,
if the estimation of̂σ is correct, the value ofβ is theoretically
close to 1. However, the automatic dynamic adjustment ofβ

will be the keystone of the adaptive NLM strategy proposed in
this study. Additionally, note that, while in theory the filtered
value is a weighted average of all the noisy measurements in
the image, in practice the contributing pixels are limited to a
smaller window around the filtered pixel.

Fig. 1: Noisy temperature map acquired during a targeted
thermal therapy upon which the principle of the NLM filter is
illustrated: The denoised value of the pixel at~ri is the weighted
average of the pixels at~rj , with the weights computed based
on the similarity between their neighborhoodsNi andNj . For
simplicity, the process is illustrated only for three values of j,
rather than the entire image domainΩ.
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B. Improvements of the non-local means filter

1) Extension of the NLM filter to dynamic MRI:Instead
of relying solely on spatial information in order to filter
the noisy temperature maps, in this work we propose an
extension of the NLM technique also to include the temporal
dimension. In effect, a filtered pixel is the weighted average
of the noisy measurements not only from the current dynamic,
but also from the previousN dynamics. This results in what
we have called the NLM-(2D+t) filter, having the following
mathematical formulation:

Tf (~ri, t) =

N−1
∑

n=0

∑

j∈Ω

w (~ri, ~rj , t− n)Tm (~rj , t− n) (3)

with:

w (~ri, ~rj , t− n) =
1

Zi

e
−

‖Tm(Ni,t)−Tm(Nj,t−n)‖2

2βσ̂(~ri)
2|Ni| (4)

wheret is the temporal index of the current dynamic.
2) Adaptive NLM strategy:Due to its underlying principle

(i.e. averaging in the color domain), the NLM filter will
unavoidably introduce a certain amount of blurring in the
filtered data, which might lead to inaccurate temperature
measurements. The filtering strength of the NLM is mainly
controlled by the denominator in the exponential defined by
Eq. (2). In particular, theβ factor plays the most important role
in this regard, since the other parameters are usually fixed.For
example, whileβ = 0 implies that no filtering is performed, a
value ofβ equal to1 results in filtering performed assuming
a standard deviation equal toσ. In this work, we propose an
optimization scheme forβ such that for every pixel of each
new incoming temperature map, the filter ensures a maximal
output accuracy.
Filter accuracy was evaluated on a pixel-by-pixel basis by
computing, for each new incoming image, the temperature bias
ǫ (~r) over a temporal window. At instantt, the bias at pixel
of coordinates~r was calculated as follows:

ǫ (~r) =
1

N

N−1
∑

n=0

[Tm(~r, t− n)− Tf (~r, t− n)] (5)

whereTm(~r, t) is the measured (noisy) temperature at location
~r and instantt and Tf (~r) is the filtered output. For ideally
filtered thermal maps,ǫ (~r) is a Gaussian centered random
variable of standard deviation:

σe(~r) =
1

N

√

√

√

√

N−1
∑

n=0

σ̂(~r, t− n)2 (6)

In such an ideal case,95% of the realizations ofǫ (~r) comply
with the following inequality:

|ǫ (~r)| ≤ 2σe(~r) (7)

The value2σe(~r) could thus be taken as an upper bound
for |ǫ (~r)| in order to warrant the output accuracy. For each
temperature map, an exhaustive enumeration ofβ was per-
formed between 0 and 1 with an increment of1

10 . The resulting
filtered data and the associated error mapsǫ (~r) were stored
in a map data structure, for which the entry key was the

corresponding testedβ value. The optimal value(s) forβ (~r)
was(were) obtained for each pixel individually as follows:

β̂ (~r) = argmax
{β,|ǫ(~r)|≤2σe(~r)}

|ǫ (~r)| (8)

The final filtered temperature map was reconstructed on a
pixel-by-pixel basis using the previously stored data corre-
sponding to the values of̂β (~r). Intuitively, the proposed adap-
tive NLM method can be summarized as follows: Search for
the value ofβ (~r) which leads to a maximal amount of filtering
(denoted by the “argmax” in Eq. (8)), while minimizing
accuracy losses (imposed by the constraint illustrated in Eq.
(7)). For the remainder of the manuscript we will refer to
this filter as the adaptive NLM-(2D+t), abbreviated as ANLM-
(2D+t).

3) Dynamic characterization of the temperature noise dis-
tribution: As illustrated by Eq. (2), the NLM filter requires
prior knowledge of the noise distribution in the image. Please
note that for a zero-mean Gaussian noise, as assumed in the
current study, the noise distribution is fully characterized by its
standard deviation. For this reason, throughout this manuscript
we will use the terms of noise distribution and standard devia-
tion interchangeably. A number of methods have already been
proposed to estimate the noise distribution directly from the
image itself. However, for the particular case of temperature
images, the estimation process might be hampered by several
factors such as pixels with low magnitude/signal or phase
artifacts due to susceptibility/temporal drift of the magnetic
field [13]–[15]. Since the magnitude component of the MR-
signal is less prone to the such artifacts, we decided to use
the latter to estimate the noise distribution in the temperature
maps. This was achieved by first estimating the standard
deviation of the noise in the phase image by making use of
the formula proposed by Conturo in [13]:

σ(φ(~r)) =
σ(M)

|M(~r)| (9)

where φ and M are the phase and the magnitude of the
complex MR-signal and~r is the spatial location. Based on the
noise distribution estimated in the phase image, the standard
deviation of the noise in the temperature maps was then
computed based on the following relationship between phase
and temperature:

σ(T (~r)) =
√
2
σ(φ(~r))

k
(10)

wherek is the PRFS-thermometry constant [3].
The standard deviation of the noise in the magnitude image can
be estimated through several methods, depending on whether
the noise is assumed to be homogenous [11], [16] or spatially
variant [12]. In the current study, since the noise was assumed
to be homogeneously distributed over the field of view, the
standard deviation of the noise in the magnitude image was
estimated via the wavelet-based approach proposed in [16]:

σest(M) =
median|yi|
0.6745

(11)

where σest(M) is the estimated value of the noise standard
deviation in the magnitude image andyi are the high frequency
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coefficients of the first level wavelet decomposition of the
image. The method was chosen due to the good compromise
between computational time versus quality of the estimation it
has shown during our experiments. Note that since the standard
deviation of the noise in the magnitude image is not expected
to vary significantly over time, the estimation in Eq. (11)
can be carried-out only for one image in the thermometry
sequence.
For the rest of the manuscript, unless specified otherwise,σ

refers to the standard deviation of the noise in the temperature
maps.

C. Experimental setup

1) Performance assessment of the proposed filtering meth-
ods: The following filtering techniques were compared in the
context of dynamic MR-thermometry during a targeted thermal
therapy:

• An infinite-impulse-response (IIR) temporal low-pass
Cauer filter of the 5th order. The pass-band and stop-band
were adjusted to result in an overall temporal resolution
divided by a factor 2.

• A 2D spatial Gaussian filter (kernel size equal to3× 3,
σ=0.5).

• The 2D spatial NLM filter proposed by Coupé et al. in
[11]. For the remainder of the manuscript we will refer
to this filter as the NLM-2D.

• The proposed NLM-(2D+t) filter.
• The proposed ANLM-(2D+t) filter.

The first two methods were selected as they represent two
previously employed strategies for real-time dynamic MRI-
thermometry [17]–[19]. It is expected that the two will provide
a similar SNR improvement by a factor

√
2, since each of

them imply a reduction of the resolution by a factor 2, one in
the temporal and the other in the spatial domain. The other
3 methods have the purpose to evidence the improvements
provided by the proposed NLM filtering methods compared
to the existing one. For all the NLM filters, the patch sizes
|Ni| and |Nj | were chosen equal to 25 (5× 5). Additionally,
each pixel was filtered using the contribution of the noisy
measurements situated within a7× 7 encompassing window.
The size of the latter and also the patch size were chosen as
to provide the best compromise between quality of the filtered
data and computational time. Following the same reasoning,
the temporal windowN (see Eq. (3)) was chosen equal to 6.
Since the main concern was output accuracy, the performance
of the tested filters was assessed quantitatively by evaluating
the time averaged absolute difference between the output of
the filters and a gold standard. The construction of the latter
will be further detailed in future sections. The performance
assessment was conducted in two different regions:

• In a region of interest covering7× 7 pixels, centered on
the focal point position, over the entire duration of the
thermal energy deposition. In this manner, the assessment
is performed within an area excluding background pixels
which are not of great interest.

• At the focal point itself (i.e in a single pixel located at
the focal point position).

The performance of the filters was evaluated in three comple-
mentary studies:

a) Simulation study:Temperature maps resulting from a
HIFU energy delivery were simulated using the BHTE model.
The simulation extended over a duration of 100 s and 250 W
of acoustic power was applied in a single point during the
[10 s; 60 s] time interval. The spatial and temporal evolution
of the temperature resulting from the acoustic energy delivery
was given by the solution of the BHTE, solved using finite
elements on a1×1mm2 lattice and with a temporal resolution
of 1 s. The simulated temperature maps were subsequently
corrupted by additive white Gaussian noise with increasing
standard deviation. The latter was varied between 0◦C and 4◦C
with a regular sampling step of 0.5◦C. The noisy temperature
maps were then filtered using the approaches enumerated in
section II-C1 and their performance was assessed based on the
metric described therein. The gold standard was the simulated,
unaltered temperature maps. Note that the assessment was
averaged over 10 experiments with different realizations of
noise, in order to reduce random impact on the overall results.

b) Ex-vivo study: A heating ex-vivo experiment was
conducted on a calf liver. The heating itself was the result
of delivering 20 W of RF power via a bipolar electrode, for
a duration of∼50 s. The energy delivery was carried-out
under MR-guidance with MR-thermometry being performed
before, during and after heating the tissue. The MR-acquisition
was performed via a dual-shot gradient recalled echo-planar
imaging (EPI) sequence with TE = 13 ms, TR = 70 ms, Nslices

= 1, image size 128×128 and a 1.5×1.5×5 mm3 voxel size,
resulting in an image being acquired every 140 ms (∼7.15
Hz). The intense and quick heating induced by the RF energy
delivery lead to notable local gray-level intensity drops in the
magnitude image in the close vicinity of the heated region.
The purpose of this particular experiment was to analyze the
impact of a noise distribution in the temperature maps with
a spatio-temporally varying standard deviation. When heating
tissues, relaxation times get longer and the magnitude of the
MR-signal changes. According to Eq. (9) and (10) this leads
to local spatio-temporal variations in the standard deviation
of the noise in the MR-temperature maps. This effect might
end-up having an impact on the quality of the filtered data
provided by the proposed methods.
A high-SNR dataset was derived from the original sequence
by a centered sliding temporal averaging applied on both
the magnitude and the phase components of the MR signal,
followed by a temporal subsampling, such that the output
data had an equivalent temporal frequency of∼1 Hz. This
operation lead to an average SNR of the magnitude image of
more than 40 (SNR computation was restricted to the liver).
The MR temperature maps were then recalculated based on
the averaged phase images and set as a goldstandard for the
current experiment. In order to evaluate the performance of
the compared denoising methods in this particular experiment,
a noisy dataset was constructed based on the temporally
averaged magnitude and phase images. The latter were used to
recalculate the real and imaginary channels of the MR signal,
upon which a Gaussian noise with a standard deviation of
10% of the maximum intensity in the magnitude image was
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then added. The noisy real and imaginary parts were then re-
combined to compute the noisy magnitude and phase images,
after which a set of noisy temperature maps was constructed,
based on the noisy phase images. The denoising methods
were then applied on the resulting temperature maps and the
filtered data was compared in terms of accuracy against the
goldstandard.

c) In-vivo study:An MRg-HIFU shot was performedin-
vivo on a porcine kidney, which consisted in the delivery
of 250 W of acoustic power over a duration of 50 s. The
animal was under general anesthesia, with the targeted area
only exhibiting minimal motion. Thus no correction of motion
related temperature errors was required. The MR-thermometry
acquisition protocol consisted of a multi-slice image, with
each slice being acquired via aslice-selectivesingle-shot echo
planar imaging sequence employing the following parameters:
TE=25 ms,TR=1143 ms, flip angle=35◦, FOV=142.5× 285
mm2, bandwidthread = 2078 Hz and voxel size=3×3×6mm3.
Each dynamic included a total of 9 coronal slices, symmet-
rically distributed around the focal spot. This would ensure
the coverage of the entire kidney and part of the near-field,
in order to detect any secondary heating spots. A total of 175
dynamics were acquired over a duration of 200 s, providing
temperature information during pre-sonication, the energy de-
livery itself and respectively post-sonication. The temperature
measurements provided by the middle slice (which included
the primary focal spot) were filtered using the approaches
enumerated in section II-C1 and their performances were
compared based on the metric described therein.
The gold standard was obtained as follows: A pixelwise
temporal centered sliding average was performed on the
temperature data provided by the middle slice with a span
extending over six temperature maps followed by a 6-fold
temporal subsampling. This increased the SNR by a factor
2.45 and resulted in a dynamic sequence with a temporal
resolution equal to0.15 Hz. Note that the original noisy
image sequence was also temporally subsampled such that it’s
frequency matches the one of the gold standard. Subsequently,
a Mann-Whitney test was carried out in order to study whether
the differences between the noisy and the filtered data are
statistically significant. A significance threshold ofp = 0.05
was used.
The animal experiment was conducted in agreement with the
European law on animal experimentation and in compliance
with the institution’s rules for animal care and use.

2) Performance analysis of the noise estimation algorithm:
A high-SNR image was initially computed by temporally aver-
aging all the corresponding magnitude images acquired with
the protocol described in section II-C1c. After normalizing
the resulting image to the[0, 1] interval, increasing levels
of Gaussian noise were added to it, progressively lowering
its SNR. The standard deviation of the added noise was
varied between0.005 and 0.06 with an increment of0.005.
Note that, according to Eq. (9) and (10), this leads to a
standard deviation in the temperature maps that varies between
∼ 0.5◦C and ∼ 4.5◦C. For each noise level, the standard
deviation was then estimated in the magnitude images using
the algorithm specified by section II-B3. The estimated value

was then compared to the true standard deviation in terms of
the percentage relative error (denoted byδσ):

δσ = 100×
∣

∣

∣

∣

1− σ̂

σ

∣

∣

∣

∣

(12)

whereσ̂ andσ are the estimated and respectively the true value
of the noise standard deviation added to the magnitude images.
Subsequently, the percentage relative estimation errors versus
the SNR of the image was analyzed. Note that the estimation
errors were averaged over 1000 realizations of each noise
level. Note that assessment and processing was performed
exclusively for the slice containing the primary focal spot.

3) Implementation:A C++ multi-threaded implementation
(8 threads) was performed for all filtering methods enumerated
in section II-C1 on an Intel 3.2 GHz i7 workstation (8 cores)
with 16 GB of RAM. In the scope of this study, the filtering
process was restricted to a region of interest around the focal
point. The size of the region was chosen in accordance with
the spatial extent of the heating. This was decided both for
computational time considerations and, in the scope of this
study, for the lack of interest in the pixels outside the heated
area.

III. R ESULTS

Section III-A illustrates the performance during the sim-
ulation study (see section II-C1a for details) of the filtering
methods enumerated in II-C1 including: an example of the
spatial distribution of the accuracy errors introduced by each
of the methods, the performance of the filters for increasing
noise levels and the sensitivity of the proposed ANLM-
(2D+t) method to errors of the noise estimation algorithm.
Section III-B displays the results obtained during theex-vivo
experiment described in section II-C1b. Of interest here were
the accuracy errors introduced by the compared methods in the
presence of heating-induced spatio-temporal SNR variations
in the MR magnitude images. Finally, section III-C illustrates
the performance of the filters for data obtained during the
in-vivo experiment (detailed in section II-C1c) together with
an assessment of the noise estimation algorithm (see sections
II-B3 and II-C2) and the computational requirements of the
proposed methods.

A. Simulation study

1) Performance assessment of the proposed NLM-(2D+t)
and ANLM-(2D+t) filtering methods:Fig. 2 illustrates the
temperature bias introduced by the compared filtering methods
(enumerated in section II-C1), aiming to reflect the accuracy
of the resulting filtered data. Fig. 2(a) shows the temperature
spatial distribution 40 s into the heating simulation detailed
in section II-C1a. This played the role of gold standard in
comparing the performance of the filtering methods. Fig.
2(b) displays the gold standard temperature map altered by a
Gaussian noise with a2◦C standard deviation, while Fig. 2(c)-
(g) display the filtered temperature measurements provided
by each approach. The resulting temporally averaged absolute
errors are illustrated in Fig.2(h)-(m). From a visual inspection
it already becomes apparent that, in the focal point and its
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close proximity, the NLM-(2D+t) and respectively the ANLM-
(2D+t) methods provide the lowest errors, observation that
will be further confirmed by subsequent results. Fig. 3 and
4 compare in terms of accuracy the proposed ANLM-(2D+t)
against the IIR and respectively the Gaussian filter. Fig. 3
in particular illustrates the temperature evolution in thefocal
point over the duration of the simulation. Fig. 3(a) traces the
gold standard temperature evolution in the focal point (black
curve) overlapped with its noisy version (red curve). The
noise standard deviation in this experiment was set to3◦C.
The filtered data together with the gold standard is displayed
in Fig. 3(b). It can be observed that the intrinsic temporal
lag of the IIR filter, which becomes evident especially in
the proximity of the starting and end point of the energy
delivery, leads to a consistent amount of bias in the filtered
data. A consistent amount of bias can also be observed for the
Gaussian filter, which by construction has a blurring effecton
the filtered measurements. A visual analysis of the traces in
Fig. 3(b) would indicate that the ANLM-(2D+t) filter (blue
curve) provides the most accurate results. This is confirmed
in Fig. 4, where the mean absolute error of the filtered
temperature versus the simulated noise standard deviationis
plotted. Note that analysis was performed for the same filters
as in Fig. 3, but separately for the focal point (Fig. 4(a)) and
the area surrounding the focal point (Fig. 4(b)). While the IIR
(red line) and the spatial Gaussian (green line) filters manifest
similar tendencies in terms of accuracy of the filtered data,
the ANLM-(2D+t) outperforms both for all the analyzed noise
levels, especially in the focus point for low noise levels. The
black line corresponds to the mean absolute error of the noisy
data. As a side-note, the comparable performance of the IIR
and the spatial Gaussian filter can be explained by their similar
approach in improving the SNR of the noisy image. They both
reduce the information resolution by a factor of 2 (see section
II-C1), one however operates in the temporal while the other
in the spatial domain, in order to improve the SNR of the
image.
Fig. 5 shows the accuracy of the temperature filtered using

the ANLM-(2D+t) (blue line) compared to the original NLM
(red line) and to the non-adaptive NLM-(2D+t) (green line).
The analysis was conducted for several noise levels in both
the focal point (Fig. 5(a)) and the area around the focal
point (Fig. 5(b)). Note that the blue curves corresponding to
the ANLM-(2D+t) filter are identically the same as the ones
as in Fig. 4(a) and 4(b) respectively. Except for very low
noise levels (< 0.5◦C), where all three filters have a similar
performance, the original NLM is constantly outperformed by
the other two filters. As already anticipated from Fig. 2(l)
and 2(m), the NLM-(2D+t) and the ANLM-(2D+t) have a
similar performance, particularly if the errors are averaged
over the area surrounding the focal point or if the noise levels
are low. However, for a noise standard deviation larger than
2◦C, the ANLM-(2D+t) clearly outperforms the NLM-(2D+t)
when analysis is conducted in the focal point, especially inthe
rightmost part of the graph in Fig. 5(a). Note that the black line
corresponds to the errors in the noisy data. A noteworthy fact
that can be observed from both Fig. 4 and 5 is that the ANLM-
(2D+t) filter does not yield higher errors than the noisy data

for any of the analyzed noise levels. The rest of the filtering
methods, on the other hand, at least in some particular cases,
actually end-up altering the temperature measurements even
further compared to when no filtering is performed.

2) Robustness of the ANLM-(2D+t) to calibration errors:
As illustrated by Eq. (2) and (4), the NLM, NLM-(2D+t) and
the ANLM-(2D+t) filters require the noise standard deviation
as an input parameter, which has to be estimated (see section
II-B3). Fig. 6 displays for the ANLM-(2D+t) in particular its
sensitivity to noise estimation errors. The figure illustrates
the mean absolute error of the filtered temperature as a
function of the percentage relative estimation error of thenoise
standard deviation. The analysis was conducted in both the
focal point (red curve) and the area around the focal point
(blue curve) for temperature maps altered by a noise with a
standard deviation of1◦C. It can be observed that an under-
estimation of the noise, while the accuracy of the filtered data
is still improved, precision is being hampered, indicated by
the fact that the difference between the filtered and the noisy
temperature becomes less evident. Note, however, that the filter
still remains reliable for noise estimation errors of up to50%
in either direction.

B. Ex-vivo study

Fig. 7 displays the performance of the analyzed filtering
methods following the MR-guidedex-vivoRF thermal ablation
study conducted on a calf liver (described in II-C1b). Fig.
7(a) in particular, illustrates one of the temporally averaged
high-SNR MR magnitude images, calculated prior to starting
the energy delivery (see section II-C1b for details). For better
visibility, the treated area (identified by the red dashed square)
has been magnified, while at the same time indicating through
blue arrows several pixels that were of interest during the
ex-vivo study. Points (1) and (2), for example, correspond
to the approximate position of the tips of the RF-emitting
needles, while points (3) and (4) were selected such that
the former would be in close proximity to one of the focal
spots while the latter is completely outside the heated area.
The precise purpose of points (3) and (4) will be detailed in
later paragraphs. Fig. 7(b) and 7(c) display the gold standard
temperature distribution and its noisy version, 80 s into the
experiment. Fig. 7(d)-7(h) showcase the effect each of the
filtering methods have on the noisy temperature map from
Fig. 7(c), while Fig.7(i)-7(n) illustrate the bias introduced
in the filtered data by each of the approaches. Consistent
with the observations made during the simulation study is
the fact that both the NLM-(2D+t) and the ANLM-(2D+t)
outperform the other filtering methods, with the ANLM-(2D+t)
performing slightly better than the NLM-(2D+t), especially in
the proximity of the focal spots. This is further confirmed
by Fig. 8 where the temperature evolution during theex-vivo
experiment is traced for point (3) in the absence (Fig. 8(a))
and in the presence (Fig. 8(b)) of a filtering method. It can be
observed from the latter that compared to the ANLM-(2D+t),
the Gaussian and the IIR filter have indeed a tendency to
introduce additional bias in the filtered data.
What sets theex-vivoexperiment apart from the simulation



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. ..., MAY 2016 7

Goldstandard

 

 

−5

0

5

10

15

20

(a)

No filtering

 

 

−5

0

5

10

15

20

(b)

Temporal IIR filter

 

 

−5

0

5

10

15

20

(c)

Spatial Gaussian filter

 

 

−5

0

5

10

15

20

(d)

NLM−2D

 

 

−5

0

5

10

15

20

(e)

NLM−(2D+t)

 

 

−5

0

5

10

15

20

(f)

ANLM−(2D+t)

 

 

−5

0

5

10

15

20

(g)

No filtering

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(h)

Temporal IIR filter

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(i)

Spatial Gaussian filter

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(j)

NLM−2D

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(k)

NLM−(2D+t)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(l)

ANLM−(2D+t)

 

 

0

0.5

1

1.5

2

2.5

3

3.5

(m)

Fig. 2: Example of thermometry results obtained during the simulation study. (a): The gold standard noise-free temperature
map; (b): Corresponding noisy map (standard deviation2◦C); (c)-(g): Filtered temperature maps; (h)-(m): Spatial distribution
of the temporally averaged absolute errors for each filtering method.
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Fig. 3: Temperature time curve obtained in a single pixel
located at the focal point. (a): The noisy time temperature
evolution (red curve, standard deviation3◦C). (b): Filtered
temperature values obtained using the proposed ANLM(2D+t)
method (blue curve), the spatial Gaussian filter (green curve)
and the temporal IIR filter (red curve). The gold standard
temperature illustrated in (a) and (b) by the black curve.

study is the fact that the temperature maps in theex-vivo
experiment are altered by a noise with a spatially variant
standard deviation, which was constant during the simulation.
The variation of the noise standard deviation stems mainly
from the signal drops induced in the MR magnitude images
by the heating process, factor which, for the sake of simplicity,
was not taken into account during the simulation study. The
local signal drops lead to an increase in the temperature
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Fig. 4: Accuracy of the ANLM-(2D+t) filter (blue line) versus
the IIR (red line) and respectively spatial Gaussian (greenline)
filter. The two figures illustrate the mean absolute errors asa
function of the simulated noise standard deviation (a): In the
focal point; (b): In the surrounding area of the focal point.

standard deviation according to Eq. (9) and (10). Fig. 9
displays the temporal evolution of the gray-level intensity
at points (3) and (4) respectively. It can be noted that, as
the temperature at point (3) increases, the signal intensity
decreases, while at point (4), which was chosen outside the
heated area, the signal intensity remains more or less constant.
Nevertheless, even in such conditions the proposed filtering
methods outperform the existing ones, as shown in Fig. 7 and
8.
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Fig. 5: Accuracy of the ANLM-(2D+t) filter (blue line) versus
the original NLM (red line) and the NLM-(2D+t) (green line)
filter. The mean absolute temperature errors are reported for
various noise levels (a): In the focal point; (b): In the area
surrounding the focal point.
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Fig. 6: Robustness of the proposed ANLM-(2D+t) filter against
potential calibration errors for a nominal noise standard devia-
tion of 1◦C. The mean absolute temperature errors are reported
for various relative noise estimation errors.

C. In-vivo study

1) Performance assessment of the proposed NLM-(2D+t)
and ANLM-(2D+t) filtering methods:Fig. 10 illustrates the ac-
curacy of each of the compared filtering methods (see section
II-C1) when applied on thein-vivo dataset. Details concerning
the in-vivo experiment can be found in section II-C1c. Fig.
10(a) and 10(b) correspond to the gold standard temperature
map and its noisy version, respectively, after 50 s of ultrasonic
energy delivery. Fig. 10(c)-(g) display the filtered temperature
map using each of the compared methods. The accuracy of the
filters is shown in Fig. 10(h)-(m), where the spatial distribution
of the temporally averaged absolute errors is illustrated.Just
as in the simulation and theex-vivo experiments, a visual
analysis of the results indicates that the NLM-(2D+t) and the
ANLM-(2D+t) outperform the other approaches. Fig. 11(a)
and 11(b) illustrate the temperature evolution in the focalpoint
over the duration of thein-vivo experiment. The black and
the red curves in Fig. 11(a) correspond to the gold standard
and to the noisy temperature measurements, respectively. The
filtered values are displayed in Fig. 11(b), where the red, green
and blue curves correspond to the IIR, spatial Gaussian and
the ANLM-(2D+t) filter, respectively. The black curve again
represents the gold standard temperature. Similar to the results
provided by the simulation and theex-vivo experiment, the
temporal lag of the IIR filter introduces consistent accuracy

errors in the filtered data. The spatial Gaussian also biasesthe
temperature measurements due to its intrinsic blurring effect.
The ANLM-(2D+t) seems to provide the highest fidelity to the
gold standard data.

2) Statistical analysis of the filtering errors:The pixel-
wise errors illustrated in Fig. 10(h)-(m) were all pooled in
a set, separately for each filtering method, and displayed as
boxplots in Fig. 12. The analysis was performed both in
the focal point (Fig. 12(a)) and in a7 × 7 area around the
focal point (Fig. 12(b)). It can be observed that, compared
to the other filters, the ANLM-(2D+t) and the NLM-(2D+t)
provide the best performance in terms of both accuracy and
precision. A marginal improvement in the focal point can
be observed for the ANLM-(2D+t) over the NLM-(2D+t).
Table I reports thep-values provided by a Mann-Whitney
test applied on the data illustrated in Fig. 12. The test
indicates whether the improvement or alteration induced by
the filters, compared to the case when no filtering is applied,
is statistically significant or not. The null hypothesis wasthat
there are no statistically significant differences betweenthe
errors found in the noisy and respectively the filtered data.
When analysis is conducted in the area around the focal point
(right column), of interest are the entries associated to the
NLM-(2D+t) and the ANLM-(2D+t) filters. Theirp-values are
beneath the threshold, confirming that the improvement due to
filtration is statistically significant. In the focal point itself (left
column), however, the differences between the aforementioned
filters and the noisy data are not statistically significant.For the
IIR and spatial Gaussian, even though thep-value confirms the
alternate hypothesis, it is obvious from Fig. 12 that, at least in
the focal point, they actually end up deteriorating rather than
improving the data.

Filtering method p-value at the p-value in the
focal point heated region

Temporal IIR filter 0.0155 4.9× 10
−5

Spatial Gaussian filter 2.2× 10
−6

3.7× 10
−12

NLM-2D 0.26 1.3× 10
−18

NLM-(2D+t) 0.8 9.8× 10
−6

ANLM-(2D+t) 0.3 2.7× 10
−5

TABLE I: Statistical significance of the temperature error
distributions obtained for each filtering method tested during
the in-vivo experiment, as compared to the scenario when no
filtering is performed.

3) Computational performance of the ANLM-(2D+t) algo-
rithm: In terms of computational performance, our multi-
threaded C++ implementation of the ANLM-(2D+t) filter
required 311±10 ms per image, with processing times ranging
from 297 ms to a maximum of 385 ms. Note that the reported
values were obtained following a total of 1000 executions of
the algorithm.

4) Assessment of the noise estimation algorithm:Figure 13
illustrates the percentage relative noise estimation errors versus
the SNR of the noisy magnitude images. Details concerning
the images and the computation of the noise estimation errors
can be found in section II-C2. Noteworthy is the fact that as
the SNR of the image increases, the noise estimation errors
also have a tendency to increase, exceeding50% for an SNR
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Fig. 7: Performance of the analyzed filtering methods following the ex-vivostudy. (a): High SNR MR magnitude computed
prior to the energy delivery together with a magnification ofthe treated area (red dashed square) upon which several points
of interest are indicated by blue arrows; (b), (c): The gold standard temperature map together with its noisy version; (d)-(h):
Filtered temperature maps; (i)-(n): Spatial distributionof the temporally averaged absolute errors for each filtering method.

(a) (b)

Fig. 8: Temperature time curve at point (3) from Fig. 7(a). (a):
The noisy time temperature evolution (red curve). (b): Filtered
temperature values obtained using the proposed ANLM(2D+t)
method (blue curve), the spatial Gaussian filter (green curve)
and the temporal IIR filter (red curve), respectively. The gold
standard temperature illustrated in (a) and (b) by the black
curve.

of 30.
Concerning computational demands, the algorithm requiredon
average 16 ms per image, evaluated from a total of over 10000
estimations.

Fig. 9: The effects of heating on the magnitude of the MR
signal during theex-vivo experiment: Temporal evolution of
the signal intensity at points (3) (red curve) and (4) (blue
curve) from Fig. 7(a).

IV. D ISCUSSION

This study proposes an improved non-local filtering method
for real-time dynamic PRFS thermometry. The technique was
designed using the NLM formulation proposed by Coupé et
al. in [11] as a starting point, in addition to which, temporal
information was also exploited in order to improve SNR.
Moreover, an adaptation technique is proposed such that, the
amount of filtration is dynamically optimized as to maximize
output accuracy. Compared to previously employed filtration
methods for real-time thermometry, such as the IIR [17] and
the spatial Gaussian [18], [19], the proposed technique has
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Fig. 10: Accuracy of the compared filtering methods on thein-vivo porcine dataset. (a): The gold standard temperature map; (b):
Noisy temperature map; (c)-(g): Filtered temperature mapsas provided by the compared methods; (h)-(m): Spatial distribution
of the temporally averaged absolute errors for each filtering method.
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Fig. 11: Temperature time curve obtained in the focal point
during thein-vivo experiment. (a): The noisy time temperature
evolution (red curve). (b): Filtered temperature values obtained
using the proposed ANLM-(2D+t) method (blue curve), the
spatial Gaussian filter (green curve) and the temporal IIR filter
(red curve). The gold standard temperature is illustrated in (a)
and (b) by the black curve.

shown improved performance in all tested scenarios. However,
this was to be expected since, while the IIR and the Gaussian
filters exploit either temporal or spatial information, respec-
tively, the proposed NLM-(2D+t) and ANLM-(2D+t) exploit
simultaneously both sources of information.
As specified throughout this work, the spatial Gauss filter and
the IIR were included in the study due to their prior use
for denoising temperature measurements during real-time MR-
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Fig. 12: Statistical analysis of the absolute errors introduced
by each filtering method for thein-vivo experiment (a): In the
focal point; (b): In the area surrounding the focal point.

thermometry. While the exclusion of other filtering methods
can be seen as somewhat of a limitation, a criterion had to
be established when selecting the filtering methods to include.
This is due to the fact that there is an entire branch of digital
image processing dedicated to denoising methods, proposing a
vast number of algorithms. Thus, it seemed a justified choice
to only select methods that have been previously used in the
context of MR-thermometry and allow the analysis of other
filtering methods to be the object of future studies.
Performance comparison between the analyzed filtering meth-
ods was performed in terms of the temporally averaged
absolute error, which quantifies the accuracy errors in the
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Fig. 13: Percentage relative noise estimation errors versus the
SNR of the magnitude images.

(un)filtered temperature measurements. Depending on the ap-
plication, alternate criteria could be used such as, for example,
a thermal dose-based metric. However, the main purpose of
this study was to propose a novel denoising method for real-
time MR-thermometry in general. Thermal dose becomes a
relevant factor only for applications involving temperatures
above∼ 43◦C [20], which, for example, is rarely the case
for near-field heating surveillance or low-power test-shots.
Moreover, some approaches dedicated to quantifying thermal
damage rely on detecting a certain temperature threshold rather
than on thermal dose [21], [22]. In such cases of interest are
the precision and accuracy of the temperature measurements
themselves. Thus, the impact of noise and filtering on other
factors such as the thermal dose is a topic in itself and can
be the subject of future studies, dedicated to more specific
applications.
The original version of the NLM relies on the redundancies
found in an image in order to improve its SNR. Since usually
the temperature in the focal point is unique, it is natural to
expect the underlying filtration errors to be large. This aspect
is reflected very well throughout the majority of the results.
This drawback is compensated, however, by using information
regarding the temperature in focal point from the previous
dynamics, as is the case of the NLM-(2D+t) and the ANLM-
(2D+t). Additionally, the NLM filter recovers the signal in a
pixel as the weighted average of pixels with similar neighbor-
hoods. This will unavoidably introduce blurring effects, that
lead to inaccuracies/biasing of the filtered data. The ANLM-
(2D+t) circumvents this issue by optimizing the weights of the
pixels used for signal recovery in such a way that accuracy
of the filtered temperature is maximized. In the extreme case,
when noise levels are low, a pixel might even be left unfiltered.
One of the key points in comparing the performance of the
different filtering techniques in the current study was the
construction/selection of a proper gold standard. This is a
particularly challenging task duringin-vivo experiments, since
obtaining a completely noise-free temperature map is hardly
feasible. In the current work temperature maps with only
improved SNR were adopted as gold standard. Nevertheless,
this was sufficient to quantify the performance of the proposed
filtering methods and to show the statistical significance ofthe
improvement over the existing ones (see Fig. 12 and Table I).
Since temporal data is used in the filtration process, image
sampling/acquisition frequency becomes an important issue.

In the current work, the simulation and theex-vivo studies
were carried out at a framerate of 1 Hz, while in thein-vivo
experiment the sampling frequency was 0.15 Hz. Low MRI
framerates become problematic especially for pure temporal
filters such as the IIR evaluated in this study. As it can also
be observed from Fig. 3, 8 and 11, the intrinsic temporal
lag and the low temporal resolution will lead to considerable
errors in the results provided by the IIR. It is expected that
for low MRI framerates, due to low temporal redundancies,
the proposed NLM-(2D+t) and the ANLM-(2D+t) will also
suffer a decrease in performance. However, as seen in the
results corresponding to thein-vivo experiments, the proposed
filtering methods remain reliable even at frequencies as lowas
0.15 Hz. This is an important aspect since, for example, several
pre-clinical MRg-HIFU ablation protocols in moving organs
involve respiratory gating, resulting in imaging frequencies of
0.2 - 0.4 Hz [23], [24].
Another important aspect that needs to be taken into consid-
eration when exploiting temporal information in the context
of NLM filters is motion. In theory, when denoising a pixel
via the NLM filter, the search for redundancies extends over
the entire image. In such a case, motion is unlikely to have
an impact on filter performance. In practice, however, due to
computational considerations, a pixel is usually filtered based
only on its neighbors within a particular search window (which
is most of the times significantly smaller than the image size).
Since the latter is usually fixed in space, motion might lead
to similar/identical pixels exiting/entering the search window.
Naturally, this is expected to affect filter performance. How-
ever, during dynamic MR-thermometry, the acquired images
are often registered/aligned to a reference position in order to
allow a proper analysis of the temperature evolution in each
pixel (which is particularly important in applications where
the thermal dose is of interest). Thus, when applied in such
a context, motion is not expected to have an impact on the
performance of the proposed NLM-(2D+t) and ANLM-(2D+t)
filters.
One of the inputs required by the filtering methods proposed
in this study is the standard deviation of the noise alteringthe
images. The details concerning its estimation can be found
in section II-B3. While the noise estimator provided good
results for low-SNR images, the performance of the algorithm
starts to deteriorate as the images become less noisy (see
Figure 13). We hypothesize that this is due to the fact that
the anatomical structures start to become more apparent in
the MR-images and the gray-level transitions from one to the
other start being interpreted as noise. However, as it can be
observed from Figure 6, the proposed ANLM-(2D+t) filter
remains reliable even for relative noise estimation errorsof
50%. The curve in Figure 13 indicates that such errors only
occur for an SNR higher than 30, which for the magnitude
images provided by real-time thermometry is rarely the case.
For example, given the MR acquisition sequence employed
during the in-vivo experiment, a noise standard deviation of
1◦C in the temperature images would lead, according to
Eq. (9) and Eq. (10), to an SNR in the magnitude images
equal to 10. This translates to a percentage relative noise
estimation error of∼ 20% (see Fig. 13), value which is within
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acceptable margins, as previously noted. Any value of the
noise standard deviation in the temperature images higher than
1◦C will translate to an even lower SNR of the magnitude
images, further reducing the uncertainty on the estimated noise
distribution. Moreover, for low noise levels (< 1◦C), while
the relative estimation errors may be large, the absolute errors
will be small. Thus, we anticipate that for a high SNR of the
magnitude images (> 30), noise estimation errors of up to one
order of magnitude will still have only a minimal impact on
the performance of the filter.
In the current study, the noise altering the temperature maps
was assumed to follow a Gaussian distribution. In theory,
however, the noise distribution is somewhat more complex.
PRFS temperature maps depend linearly on the difference
between a current phase image and a reference acquired prior
to heating. Thus, it is safe to assume that the noise distribution
in the phase images and the temperature maps follow the same
statistics. The MR phase image is computed as the inverse
tangent of the ratio between the imaginary and the real part of
the complex MR-signal. While the two channels are indeed
subjected to Gaussian noise [13], the resulting expression
for the noise distribution in the phase image itself becomes
fairly complicated. It was shown, however, by Gudbjartsson
and Patz in [25] that in practice, as long as the SNR of
the magnitude image remains above 3, the noise distribution
in the phase images is approximately Gaussian. For MR-
thermometry acquisition sequences, this is almost always the
case in the heated region, since a sequence that provides
a magnitude image with an SNR beneath 3 is practically
unusable to begin with. Thus, our assumption that the noise
in the temperature images follows a Gaussian distribution is
justified. In addition, estimation of the noise standard deviation
in the temperature maps was computed based on the result
of a noise estimation algorithm applied on the magnitude
image. The algorithm is built on the assumption that the
noise follows a Gaussian distribution. Theoretically, thenoise
distribution in the MR magnitude image is Rician, however, it
was shown in previous studies that for SNR values higher
than 3, it is well approximated by a Gaussian distribution
[25], [26]. Nevertheless, these SNR limits need to be taken
into consideration when denoising MR-temperature maps via
the proposed methods, since beyond these boundaries no
guarantees can be made on the quality of the filtered data.
In case an application involves MR images with a severely
low SNR, alternate methods may have to be considered.
Throughout the experiments performed in the current work,
the noise distribution in the MR magnitude images (based
on which the noise in the temperature measurements was
calculated via Eq. (9) and (10)) was assumed to be spatially
invariant. However, this hypothesis is likely to be violated
in case MR-thermometry is performed using parallel imaging
techniques such as SENSE or GRAPPA [12]. Depending on
how the MR-signal received by the multi-coil system is re-
combined/reconstructed, the noise standard deviation might
end-up varying across the MR-magnitude image. Since the
noise estimation method employed in our study operates on a
global scale, this may lead to the proposed filtering methodsto
provide sub-optimal results. Thus, in case parallel acquisition

is used, the global noise estimation method should be replaced
with an approach that estimates the noise standard deviation
in the MR-magnitude image on a pixel-by-pixel basis.
As we have shown, the proposed NLM filtering methods can
be used on their own to improve the SNR of temperature
maps. However, they also show great potential to be used
in conjunction with other methods previously employed to
improve/enhance PRFS thermometry. For example, as men-
tioned earlier in the manuscript, the output of the Kalman
predictor-based filter proposed by Roujolet al. in [9] is a linear
combination of the measured noisy data and a temperature
evolution model, which is obviously noise-free. The resulting
filtered data, thus, unavoidably contains a certain amount of
noise. We anticipate that the approach can be further enhanced
by coupling the output of the Kalman filter with the NLM
methods proposed in the current study. Another instance in
which the proposed filters could aid is in the context of the
studies conducted by Toddet al. in [27]. They propose a
method to accelerate MR-image acquisition, with the goal
of rendering real-time 3D PRFS-thermometry feasible. While
results have shown the great potential of the method, some
limitations were encountered due to noisy measurements af-
fecting the precision and accuracy of the resulting temperature
data, which prevented further acceleration of the acquisition
process. We again speculate that used in conjunction with one
of the NLM filters illustrated in our study, the method could
be improved.
An important aspect that needs to be taken into consideration is
computational latency, i.e. the delay between the actual time
of the measurement and the availability of the information.
This includes the remaining acquisition time after the passage
of the k-space center (equal to half the echo time), the data
transport duration and the image processing time (which in
the current study is the computational time of the ANLM-
(2D+t) filter). Considering the MR-sequence and the hardware
employed for thein-vivo study, half the echo time together
with the data transport delay amount to∼22.5 ms. With an
average computational time of∼300 ms for the ANLM-(2D+t)
filter, the total latency reaches∼322.5 ms per slice. In order
to ensure a smooth temperature monitoring work-flow, this
value must lie well beneath the time interval between two MR
acquisitions. This constraint is fulfilled with a considerable
margin for the application considered in this study, since res-
piratory gated MR-thermometry usually provides temperature
updates with a frequency of 0.2 - 0.4 Hz (corresponding
to the respiratory frequency). Note that the ANLM-(2D+t)
filter can be even further accelerated by visiting the values
of β (see Eq. (4)) in parallel, contrary to the exhaustive
search performed in the current work. We anticipate that
this would lead to an average processing time of the filter
beneath 30 ms. Under such conditions the total latency would
amount to∼52.5 ms, allowing high-frame-rate MR-imaging.
Additionally, an implementation of the ANLM-(2D+t) on a
graphical processing unit is expected to provide even shorter
computational times.
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V. CONCLUSION

In this work we propose an improved non-local filtering
technique for PRFS-based temperature measurements during
real-time MR-guided targeted thermal therapies. Accurateand
precise temperature maps are highly beneficial for proper
therapy control and endpoint detection, potentially avoiding
under or over-treatment of the targeted area. Compared to the
original NLM filter and two other filtering methods previously
employed during MR-thermometry, the proposed approaches
have shown a considerable increase in both precision and
accuracy. This together with their low computational demands,
prove that the proposed filters are potentially beneficial asa
means to improve temperature measurements during PRFS-
based real-time MR thermometry dedicated to targeted thermal
therapies.
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