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The study aims at showing how the dynamics of tracer gradient accounts for the stirring mechanism

produced by a periodically forced flow relevant to practical mixing operation. The numerical simulation

uses the equations for the orientation and norm of the tracer gradient and an analytic model for velocity.

To a large extent, the micromixer properties over the different ranges of Strouhal number are explained

through the response of the tracer gradient orientation to the tilting of strain principal axes resulting

from flow forcing. The analysis also reveals a rich picture of stirring as the Strouhal number is varied.
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1 Introduction

In fluid flows used for mixing stretching caused by stirring raises the contact areas and draw the
fluid portions to be mixed together, which hastens the molecular diffusion flux. Low-Reynolds
number flows, by contrast to turbulent flows, do not start the stretching-driven cascade bringing
about the shrinking of scales down to the diffusive lengthscale. Mixing of weakly diffusive
material, then, may need significant time – or distance – to be achieved. Efficient mixing has
thus to be controlled, which needs a precise knowledge of the stirring properties of the flow. This
question is crucial in microfluidics. Chemical, biological and medical applications, in particular,
have given rise to significant investigation in this field both on the practical and academic levels
(Nguyen and Wu, 2005; Capretto et al., 2011; Lee et al., 2011).

The gradient of a scalar – heat, contaminant . . . – is the finest level at which the problem of
mixing can be tackled, for it gives a direct insight into the stirring mechanisms. This approach is
also plainly suited to the physics of mixing. As the gradient direction and magnitude respectively
correspond to the striation orientation and thickness – fine structures meaning large gradients,
the tracer gradient features are indeed closely connected to the structure of mixing patterns.
The growth rate of the tracer gradient shows the conditions in which stirring may enhance the
diffusion fluxes and is thus a key quantity. Although strain intensity matters, the alignment
of the tracer gradient within the strain eigenframe may be the determining factor. The role
of alignment may be especially critical in non-stationary regimes in which the dynamics of the
tracer gradient – through its response to unsteady mechanical action – drives the growth rate.
Previous studies addressed the dynamics of the scalar gradient orientation (Lapeyre et al., 2001;
Garcia et al., 2005) and its role in the mechanism of the gradient growth was pointed out (Garcia
et al., 2008; Gonzalez and Paranthoën, 2010).

The present study is focused on the kinematics of a tracer gradient in a periodically forced
cross-channel micromixer. The purpose is twofold: i) addressing the role of the tracer gradient
dynamics in stirring produced by a practical mixing device; ii) assessing the relevance of the
tracer gradient approach to the analysis of stirring in this kind of device. It seems that the
operation of such a micromixer has not been studied through the response of a vector field yet.

The device is an active mixer in which the material flowing in the main channel is stirred
by forcing a pulsating flow in the side channels, a standard geometry in microfluidics. Previous
works (Niu and Lee, 2003; Tabeling et al., 2004; Lee et al., 2007) addressed the conditions in
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which chaotic advection is triggered and enhances mixing in this system. In this basic geometry
stirring properties are ruled by two parameters, namely the Strouhal number, St, and the velocity
ratio, α – the ratio of maximum pulsating velocity to maximum velocity in the main channel.
Okkels and Tabeling (2004) and Lee et al. (2007) analysed the folding rate of interface segments
and the mean finite-time Lyapunov exponent, respectively, by spanning both St and α.

In this work St is varied for two values of α. The flowfield is simulated by the kinematic
model of Niu and Lee (2003) and the Lagrangian, diffusionless equation for the tracer gradient
is solved in terms of orientation and norm. The stirring properties of the flow are scrutinised
through the mean growth rate of the tracer gradient norm for small to large Strouhal number.

2 Cross-channel micromixer model

A detailed description of a practical, periodically forced cross-channel micromixer was given by
Lee et al. (2007). A simple sketch of the device is shown in Fig. 1.
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Figure 1: Sketch of the cross-channel micromixer; MC: main channel; SC side channel; MZ:
mixing zone; the vertical dotted lines show the investigated region.

The velocity field is simulated by the kinematic two-dimensional model proposed by Niu and
Lee (2003). The flowfield is splitted over the different parts of the micromixer and, assuming
very low Reynolds number, the velocity field in the mixing zone is approximated as the linear
combination of the velocity fields in the main and side channels. The latter are assumed to
be parabolic, the velocity is steady in the main channel and periodic in the side channel. The
flowfield model is expressed as follows:

Main channel: u = V0[1− (2y/LM )2], v = 0, (1)

Side channel: u = 0, v = Vf [1− (2x/LS)
2] cosωf t, (2)

Mixing zone: u = V0[1− (2y/LM )2], v = Vf [1− (2x/LS)
2] cosωf t. (3)

This model was shown to be consistent with experimental data – including the chaotic regime
– (Lee et al., 2007).

It is straightforward to derive the strain rate, σ = (σ2
n + σ2

s)
1/2

– with σn = ∂u/∂x− ∂v/∂y
and σs = ∂u/∂y + ∂v/∂x being the normal and shear strain components – and the vorticity,
ω = ∂v/∂x − ∂u/∂y from Eqs. (1)-(3). The orientation of the strain principal axes in the fixed
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frame of reference (x, y) is defined by angle Φ through tan(2Φ) = σn/σs. As σn = 0 in the whole
flowfield, the strain rate reduces to σ = |σs|. The orientation of strain principal axes is a simple
piecewise function defined as:

Φ =

{

0 for σs > 0,

π/2 for σs < 0.
(4)

The local structure of the flow is defined by Q = σ2−ω2 (Q > 0 in hyperbolic regions and Q < 0
in elliptic regions; Okubo, 1970; Weiss, 1991). The flow structure in the side channel is a pure
shear and Q = 0 in this part of the micromixer. In the mixing zone, where Q ∼ xy cosωf t, the
Eulerian local structure is periodic in time as already mentioned by Lee et al. (2007). However,
the evolution of Q along Lagrangian trajectories is of course more complex.

3 Tracer gradient equations

The general equation for the gradient, G, of a diffusionless scalar – or tracer – is:

DG

Dt
= −AT .G, (5)

where A = ∇u is the velocity gradient tensor. With G = |G|(cos θ, sin θ), Eq. (5) gives the
Lagrangian equations for the orientation and norm of G (Lapeyre et al., 1999):

Dθ

Dt
=

1

2
{ω − σ cos[2(θ +Φ)]}, (6)

2

|G|

D|G|

Dt
= −σ sin[2(θ +Φ)]. (7)

The growth rate, η = 1/|G|.D|G|/Dt, takes the minimum value, −σ/2, for G aligning with
the extensional strain direction defined by θe = −Φ+π/4 and reaches the maximum value, σ/2,
when G aligns with the compressive strain direction given by θc = −Φ− π/4.

As a result of the alternating behaviour of Φ [Eq. (4)], the tracer gradient experiences an
unsteady forcing through its orientation with respect to the strain principal axes. As is shown
in this study, the variations of Φ are actually essential to explain the mean growth rate of the
tracer gradient in function of the flow properties.

The Lagrangian dynamics of the tracer gradient orientation is derived by solving Eq. (6)
together with the tracking of particles given by Dx/Dt = u with x being the position vector
and u the modelled velocity field in the mixer. The growth rate of the tracer gradient is then
directly given by Eq. (7) without solving for the gradient norm. High growth rate indicates
good stirring properties through fast enhancement of local gradients.

The numerical method is a fourth-order Runge-Kutta scheme. Initially, 1000 particles are
located on a line at y = 0 from x = −LS/2 to x = LS/2. As we are strictly interested in the
properties of a single mixing cavity – and not a series of elemental micromixers, each particle
leaving the computational domain at x = LS/2 is reinjected at (x, y) = (−LS/2, 0) with initial
condition θ = π/2 for the orientation of the tracer gradient, which mimics the tracking of an
interface between two different scalar quantities – say, A andB as shown in Fig. 1. The numerical
timestep is ∆t = Tf/3200 with Tf = 2π/ωf being the time period of the flow forcing. Statistics
are derived by averaging over all the instantaneous values computed along the Lagrangian paths
during a time interval, T = 200Tf . As T amounts to several mean residence time – 50 at
least – this is enough to account for the differences in residence time over the particle ensemble.
Averaging over the values recorded on Lagrangian trajectories is denoted by brackets. Those
averaged quantities duly include Lagrangian information on the evolution of the tracer gradient.
Integrating along trajectories – for the strain and growth rates, for instance – strictly shows the
same behaviours.
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4 General features of the kinematics of tracer gradient

The stirring properties of the cross-channel device are described by the amplitude parameter,
α = Vf/V0 and the Strouhal number, St = LS/V0Tf (Okkels and Tabeling, 2004; Lee et al.,
2007). In this study the influence of the Strouhal number is analysed for α = 1 and α = 3 –
with LM = LS = 1.

The Lagrangian evolution of the tracer gradient tightly depends on the residence time inside
the micromixer cavity. The mean residence time, Tr, of a particle injected at (−LS/2, 0) and
leaving the mixing zone at section x = LS/2 is shown in Fig. 2. For a given value of the Strouhal
number, the residence time in the side channels – and thus Tr – obviously grows with α. At
large Strouhal numbers the time spent in the side channels tends to zero and Tr approaches
the convection timescale, Tc = LS/V0, as expected. The ratio of the residence time to the time
period of the flow forcing, Tr/Tf = St Tr/Tc, thus varies as St at large St values as shown by
the plot of Tr/Tf .
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Figure 2: Mean residence time in the micromixer cavity; a. Tr/Tc, with Tc = LS/V0 being
the convection timescale; b. Tr/Tf , with Tf being the time period of the flow forcing; squares:
α = 1; circles: α = 3.

Overall, the evolution of the tracer gradient derived from the tracking of particles injected
at (−LS/2, 0) is dominated by rotation. At small Strouhal numbers, however, they are more
likely to experience a pure shear regime as a result of significant time spent in the side channels.
This behaviour is shown by the plots of the respective strain (Q > 0), rotation (Q < 0) and
shear (Q = 0) events ratios along the Lagrangian paths (Fig. 3).
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Figure 3: Ratios of strain-, rotation- and shear-dominated events along the Lagrangian paths
vs. Strouhal number; a. α = 1; b. α = 3; squares: strain; diamonds: rotation; circles: shear.
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The dependence of the tracer gradient dynamics upon the Strouhal number in terms of
orientation and norm growth rate reveals a rich phenomenology. From the plot of 〈η〉/〈σ〉 –
which gives a measure of the efficiency of the micromixer (Fig. 4), Strouhal number ranges
promoting good stirring are found together with narrow ranges where stirring is certainly quite
poor. While its theoretical maximum value is 0.5, 〈η〉/〈σ〉 reaches 0.29 for α = 1 and 0.17, at
best, for α = 3. This is due to a moderate statistical alignment of the tracer gradient with the
compressional strain which most likely results from overall prevailing rotation.
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Figure 4: Ratio of mean growth rate to mean rate of strain, 〈η〉/〈σ〉, vs. Strouhal number;
squares: α = 1; circles: α = 3.

The rather weak alignment of G with compressional strain is confirmed by Fig. 5 displaying
〈σ〉, 〈− sin ζ〉 – with ζ = 2(θ+Φ) – and 〈η〉 in function of the Strouhal number. Far from unity –
the value reached when G is parallel to compression, the maximum for 〈− sin ζ〉 is 0.31 for α = 1
and 0.16 for α = 3. The mean growth rate depends on the strain level, but the dependence on
the tracer gradient orientation through sin ζ is stronger. This is clear beyond St ≃ 0.7 for α = 1
and St ≃ 1 for α = 3. These results thus suggest that the stirring properties of the flow can be
mainly explained in terms of the dynamics of tracer gradient orientation. As the tracer gradient
is locally normal to the interface separating the material to be mixed, this view agrees with
analyses based on the deformation of interface segments (Okkels and Tabeling, 2004; Tabeling
et al., 2004).

5 Dependence of stirring properties on Strouhal number

5.1 Small Strouhal number

Figure 6 confirms that the mean residence time inside the side channels is significant at small
Strouhal number. As a result, the statistics of tracer gradient orientation in this range of
Strouhal number is governed by pure shear (Q = 0). From Eq. (2), the transversal velocity, v,
and the shear component of strain, σs, are in phase in the side channels – where Lagrangian
particles move with x = constant. Each turning back of a Lagrangian particle in a side channel
thus coincides with a π/2-tilting of the strain principal axes [Eq. (4)] that makes sin ζ – and
hence η – change sign; the way back is always covered with sign reversed for the growth rate
which, on average, is therefore close to zero in the side channels. Figure 7 shows the trajectories
as well as the Lagrangian histories of σ, sin ζ and η for α = 1 and St = 0.125. The mean values
conditioned on pure shear, 〈− sin ζ|Q = 0〉 and 〈η|Q = 0〉, are close to zero up to St ≃ 0.35 (Fig.
8). The same behaviour for α = 3 is displayed by Fig. 9.
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Figure 5: Mean rate of strain, 〈σ〉, statistical alignment given by 〈− sin ζ〉 and mean growth
rate, 〈η〉, vs. Strouhal number; a. α = 1; b. α = 3; squares: 〈σ〉/2; diamonds: 〈− sin ζ〉; circles:
〈η〉; the dashdot line shows the zero value of 〈η〉.
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Figure 6: Mean ratio, TSC/T , of time spent in the side channels during a simulation; squares:
α = 1; circles: α = 3.
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Figure 7: Lagrangian signals for α = 1 and St = 0.125; a. solid line: σ; short dash: x; long
dash: y; b. solid line: − sin ζ; dashed line: η; each arrow shows a turning back in a side channel.
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Figure 8: Mean values of − sin ζ and η conditioned on pure shear vs. Strouhal number; α = 1;
diamonds: 〈− sin ζ|Q = 0〉; circles: 〈η|Q = 0〉.

St

〈η
 Q

=0
〉

〈-
si

n
ζ 

Q
=0

〉

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
-0.008

-0.006

-0.004

-0.002

0

0.002

-0.008

-0.006

-0.004

-0.002

0

0.002

Figure 9: Mean values of − sin ζ and η conditioned on pure shear vs. Strouhal number; α = 3;
diamonds: 〈− sin ζ|Q = 0〉; circles: 〈η|Q = 0〉.
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5.2 Large Strouhal number

The behaviour of the tracer gradient at large Strouhal number is governed by the tilting of
the strain principal axes in the mixing zone. The tilting of strain principal axes occurs in the
elliptic regions; it is easy to show, from the expressions for σs and Q, that σs changes sign –
which also amounts to σ = 0 – only if Q < 0. As St is increased, the mean tilting frequency,
fΦ, grows linearly as shown in Fig. 10 (Tr ≃ Tc at large Strouhal number; Fig. 2). At
large Strouhal number, the tracer gradient thus experiences faster and faster changes in strain
direction. The latter become too fast for the tracer gradient to respond and its orientation gets
closer and closer to the direction of a bisector of strain principal axes for which sin ζ = 0 – and
η = 0. As a result, the mean growth rate decays at large Strouhal number. On a more general
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Figure 10: Mean tilting frequency of the strain principal axes normalised by the mean residence
time in the mixing cavity vs. Strouhal number; squares: α = 1; circles: α = 3.

level, this mechanism is clearly reminiscent of the nonadiabatic regime of the scalar gradient
response to unsteady forcing in which the scalar gradient does not keep up with fast changes
in strain persistence – or in strain principal axes direction (Garcia et al., 2008; Gonzalez and
Paranthoën, 2010). The probability density function (p.d.f) of the tracer gradient orientation
(Fig. 11) shows the gradual preferential alignment with a bisector of strain principal axes at
large Strouhal number. For α = 1 the variance of sin ζ is 0.243, 0.102 and 0.0707 at St = 2,
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Figure 11: P.d.f’s of tracer gradient orientation; a. α = 1; b. α = 3; solid line: St = 2; short
dash: St = 3; long dash: St = 4.

3 and 4, respectively; for α = 3 these values are 0.687, 0.548 and 0.396. The tendency is less
marked when α = 3 for which higher strain and vorticity levels result in a better response of
the tracer gradient to the mechanical action of the velocity gradient.
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5.3 Middle-range Strouhal number

5.3.1 Vanishing mean growth rate and resonance phenomenon

Poor stirring properties are also found for Strouhal number ranges in which the mean residence
time takes special values. For α = 1 the mean growth rate is virtually zero – 0.021 and 0.0030,
while the maximum value is 0.88 – at St = 1.5 and St = 2.5 (Fig. 5) where Tr/Tf = 1.52 and
2.52, respectively (Fig. 2). For α = 3 〈η〉 = 0.012 – maximum value: 0.99 – at St = 3.4375
for which Tr/Tf = 3.52. These results are reminiscent of the resonance phenomenon found
by Okkels and Tabeling (2004) in which the folding rate of an interface segment falls to zero
when Tr/Tf = (n + 1/2) – with n ∈ N. The authors show that a resonance occurs when the
perturbation of a point on the interface developing within the first half of the mixing region is
reversed and strictly offset in the second part – incidentally, this needs n ≥ 1. The analysis
in terms of the tracer gradient orientation agrees with this mechanism. Figure 12, plotted for
α = 1 and St = 1.5, shows that the interplay between the periodic flow forcing and the position
on a trajectory brings about a symmetric Lagrangian signal of strain over the residence time
inside the mixing cavity. Especially, the strain tilting events felt by the tracer gradient along a
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Figure 12: Lagrangian signals for α = 1 and St = 1.5; a. solid line: cosωf t; short dash: x;
long dash: y; the arrows show the injection and exit of the Lagrangian particle; b. solid line: σ;
dashed line: Q; the dashdot line shows the zero value of Q; c. solid line: − sin ζ; dashed line: η.

Lagrangian path are symmetric. They occur for σ = 0, namely whenever y + αx cosωf t = 0,
which is true near the center of the cavity – where x = y = 0, but also at any position provided
that x, y and t fulfill the latter condition – as shown in Fig. 12. The special behaviour of strain
results in a symmetric signal for sin ζ and thus for η which, on average, cancels out over the
mean residence time. This analysis is confirmed by the Lagrangian plots for α = 1 and St = 2.5
as well as for α = 3 and St = 3.4375 (not shown). Figures 12 also displays the Lagrangian
evolution of Q.
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5.3.2 Negative mean growth rate

Negative values of the mean growth rate are found over narrow ranges of Strouhal number
and especially for α = 1 (Fig. 5). They obviously result from a statistical alignment of the
tracer gradient closer to the extensive than to the compressive strain direction. In these special
conditions the flowfield opposes stirring which may prevent mixing. While 〈η〉/〈σ〉 = −0.025, at
best, for α = 3, the most significant negative values of 〈η〉 for α = 1 are found at St = 0.1875,
0.425 and 0.85 where 〈η〉/〈σ〉 = −0.12, -0.11 and -0.11, respectively. In this ranges of Strouhal
number Tr/Tf takes special values – ∼ 0.5 for St = 0.1875 and 0.425, ∼ 1 for St = 0.85 (Fig.
2). At St = 0.1875 the tracer gradient evolution is mainly governed by shear (Section 5.1). At
St = 0.425 and 0.85 both flow structure and orientation dynamics explain the negative values of
the mean growth rate. As shown in Fig. 3, the ratio of rotation events sharply peaks near these
St values and the tracer gradient essentially experiences an elliptic regime. And the sharp drops
of − sin ζ at St = 0.425 and 0.85 (Fig. 13), showing statistical alignment near the extensive
strain direction, deepen negative 〈η〉. At those Strouhal numbers this statistical alignment with
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Figure 13: Statistical orientation of tracer gradient; α = 1; solid line: 〈− sin ζ〉; squares: condi-
tioning on hyperbolic events, 〈− sin ζ|Q > 0〉; circles: conditioning on elliptic events, 〈− sin ζ|Q <
0〉.

extensive strain in hyperbolic regions is explained by unsteadiness. In fact, the time spent in
the hyperbolic regime is much too short for strain to bring back the tracer gradient from the
extensive to the compressive direction after tiltings occuring in elliptic regions.

5.3.3 Maximum mean growth rate

Finally, good stirring must be restricted to moderate Strouhal numbers, away from the small and
large Strouhal number ranges where the tilting of strain principal axes make the mean growth
rate collapse (Sections 5.1 and 5.2). In addition, Tr/Tf must not take special values resulting in
limiting mechanisms such as resonances. Then, good stirring conditions are found, roughly, from
St = 0.48 to 0.75 for α = 1 and St = 0.95 to 1.6 for α = 3 (Figs. 4 and 5) with peak values at
St = 0.5 and 1.25, respectively. In a pure kinematic view these findings are consistent. The ratio
of strain-dominated events as well as the mean strain rate indeed reach maximum values over
those Strouhal number ranges (Figs. 3 and 5). And the maximum of 〈− sin ζ〉 agrees with the
peak values of 〈η〉. As already mentioned by Lee et al. (2007), optimal stirring is thus ensured
by the values of the control parameters, St and α, defining the best conditions for particles to
reach an hyperbolic region and spend enough time therein. Figure 14 shows Lagrangian signals
for α = 1 and St = 0.5. By the x = cte-segments, the trajectories inside the cavity reveal the
inroads into the side channels. As a possible result of a chaotic behaviour, they do not display
any clear periodic features. Instead, it appears that a particle may either cross the mixing zone

10



t/T f

x 
, y

10 12 14 16 18 20

-0.5

0

0.5
a.

t/T f

σ Q

10 12 14 16 18 20
0

2

4

6

8

10

-140

-70

0

70
b.

t/T f

η

-s
in

ζ

10 12 14 16 18 20
-10

-5

0

5

10

-1

-0.5

0

0.5

1c.

Figure 14: Lagrangian signals for α = 1 and St = 0.5; a. solid line: x; dashed line: y; b. solid
line: σ; dashed line: Q; the dashdot line shows the zero value of Q; c. solid line: − sin ζ; dashed
line: η.

straight or spend a variable time inside a side channel. The sample signals also confirm the
significant ratio of strain-dominated events as well as the relative large time spent by the tracer
gradient near the compressive direction of strain.

6 Conclusion

This study confirms that, despite the significant role of strain level, the response of the tracer
gradient orientation to unsteady strain is a key mechanism to explain the stirring properties of
a periodically forced, cross-channel micromixer.

This approach also gives a detailed insight into the micromixer properties. At small Strouhal
number the mean growth rate of the tracer gradient shrinks thus showing poor stirring; the major
part of the mean residence time is spent in the side channels where the periodic, symmetric
reversing of the orientation of the tracer gradient with respect to the strain principal axes
cancels its growth rate. At large Strouhal number the tracer gradient does not respond to the
fast changes in strain direction caused by flow forcing and aligns closer and closer to a bisector
of strain principal axes where the growth rate vanishes.

Good stirring conditions are found in the middle range of Strouhal number. They are fulfilled
at Strouhal numbers for which the hyperbolic regime prevails and the mean strain rate reaches
its maximum values on Lagrangian trajectories, namely within St = 0.48 to 0.75 for α = 1 and
St = 0.95 to 1.6 for α = 3 with peak values at St = 0.5 and 1.25, respectively. Poor stirring,
however, may occur in narrow windows of Strouhal number where the mean growth rate either
vanishes – which precisely corresponds to the resonance phenomenon pointed out by Okkels and
Tabeling (2004) – or takes negative values as a result of both flow structure and dynamics of
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tracer gradient orientation when the elliptic regime prevails along Lagrangian trajectories.

References

[1] Capretto L., Cheng W., Hill M., Zhang X., 2011, Micromixing within microfluidic devices,
Topics in Current Chemistry, 304, 27-68
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