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Abstract. In this work, we analyze all existing RSA-CRT countermea-
sures against the Bellcore attack that use binary self-secure exponentia-
tion algorithms. We test their security against a powerful adversary by
simulating fault injections in a fault model that includes random, ze-
roing, and skipping faults at all possible fault locations. We find that
most of the countermeasures are vulnerable and do not provide suffi-
cient security against all attacks in this fault model. After investigating
how additional measures can be included to counter all possible fault
injections, we present three countermeasures which prevent both power
analysis and many kinds of fault attacks.

Keywords: Bellcore attack, RSA-CRT, modular exponentiation, power analysis

1 Introduction

In a fault attack, an adversary is able to induce errors into the computation of a
cryptographic algorithm and thereby to gain information about the secret key or
other secret information used in the algorithm. The first fault attack [4] targets
an RSA implementation using the Chinese remainder theorem, RSA-CRT, and
is known as the Bellcore attack. The Bellcore attack aroused great interest and
led to many publications about fault attacks on RSA-CRT,e.g., [1, 6, 9, 11, 22].
Countermeasures to prevent the Bellcore attack can be categorized into two
families: the first one relies on a modification of the RSA modulus and the second
one uses self-secure exponentiation. The countermeasures in the first family were
recently analyzed [21], and a formal proof of their (in)security was provided.

We complement the work of [21] by comprehensively analyzing the counter-
measures in the second family, i.e., those based on self-secure exponentiation.
These countermeasures use specific algorithms that include redundancy within
the exponentiations. The first such method is based on the Montgomery lad-
der [9]. This was adapted to the right-to-left version of the square-and-multiply-
always algorithm [5,6] and to double exponentiation [18,22]. We test the security
of these methods using an automated testing framework. We use the same fault



model as in [21], but extend it to meet the particularities of self-secure expo-
nentiation algorithms. We reveal that the countermeasures have certain vulner-
abilities in this extended fault model. Based on these findings, we improve the
countermeasures and present three self-secure exponentiation methods that are
secure against fault injections, safe-error attacks, and power analyses. We note
that non-algorithmic level countermeasures are not in the scope of this paper.

Our Contribution: In this paper, we test the security of the self-secure
exponentiation countermeasures against the Bellcore attack by simulating
random, zeroing, and skipping faults at all possible fault locations (Section 4).
Thereafter, we propose secure countermeasures, step-by-step achieving pro-
tection against all fault injections and resistance to power analysis and safe-error
attacks. We present one countermeasure for each of the exponentiation algo-
rithms used as self-secure exponentiation: the Montgomery ladder, the square-
and-multiply-always algorithm, and the double exponentiation method. Despite
the natural overhead caused by the included measures against all the considered
attack types, our algorithms remain highly efficient (Section 5).

2 Background

In this section, we give the necessary background information for our work.

2.1 The Bellcore Attack on RSA-CRT

We use the standard notation for RSA [23]: M denotes the message, N = pq
the public modulus with secret primes p and q, ϕ(N) = (p− 1)(q − 1). The pub-
lic exponent e with gcd(e, ϕ(N)) = 1 is chosen along with the secret expo-
nent d, where e · d ≡ 1 mod ϕ(N). The signature is calculated S = Md mod N ,
and Se ≡ (Md)e ≡M mod N. The calculation can be speeded up by a fac-
tor of four using the RSA-CRT implementation [20]. Two smaller exponenti-
ations Sp = Mdp mod p and Sq = Mdq mod q are performed with exponents
dp = d mod (p − 1), dq = d mod (q − 1), and recombined with the method
S = CRT(Sp, Sq) = ((Sp − Sq)iq mod p)q + Sq, where iq = q−1 mod p. The
public key of RSA-CRT is (e,N) and the private key includes p, q, dp, dq and iq.

A fault attack is a physical attack where the attacker is able to induce faults
into the execution of the algorithm. The first attack on RSA-CRT was proposed
by Bellcore researchers [4]. The fault is induced into the calculation of strictly

one of the intermediate signatures, resulting in Ŝp (or Ŝq). If Ŝp (or Ŝq) is used

during recombination, a faulty signature Ŝ is returned. With high probability q
(or p) can be deduced as gcd(S − Ŝ, N) [4] or as gcd(Ŝe −M mod N,N) [11].

During the discussion of fault attacks, the precise description of the fault
model is essential: it includes the assumptions on the adversary’s abilities. The
Bellcore attack targeting an unprotected implementation uses one fault injection
and loose assumptions in the fault model, i.e., a very weak attacker. The attacker
is only assumed to alter an intermediate signature, which can be achieved by
an arbitrary modification of any variable throughout the exponentiation, i.e.,
affecting any bit or any byte results in a successful attack.
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2.2 Safe-Error Attacks

Classical fault attacks exploit the corrupted result or the difference between a
correct and faulty results. However, it was noted in [26] that secret information
may leak depending on if a fault has effect on the result of the computation or
not. The techniques that exploit such behavior are called safe-error (SE) attacks.

Computational safe-error attacks (C-SE) [27] target dummy operations. If
the result remains error-free although a fault was induced, it affects a dummy
operation and thus, information about the secret key can be revealed.

Memory safe-error attacks (M-SE) [26] assume a more powerful attacker.
Knowing how the internal variables are processed in the memory throughout
a certain step of the algorithm, one may be able to derive the secret key [26].
Memory safe-error attacks are prevented by randomizing the targeted variables.

2.3 Power Analysis Methods

Simple power analysis (SPA) studies the power consumption of a single execution
of the algorithm. If the execution depends on the value of the secret key, the
adversary is able to obtain information by analyzing the power trace.

Differential power analysis (DPA) is a natural extension of SPA [16]. When
performing a DPA, an attacker collects several power trace measurements of
the executions of the same algorithm and uses statistical methods to reveal the
secret key. Prevention generally requires randomization of variables.

2.4 Algorithms for Regular Exponentiation

Classical modular exponentiation algorithms are vulnerable to SPA, since the
power consumption of the different operations can be differentiated [17]. To
prevent SPA, regularity of the modular exponentiation algorithms is required. It
means that the same operations are performed independently from the value of
the exponent. Below, we recapitulate the two most widely used binary methods.

Square-and-Multiply-Always: The right-to-left exponentiation algorithm
was modified in [7] to the square-and-multiply-always method, shown in Alg. 1a.

Algorithm 1 SPA-resistant modular exponentiation methods

(1a) Square-and-multiply-always [7]

input: M 6= 0, d = (dn−1, . . . , d0)2, x
output: Md mod x

1: R0 := 1, R1 := 1, R2 := M

2: for i = 0 to n− 1 do
3: Rdi := Rdi ·R2 mod x

4: R2 := R2
2 mod x

5: end for

6: return R0

(1b) Montgomery ladder [13]

input: M 6= 0, d = (dn−1, . . . , d0)2, x
output: Md mod x

1: R0 := 1, R1 := M

2: for i = n− 1 to 0 do
3: Rdi := Rdi ·Rdi mod x

4: Rdi := R2
di

mod x
5: end for

6: return R0
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By introducing dummy operations in register R1 (line 3), one squaring and one
multiplication is performed at each iteration.

Montgomery Ladder: The powering ladder, shown in Alg. 1b, was pro-
posed in [19] and its correctness discussed in [13]. The algorithm is regular with-
out including dummy operations and is resistant to safe-error attacks [13].

3 Countermeasures Against the Bellcore Attack

To counter the Bellcore attack, straightforward countermeasures aim to verify the
integrity of the computation before returning the result, e.g., by repeating the
computation and comparing the results. Due to the inefficiency of such measures,
several improved countermeasures appeared starting from 1999.

3.1 Two Families of Countermeasures

The advanced countermeasures were divided into two families according to the
difference in their nature [21]: Shamir’s family and Giraud’s family. We refer to
the latter as self-secure exponentiation countermeasures.

Shamir’s family consists of the countermeasures that prevent the Bellcore
attack by multiplicatively extending the modulus x with a random number s.
They rely on the fact that an invariant, inherited from the calculations modulo
the extended modulus, i.e., modulo x·s, must hold modulo s. Shamir’s algorithm
from [24] motivated researchers to develop such countermeasures, e.g., [1,12,21].

The idea of self-secure exponentiation countermeasures was proposed
in [9]. If the exponentiation algorithm returns more than one power of a given
input and keeps a coherence between its registers throughout the exponentiation,
an invariant can be formulated that must hold at the end of the algorithm.
However, it is claimed to be lost if a fault injection takes place.

3.2 Self-Secure Exponentiation Countermeasures

In this section, we recapitulate the existing self-secure exponentiation counter-
measures. The algorithmsare provided in Appendix A in Alg. 5–10.

The first countermeasure was proposed by Giraud [9]. It exploits the fact
that while using the Montgomery ladder, the temporary registers R0 and R1 are
of the form (Mk−1 mod x, Mk mod x) for some integer k after each iteration of
Alg. 1b. After two exponentiations that result in the pairs (S′p = Mdp−1 mod p,

Sp = Mdp mod p) and (S′q = Mdq−1 mod q, Sq = Mdq mod q), and two recombi-

nations S′ = CRT(S′p, S
′
q) = Md−1 mod pq and S = CRT(Sp, Sq) = Sd mod pq,

the invariant M · S′ ≡ S mod pq holds. Giraud claims that in case of a fault
attack within the exponentiation, the coherence is lost for Sp, S

′
p (or Sq, S

′
q) and

thus for S and S′. Despite its advantages, the Montgomery ladder exponentiation
remains vulnerable to DPA [16] (DPAexp). Fumaroli and Vigilant blinded the
base element with a small random number r [8], using one more register R2 in
the exponentiation. Besides being more memory-costly, this method was proven
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Table 1: Self-secure exponentiation countermeasures. CRT, check, inv., reg.,
mult., and sq. denote the number of CRT recombinations, checking procedures,
inversions, additional large registers, multiplications, and squaring operations
respectively, in terms of the bit-length n of the exponent. PA and SE denote the
resistance against power analysis and safe-error attacks. X means that there are
included countermeasures, × refers to the lack of them.

Countermeasure Efficiency criteria Physical attacks

Author(s) Ref. CRT Check Inv. Reg. Mult. Sq. PA SE

Ref. Alg. Total Per exp. SPA
exp

DPA
CRT
DPAC-SE M-SE

Giraud [9] 5 2 4 0 3 n n X × X X X
Fumaroli,Vigilant [8] 6 2 4 2(p,q) 4 n+ 3 2n X X × X X
Boscher et al.’07 [6] 7 3 5 0 4 n n X × × X ×
Boscher et al.’09 [5] 7 3 5 1(pq) 4 n+ 2 n X X × X X

Rivain [22] 8 1 2 0 2 ∼ 1.65n × × × X ×
Rivain (SCA) [22] 9 1 2 0 3 ∼ 1.65n 0 X X × X X

Le et al. [18] 10 1 2 0 3 ∼ 0.67n n × × × X ×

to be insecure against fault attacks [14], due to the lack of coherence between
R2 and the other registers. Moreover, it remains vulnerable to the DPA attack
on the CRT recombination from [25] (DPACRT).

The square-and-multiply-always algorithm (Alg. 1a), uses dummy operations
to prevent SPA. Boscher et al. in 2007 proposed a self-secure exponentiation
countermeasure based on this algorithm [6]. In the end of the execution, R0

holds the value Md mod x, R1 holds M2n−d−1 mod x, while R2 only depends
on the binary length n of the exponent, and equals to M2n mod x. Thus, the
coherence M ·R0 ·R1 ≡ R2 mod x is kept throughout the algorithm. Boscher
et al. in 2009 [5], modified the method in order to achieve resistance against
DPA on the exponentiation without significant overhead. 2w-ary versions of the
algorithmwere proposed [2, 10].

Rivain proposed a solution that uses double exponentiation [22]. Such a
method receives the base M , two exponents d1, d2, the modulus x, and outputs
both Md1 mod x and Md2 mod x. It makes use of a double addition chain for the
pair (d1, d2), by means of which the two modular exponentiations are performed
at once, using altogether 1.65n operations on average. We assume this chain
to be precomputed. Le et al. presented a double exponentiation algorithm,
that does not rely on precomputation [18]. The binary exponentiation works as
two parallel executions of the right-to-left exponentiation and uses register R0

for calculations with d1 and register R1 for calculations with d2. M2n mod x is
computed only once and is stored in R2.

Table 1 summarizes the different properties of the self-secure exponentiation
countermeasures. We consider the security and efficiency of the methods, since
measures against physical attacks imply overhead. When discussing efficiency, we
describe the following relevant properties to achieve low time and memory con-
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sumption: number of registers containing large values that are used additionally
to the input registers (M,d, x) during the exponentiation, number of multiplica-
tions, squaring operations and inversions using large registers. We summarize if
they include protection against physical attacks such as power analysis on the
exponentiation and the CRT recombination and safe-error attacks.

4 Security of Self-Secure Exponentiation Methods

The security of self-secure exponentiation countermeasures relies mainly on the
exponentiation algorithms. Each method has an invariant that holds throughout
its execution, which is claimed to be lost in case a fault is injected. Accordingly,
the modular exponentiation methods have to be tested against fault attacks. In
this section, we recapitulate the fault model that we adopt, briefly describe our
methodology and discuss our results.

4.1 Simulating Fault Injections Against Self-Secure Exponentiation
Countermeasures

The designers of the countermeasures provide either formal and informal expla-
nations for their security assumptions and their fault models differ from each
other. To the best of our knowledge, we are the first to simulate all possible
fault injections in a common fault model.

Fault Model: We adopt the generic fault model of [21]. Therefore, we sim-
ulate three types of fault injections: random and zeroing faults in case of which
the affected variable is changed to a random value and null, respectively, and
skipping faults which cause instruction skips, i.e., jumps over some lines of the
pseudocode. We take the following fault types into consideration: faults on local
variables, on input parameters, and on conditional tests. An adversary is able
to target any variable, but cannot specify the bits his fault affects. When induc-
ing a random fault, he does not know its concrete value. Since refined methods
appear for performing instruction skips in practice (e.g. [3]), we consider it as a
possible threat when discussing physical attacks. The injection of skipping faults
was observed as practical in [21], but was covered by means of random and zero-
ing faults. This does not hold for self-secure exponentiation. When considering
skipping faults, we count the number of lines that have to be skipped in the
pseudocode. In the Montgomery ladder shown in Alg. 1b, the pair (R0, R1) is
of the form (Mk−1 mod x,Mk mod x) at each iteration, which coherence is as-
sumed to be lost in case of a fault injection. However, an adversary might skip
two consecutive lines (3-4) at any iteration of the loop. The invariant holds for

the corrupted R̂0 and R̂1 and thus, the fault is not detected.
Our Framework: In case of self-secure exponentiation countermeasures,

the underlying exponentiation algorithm has to be tested and checked that the
invariant is lost if a fault is injected. When simulating the attacks, we needed
features that the tool used for the analysis of Shamir’s family lacked [21]: re-
definition of variables and support for loops. Therefore, we created our own
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Table 2: Results of our fault injection tests on the exponentiation algorithms,
assuming that the checking procedures are protected We note that we rely on
the original fault models of the countermeasures from column Ref., recapitulated
in Appendix A. X denotes that our tests did not reveal any vulnerability against
the fault type, M and d1, d2 denote the vulnerability of the message and the
exponents in the exponentiation algorithm, respectively. When considering skip-
ping faults, we indicate which lines are skipped together to achieve a successful
attack. The register numbering Ri, i ∈ {0, 1, 2} and the lines are according to
the algorithms in column Alg.

Countermeasure Fault injection attacks

Author(s) Ref. Alg. Random Zeroing Skipping
Fault number 1 1 2 1 2

Giraud [9] 5 X M,R0, R1 X (4-5)
Fumaroli, Vigilant [8] 6 R2 M,R0, R1, R2 (7) (5-6) or 2·(7)

Boscher et al.’07 [6] 7 X X X X (6-7)
Boscher et al.’09 [5] 7 X X X X (6-7)

Rivain [22] 8 M X X X X
Rivain (SCA) [22] 9 M X X X X

Le et al. [18] 10 M X d1, d2 X X

framework in Java. A manual step of our method was identifying the possible
fault injection locations within the exponentiation algorithms. After this man-
ual step, the simulation of multiple fault injections in all possible combination
of fault locations was fully automated, for all the three fault types. A simula-
tion results in a successful Bellcore attack if a corrupted signature is returned.
For more details on our simulation framework, the reader is referred to the full
version [15].

4.2 Simulation Results

The results of our fault injection simulations are shown in Table 2. While per-
forming the tests with multiple faults, we considered protected checking pro-
cedures, since skipping or zeroing any of the checks would enable a successful
Bellcore attack. When considering faults on the checking procedures, a method
can be protected against n fault injections by repeating each check n times.

Random Faults: If a countermeasure is protected against one random fault
injection, it cannot be broken with more than one random faults either. This is
due to the fact that a random fault cannot induce a verification skip [21]. Our
results confirm that in case of the algorithms that use the Montgomery ladder
or the square-and-multiply-always algorithm, the intermediate secret exponent
and the loop counter have to be protected against random faults. [6,8,9] use the
checksum of the exponent to verify its integrity and thwart the attack. It was
revealed in [14], that the introduction of register R2 in Fumaroli and Vigilant’s
countermeasure [8] made it vulnerable to any random fault on R2 at any iteration
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of the algorithm. This is due to the fact that R2 is calculated independently of
the other two registers, which are multiplied with its final value. In case of
the countermeasures using double exponentiation, a possible random fault is the
corruption of the intermediate message M, resulting in M̂ . Rivain identified
this vulnerability and suggested to compute a cyclic redundancy code [22].

Zeroing Faults: Without a specific checking procedure against zeroing
faults, the exponentiation algorithms (Section 2.4) are vulnerable. According
to [9], it is unlikely to be able to zero a large buffer in practice. However, as [6,21],
we take zeroing faults into consideration but note that their injection is very
difficult to achieve in practice. In case of the methods that use the Montgomery
ladder and the square-and-multiply-always exponentiation, if the message M in
the beginning of the algorithms is zeroed, zeroes are returned. The same holds for
any of the registers R0,R1 in the method using the Montgomery ladder and for
R2 in Fumaroli and Vigilant’s and Boscher et al.’s methods. Then, the checking
procedure holds even though the recombination is computed with only one of the
intermediate signatures. Giraud considered this vulnerability impossible, while
Boscher et al. included checks against it. The two countermeasures that use
double exponentiation are not vulnerable to a single zeroing fault. In the case
of Rivain’s method [22], the exponent is given by the addition chain, which we
assume to be protected. For the algorithm by Le et al. [18], two zeroing faults on
the exponents d1,d2 are necessary to conduct a Bellcore attack. If any other
values are zeroed, the coherence check does not hold and the fault is detected.

Skipping Faults: Our simulations show that only the method by Fumaroli
and Vigilant [8] is vulnerable to the instruction skip of one line, the calcula-
tion of register R2, which has a similar effect as the random fault on R2. When
two lines are skipped together, both regular, SPA-resistant algorithms, i.e., the
Montgomery ladder and the square-and-multiply-always methods are vulnerable.
By skipping two consecutive lines within the loop, they preserve the co-
herence between the variables even though the results are corrupted. Even if the
loop counter i is protected, skipping faults result in successful Bellcore attacks.

5 PA-SE-FA-Resistant Self-Secure Exponentiation
Countermeasures

We propose a secure countermeasure for each of the exponentiation algorithms
that are used for constructing self-secure exponentiation methods. We claim that
our proposed countermeasures are secure against power analysis (PA), safe-error
(SE) attacks, and fault attacks (FA) and remain highly efficient. For the verifica-
tion of the resistance against fault injection attacks, we applied our framework
from Section 4.1 on the proposed algorithms. We discuss the implied overhead
by the introduced protection against physical attacks. FAj

i denotes fault attacks
of type j (r, z, s denote random, zeroing and skipping faults, resp.), against vari-
able(s) i.
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Algorithm 2 PA-SE-FA method with the Montgomery ladder

(2a) MonExp(M,d, x, r, rinv, s)

input:M,d= (dn−1, . . . ,d0)2,
x, r, rinv, s
output: (r2

n

·Md mod sx,
r2

n

·Md+1 mod sx,
r2

n

inv mod sx)

1: x := s · x . FAs
(6−7), FAr, z

d,i

2: R0 := r
3: R1 := r ·M mod x
4: R2 := rinv mod x

5: for i from n− 1 to 0 do
6: Rdi := Rdi ·Rdi mod x

7: Rdi := R2
di

mod x
8: R2 := R2

2 mod x
9: end for

10: return (R0, R1, R2)

(2b) RSA-CRT

input: M 6= 0, p, q, dp, dq, iq,
D = p⊕ q ⊕ dp ⊕ dq ⊕ iq

output: Md mod pq or error

1: Pick k-bit random prime s,
such that ps -M, qs -M . FAs

(6−7), FAr, z
d,i

2: Pick random integer r ∈ Z∗pqs . FAr
R2

, FAs
(8)

3: rinv := r−1 mod pqs . FAr
R2

, FAs
(8)

4: (Sp,S
′
p,Rp) :=MonExp(M mod sp,dp,p,r,rinv,s)

5: (Sq,S
′
q,Rq) :=MonExp(M mod sq,dq,q,r,rinv,s)

6: if Sp · Sq = 0 then . FAz
M,R0,R1,R2

7: return error
8: end if

9: S := CRTblinded(Sp, Sq) . DPACRT

10: S′ := CRTblinded(S′p, S
′
q) . DPACRT

11: R := CRTblinded(Rp, Rq) . FAr
R2

, FAs
(8)

12: S := R · S mod pq . FAr
R2

, FAs
(8)

13: if M · S 6≡ R · S′ mod pq then
14: return error
15: end if

16: Sps = (Sp mod s)dq mod (s−1) mod s
17: Sqs = (Sq mod s)dp mod (s−1) mod s

18: if Sps 6= Sqs then
19: return error . FAs

(6−7), FAr, z
d,i

20: end if

21: if p⊕ q ⊕ dp ⊕ dq ⊕ iq 6= D then
22: return error . FAr, z

p,q,iq,dp,dq
23: end if

24: return S

5.1 Countermeasure using the Montgomery Ladder

Fumaroli and Vigilant’s countermeasure [8] (Alg. 6) which aimed to improve
Giraud’s method [9] (Alg. 5) was proven to be vulnerable to random fault at-
tacks [14]. Alg. 2 presents our secure method with the Montgomery ladder .

To prevent fault attacks on register R2 (FAr
R2

, FAs
(8)), we return the

blinded registers R0 and R1 and perform the multiplication with the inverse
contained in R2. This multiplication happens modulo pq, after the blinded CRT
recombinations of all the three registers in lines 9–11 in Alg. 2b.

To achieve prevention against skipping faults (FAs
(6-7)), we include a check

for verifying the integrity of the exponentiations. Since the coherence in the
regular exponentiation algorithms is not lost when skipping faults are injected,
we create a hybrid countermeasure with a technique used in Shamir’s family
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by Aumüller et al. [1]. We conclude the necessity of the modulus extension to
prevent skipping faults and multiply the modulus with a k-bit random prime s.
Sp and Sq are calculated modulo p · s and q · s, respectively, and the signature
is recombined to S = Md mod pq using the blinded recombination from [9]:

S = CRTblinded(Sp, Sq) = (((Sp − Sq) mod sp) · iq mod sp) · q + Sq mod pq. (1)

To verify that no instruction was skipped, two small exponentiations modulo the
k-bit number s with the k-bit exponents are performed as in lines 16–17. If a
skipping fault occurs and the value of Sp or Sq is corrupted, the check in line 18
does not hold with probability 2−k. Besides protecting against skipping faults,
this measure detects faults on the exponent and loop counter i (FAr,z

d,i) of the
exponentiation algorithm, without an additional large register. If the small expo-
nentiations are calculated using the Montgomery ladder (Alg. 1b), then besides
the k-bit message, exponent, and modulus, two k-bit registers, k multiplications
and squarings are used. However, a checksum as an input has to be included to
detect the corruption of p, q, iq, dp or dq in Alg. 2b in line 21.

We note that the blinded CRT recombination recapitulated in Eq. 1 also
prevents the DPA attack on the CRT recombination (DPACRT) from [25].

To avoid zeroing faults (FAz
M,R0,R1,R2

), we check that none of the values
returned by the exponentiation is zero. We perform this before the CRT recom-
binations in Alg. 2b, by verifying Sp ·Sq 6= 0 in line 6. In order to make sure that
this check does not violate the correctness of the algorithm when the message is
a multiple of ps or qs, we choose s such that ps - M and qs - M .

Alg. 2 presents the algorithm that is based on the Montgomery ladder and is
protected against power analysis (PA), safe-error (SE), and fault attacks (FA).
For eliminating the revealed vulnerabilities against fault injection attacks, we
included an additional CRT recombination, transformed two small inversions
to one of doubled size, included one large input register D, two times k multi-
plications and k squaring operations on k-bit registers, where k is the security
parameter that defines the probability of undetected skipping faults as 2−k. We
note that since modular inversion and prime generation imply significant costs,
lines (1-3) can be precomputed (without the assumption ps - M, qs - M) and
s, r and rinv can be provided as inputs to Alg. 2b.

5.2 Countermeasure using the Square-and-Multiply-Always Exp.

Boscher et al. described a square-and-multiply always algorithm that is
resistant to SPA, DPA, and SE [5] (Alg. 7). The algorithm includes a technique
against the exponent modification, and the check R2 6= 0 in the end of the
exponentiation to detect zeroing faults (FAz

M,R2
) [6]. Instead of this check in

both exponentiations, we suggest to verify Sp · Sq 6= 0 in Alg. 3b as in Alg. 2b.
Against skipping faults (FAs

(6−7)) we suggest the same measure as in Alg. 2:
blinding the modulus and performing two small exponentiations in the RSA-CRT
algorithm. For retrieving the signature, the CRT recombination in Eq. 1 is used.
Though not mentioned in [5], the random value r in Alg. 3b should not be
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Algorithm 3 PA-SE-FA method with the square-and-multiply-always exp.

(3a) SqExp(M,d, x, r, rinv, s)

input:M ,d= (dn−1, . . . ,d0)2,
x, r, rinv, s
output: (r ·Md mod sx,
rinv ·M2n−d−1 mod sx,
M2n mod sx)

1: x := s · x . FAs
(6−7), FAr,z

d,i

2: R0 := r
3: R1 := rinv
4: R2 := M

5: for i from 0 to n− 1 do
6: Rdi := Rdi ·R2 mod x

7: R2 := R2
2 mod x

8: end for

9: return (R0, R1, R2)

(3b) RSA-CRT

input: M 6= 0, p, q, dp, dq, iq,
D = p⊕ q ⊕ dp ⊕ dq ⊕ iq

output: Md mod pq or error

1: Pick k-bit random prime s
such that ps -M, qs -M . FAs

(6−7), FAr,z
d,i

2: Pick random integer r ∈ Z∗pqs . FAr
R2

, FAs
(8)

3: rinv := r−1 mod pqs

4: (Sp,S
′
p,Tp) :=SqExp(M mod sp, dp,p, r,rinv, s)

5: (Sq,S
′
q,Tq) :=SqExp(M mod sq, dq,q, r,rinv, s)

6: if Sp · Sq = 0 then . FAz
M,R2

7: return error
8: end if

9: S := CRTblinded(Sp, Sq)
10: S′ := CRTblinded(S′p, S

′
q)

11: T := CRTblinded(Tp, Tq)

12: if M · S · S′ 6≡ T mod pq then
13: return error
14: end if

15: Sps = (rinvSp mod s)dq mod (s−1) mod s
16: Sqs = (rinvSq mod s)dp mod (s−1) mod s

17: if Sps 6= Sqs then
18: return error . FAs

(6−7), FAr,z
d,i

19: end if

20: if p⊕ q ⊕ dp ⊕ dq ⊕ iq 6= D then
21: return error . FAr, z

p,q,iq,dp,dq
22: end if

23: return rinv · S mod pq

too small to avoid the following SPA during the computation of Alg. 3a: if an
adversary is allowed to input the message M = 1, the value of register R2

remains 1 for the whole computation. Therefore, the multiplication in line 6
would only depend on the bits of the secret exponent d, multiplied either with a
small number (r) or with a large number (rinv). This could result in differences in
the power consumption trace and therefore we chose r to be an at least (n+ k)-
bit integer, where n is the bitlength of p and of q, since it is used for operations
of that size in Alg 3a.

Our PA-SE-FA-resistant algorithm with the square-and-multiply-always ex-
ponentiation is depicted in Alg. 3. To eliminate the identified vulnerabilities, we
included one large input register D along with two times k multiplications and k
squaring operations on k-bit registers, in a similar manner as in Alg. 2.
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Algorithm 4 PA-SE-FA method with double exponentiation

(4a) DoubleExp(M,d1, d2, x, s)

input: M 6= 0,
d1 = (d1,n−1, . . . , d1,0)2,
d2 = (d2,n−1, . . . , d2,0)2, x, s

output: (Md1 mod xs,
Md2 mod xs)

1: x := s · x . DPACRT

2: R(0,1) := 1 . SPA
3: R(1,1) := 1 . SPA
4: R(0,2) := 1 . SPA
5: R(1,2) := 1 . SPA
6: R2 := M

7: for i = 0 to n− 1 do . SPA
8: R(d1,i,1)

:= R(d1,i,1)
·R2 mod x

9: R(d2,i,2)
:= R(d2,i,2)

·R2 mod x

10: R2 := R2
2 mod x

11: end for

12: if R(0,1)R(1,1) 6≡ R(0,2)R(1,2) mod x
then . C SE

13: return error
14: end if

15: return (R(0,1), R(0,2))

(4b) RSA-CRT

input: M,p, q, dp, dq, iq
output: Md mod pq or error

1: Pick small r1, r2 ∈ Z r2 ≥ r1 + 2
2: Pick k-bit random prime s
3: (Sp, cp) := . DPA, M-SE, FAr

M , FAz
(d1,d2)

DoubleExp(M mod p, dp+r1(p− 1),
r2(p− 1)− dp−1, p, s)

4: (Sq, cq) := . DPA, M-SE, FAr
M , FAz

(d1,d2)

DoubleExp(M mod q, dq+r1(q − 1),
r2(q − 1)− dq−1, q, s)

5: S := CRTblinded(Sp, Sq) . DPACRT

6: if M · S · cp 6≡ 1 mod p then
7: return error . FAr

M , FAz
(d1,d2)

8: end if

9: if M · S · cq 6≡ 1 mod q then
10: return error . FAr

M , FAz
(d1,d2)

11: end if

12: return S mod pq

5.3 Countermeasure using Double Exponentiation

Rivain proposed the first countermeasure that uses double exponentiation [22]
(Alg. 8). He included modifications by means of which it becomes SPA-DPA-
SE-resistant, still requiring the precomputation of the addition chain (Alg. 9).
Our aim is to consider measures in the insecure but more efficient algorithm
by Le et al. [18] (Alg. 10), which does not include precomputation but ignores
protection against PA and SE.

Firstly, we transform the algorithm to become resistant to SPA. We use two
additional registers with dummy operations in order to achieve regularity. Thus,
the algorithm requires the use of altogether 5 registers: R(0,1) and R(1,1) belong-
ing to exponent d1, R(0,2) and R(1,2) belonging to exponent d2, and R2 used as
before. Since for every bit of the exponents the same operations have to per-
formed, this results in altogether 2n multiplications and n squaring operations.

Introducing regularity includes dummy operations. Registers R(1,1) and R(1,2)

are unused and thus all the multiplications that assign values to them are
dummy operations. To avoid computational safe-error attacks (C-SE) on
these operations, in the end of the exponentiation we include the check whether
R(0,1) ·R(1,1) ≡ R(0,2) ·R(1,2) mod x. Since both the products corresponding to

the two exponents are M2n−1 mod x, this holds if the values are not corrupted.
With this, we verify the correctness of the dummy values.
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Method Efficiency criteria Fault injection attacks Other

Ref. Alg. CRT Check Inv. Reg.k-bit Reg. Mult. Sq. Ran Zeroing Skipping PA SE

Total Per exp. 1 2 1 2

[8] 6 2 4 2(p,q) 0 0 4 n+ 3 2n R2 M,R∀ (7) (5-6),2(7) X X
2 3 4 1(pqs) 1 4k 3 n+ 2 2n 4 4 4 4 4 X X

[5,6] 7 3 5 1(pq) 0 0 4 n+ 2 n X X X X (6-7) X X
3 3 4 1(pqs) 1 4k 3 n+ 1 n X X X X 4 X X

[22] 9 1 2 0 0 0 3 1.65n 0 M X X X X X X
[18] 10 1 2 0 0 0 3 1.65n M X d1,d2 X X × ×

4 1 4 0 0 0 5 2n+3 n 4 X 4 X X 4 4

Table 3: Comparison of our PA-SE-FA self-secure exponentiation countermea-
sures with previous methods. The notation is consistent with that of Table 1
and Table 2, k-bit denoting the included k-bit operations (squaring and multi-
plication). We highlight with bold checkmarks (4) those vulnerabilities that we
eliminated in our secure countermeasures and we bold the additional resources
needed to be used in order to achieve security against all the considered attacks.

To achieve resistance against differential power analysis on the exponen-
tiation (DPAexp) and memory safe-error attacks (M-SE), we include the
exponent blinding method of Rivain in the RSA-CRT algorithm [22]. Against
DPA on the CRT recombination (DPACRT), we apply the blinded CRT re-
combination method with extended modulus from [9]. For the description of r1
and r2 and the correctness of the blinding method, the reader is referred to [9,22].

To detect any randomizing fault on the message M (FAr
M), we include

its value in the coherence checks as it was seen in case of the countermeasures
from [5, 6, 8, 9]. We decrease the value of the exponents used for the calculation
of cp and cq by one, and multiply the results with M , during the verification in
lines 7 and 10 of Alg. 4b. For instance, if Sp and cp are calculated by means of

a corrupted M̂ , the verification M · M̂dp+r1ϕ(p) · M̂r2ϕ(p)−dp−1 ≡ 1 mod p does
not hold with high probability. With this, the zeroing faults on exponents d1

and d2 (FAz
(d1,d2)

) are also thwarted, the algorithm returns (1, 1) in case of two
null exponents, and the modified check does not hold anymore.

Our PA-SE-FA-resistant countermeasure using double exponentiation is de-
picted in Alg. 4. Though the modified countermeasure is less memory-efficient
than Le et al.’s algorithm, we note its advantage against physical attacks.

6 Conclusion

In this paper, we analyzed the existing self-secure exponentiation countermea-
sures against the Bellcore attack on RSA-CRT. Using our framework, we simu-
lated all possible fault injections considering random and zeroing faults as well
as instruction skips on the lines of pseudocode. We found that all the coun-
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termeasures using regular exponentiation algorithms lacked protection against
some kind of faults or power analyses.

We presented three countermeasures, one for each exponentiation algorithm
used for designing self-secure exponentiation countermeasures(cf. Table 3). All
the three methods are based on regular algorithms to prevent simple power ana-
lysis (SPA), include randomization to be resistant to differential power analysis
(DPA) and memory safe-error (M-SE) attacks, and eliminate dummy operations
which could be exploited by computational safe-error (C-SE) attacks. Measures
are included against all considered fault injection attacks (FA) as well. We ver-
ified that we eliminated the previous vulnerabilities of the methods without
introducing new ones by applying our simulation framework on the pseudocode
of the improved algorithms. To prevent skipping faults, we included additional
checks into two of our methods, inspired by a countermeasure in Shamir’s family,
resulting in hybrid methods. We included prevention against fault attacks on the
previously vulnerable register in the countermeasure that uses the Montgomery
ladder. Our proposed solution that uses double exponentiation includes protec-
tion against power analyses and safe-error attacks in the algorithm where it was
not considered.

We note that the vulnerability of the message corruption and of the DPA on
the CRT recombination in Rivain’s SPA-resistant method can be eliminated in a
similar algorithmic manner as in Section 5.3, gaining another, the most efficient
secure software countermeasure when precomputation is allowed. When precom-
putation is not allowed, our proposed solution using the square-and-multiply-
always algorithm is the most efficient algorithmic countermeasure.
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A Self-Secure Exponentiation Countermeasures

Algorithm 5 Giraud’s countermeasure [9]
PA attack model: SPA, chosen message SPA from [28].
Fault model: Random faults on variables and input parameters. Zeroing at-
tacks, disruption of checking are regarded as impossible in practice. For the
integrity check of d, i, we assume that an additional register is used in Table 1.

(5a) Modular exp.: GirExp(M,d, x, r)

input: M,d = (dn−1, . . . ,d0)2 odd, x, r
output: (Md−1 mod r ·x,Md mod r ·x)

1: xr := r · x
2: R0 := M , R1 := R2

0 mod xr

3: for i from n− 2 to 1 do
4: Rdi := Rdi ·Rdi mod xr

5: Rdi := R2
di

mod xr
6: end for

7: R1 := R1 ·R0 mod xr
8: R0 := R2

0 mod xr

9: if i or d disturbed then
10: return error
11: end if

12: return (R0, R1)

(5b) Giraud’s RSA-CRT

input: M,p, q, dp, dq, iq
output: Md mod pq or error

1: Pick k-bit random prime r
2: (S′p,Sp) :=GirExp(M mod p,dp,p,r)
3: (S′q,Sq) :=GirExp(M mod q,dq,q,r)

4: S := CRTblinded(Sp, Sq)
5: S′ := CRTblinded(S′p, S

′
q)

6: S′ := M · S′ mod (p · q)
7: if S′ 6= S then return error
8: end if

9: if p, q or iq disturbed then
10: return error
11: end if

12: return S

Algorithm 6 Fumaroli and Vigilant’s countermeasure [8]
Attack model: SPA, DPA, against which blinding is included.
Fault model: That of Giraud’s [9].

(6a) Modular exp.: FumVigExp(M,d, x)

input: M 6= 0, d = (dn−1, . . . , d0)2, x
output: (Md mod x,Md+1 mod x)

1: Pick k-bit random prime r
2: R0 := r, R1 := rM mod x
3: R2 := r−1 mod x, D := 0

4: for i from n− 1 to 0 do
5: Rdi := Rdi ·Rdi mod x

6: Rdi := R2
di

mod x
7: R2 := R2

2 mod x
8: D := D + di,
9: D := D · 2

10: end for
11: D := D/2
12: R2 := R2 ⊕D ⊕ d
13: return (R2 ·R0 mod x,R2 ·R1 mod x)

(6b) Fumaroli and Vigilant’s RSA-CRT

input: M 6= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: (Sp,S
′
p) :=FumVigExp(M mod p,dp,p)

2: (Sq,S
′
q) :=FumVigExp(M mod q,dq,q)

3: S := CRT(Sp, Sq)
4: S′ := CRT(S′p, S

′
q)

5: if S ·M mod p · q 6≡ S′ then
6: return error
7: end if

8: if p, q or iq disturbed then
9: return error

10: end if

11: return S
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Algorithm 7 Boscher et al’s countermeasure 2007 [6], modifications 2009 [5]
Attack model: Regularity against SPA, blinding against DPA.
Fault model: One fault per execution [6], on local variables, input parameters.

(7a) Modular exp: BosExp(M,d,x,r,rinv)

input: M,d = (dn−1, . . . ,d0)2,x,r,rinv
output: (r ·Md mod x,
rinv ·M2n−d−1 mod x, M2n mod x)

1: R0 := 1 · r
2: R1 := 1 · rinv
3: R2 := M
4: D := 0

5: for i from 0 to n− 1 do
6: Rdi := Rdi ·R2 mod x

7: R2 := R2
2 mod x

8: D := D + 2n · di
9: D := D/2

10: end for

11: if (D 6= d) or (R2 = 0) then
12: return error
13: end if
14: return (R0, R1, R2)

(7b) Boscher et al.’s RSA-CRT

input: M 6= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: Pick a k-bit random integer r
2: rinv := r−1 mod pq

3: (Sp, S
′
p, Tp) :=

BosExp(M mod p, dp, p, r, rinv)
4: (Sq, S

′
q, Tq) :=

BosExp(M mod q, dq, q, r, rinv)

5: S := CRT(Sp, Sq)
6: S′ := CRT(S′p, S

′
q)

7: T := CRT(Tp, Tq)

8: if M · S · S′ 6≡ T mod pq then
9: return error

10: end if

11: return rinv·S mod pq

Algorithm 8 Rivain’s countermeasure [22]
The addition chain is precomputed with ChainCompute(d1, d2) from [22] and
stored in memory or is computed on-the-fly.

(8a) Double exp.: RivExp(M,ω(d1,d2),x)

input: M , ω(d1,d2) n-bits chain, d1 ≤
d2, x

output: (Md1 mod x,Md2 mod x)

1: R0 := 1, R1 := M , γ := 1, i := 1

2: for i = 1 to n do
3: if (ωi = 0) then
4: Rγ := R2

γ mod x
5: i := i+ 1
6: if (ωi = 1) then
7: Rγ := Rγ ·M mod x
8: end if
9: else

10: Rγ⊕1 := Rγ⊕1 ·Rγ mod x
11: γ := γ ⊕ 1
12: end if
13: end for

14: return (Rγ⊕1, Rγ)

(8b) Rivain’s RSA-CRT

input: M,p, q, dp, dq, iq
output: Md mod pq or error

1: ωp := ChainCompute(dp, 2(p−1)−dp)
2: (Sp, cp) := RivExp(M mod p, ωp, p)

3: ωq := ChainCompute(dq, 2(q−1)−dq)
4: (Sq, cq) := RivExp(M mod q, ωq, q)

5: S := CRT(Sp, Sq)

6: if S · cp 6≡ 1 mod p then
7: return error
8: end if

9: if S · cq 6≡ 1 mod q then
10: return error
11: end if

12: return S
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Algorithm 9 Rivain’s PA-resistant countermeasure [22]
Attack model: Regular SecRivExp and ChainCom against SPA, blinding
against DPA. This blinding method can only be used if the double addition
chain is computed on-the-fly.
Fault model: M is assumed to be protected, transient faults, i.e., faults whose
effect lasts for one computation, are considered.

(9a) Double exp:
SecRivExp(M,ω(d1,d2),x)

input: M 6= 0, ω(d1, d2) n-bits,
d1 ≤ d2, x
output: (Md1 mod x,Md2 mod x)

1: R(0,0) := 1, R(0,1) := M,
2: R(1,0) := M
3: γ := 1, µ := 1, i := 0

4: while i < n do
5: t := ωi ∧ µ
6: v := ωi+1 ∧ µ
7: R(0,γ⊕t) :=

R(0,γ⊕t) ·R((µ⊕1),γ∧µ) mod x
8: µ := t ∨ (v ⊕ 1)
9: γ := γ ⊕ t

10: i := i+ µ+ µ ∧ (t⊕ 1)
11: end while

12: return (Rγ⊕1, Rγ)

(9b) RSA-CRT

input: M,p, q, dp, dq, iq
output: Md mod pq or error

1: Pick small r1, r2 ∈ Z r2 ≥ r1 + 2
2: ωp :=

ChainCom(dp+r1(p− 1),r2(p− 1)− dp)
3: (Sp, cp) := SecRivExp(M mod p, ωp, p)

4: ωq :=
ChainCom(dq+r1(q − 1),r2(q − 1)− dq)

5: (Sq, cq) := SecRivExp(M mod q, ωq, q)

6: S := CRT(Sp, Sq)

7: if S · cp 6≡ 1 mod p then
8: return error
9: end if

10: if S · cq 6≡ 1 mod q then
11: return error
12: end if

13: return S mod pq

Algorithm 10 Le et al.’s binary countermeasure [18]
Attack model: No side-channel attacks are discussed in [18].
Fault model: Same as that of Rivain [22].

(10a) Double exp.: LeExp(M,d1, d2, x)

input: M 6= 0, d1 = (d1,n−1, . . . , d1,0)2
d2 = (d2,n−1, . . . , d2,0)2, x

output: (Md1 mod x,Md2 mod x)

1: R0 := 1, R1 := 1, R2 := M

2: for i = 0 to n− 1 do
3: if d1,i = 1 then
4: R0 := R0 ·R2 mod x
5: end if
6: if d2,i = 1 then
7: R1 := R1 ·R2 mod x
8: end if
9: R2 := R2

2 mod x
10: end for

11: return (R0, R1)

(10b) Rivain’s RSA-CRT

input: M 6= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: (Sp, cp) := LeExp(M mod p,
dp, 2(p− 1)− dp, p)

2: (Sq, cq) := LeExp(M mod q,
dq, 2(q − 1)− dq, q)

3: S := CRT(Sp, Sq)

4: if S · cp 6≡ 1 mod p then
5: return error
6: end if

7: if S · cq 6≡ 1 mod q then
8: return error
9: end if

10: return S
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