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Abstract 

It has been observed repeatedly in the post-earthquake investigations that buildings having frequency similar to soil 

frequency (coming from H/V for example) exhibit significantly greater damage due to the double resonator concept 

(Caracas 1967, Mexico 1985, L'Aquila 2009). However this observation is generally not taken directly into account neither 

in present-day seismic regulations (small scale), nor in large-scale seismic risk analysis. We considered a theoretical 

analysis to study the effect of frequency coincidence between soil and building. As a first step, 887 natural soil profiles with 

linear behavior are associated to a set of single degree of freedom elastoplastic oscillators. The results obtained are used to 

quantify the damage increment related to the soil-building frequency coincidence and depending on different parameters 

such as the loading level characterized by the peak ground acceleration (PGA), the soil profile (impedance contrast, soil 

frequency) and the building (ductility, fundamental frequency). This statistical work is based on Artificial Neural Network 

(ANN) approach that does not require any prior knowledge, confirming that the main parameter controlling the damage 

increase is the ratio structure frequency to soil frequency (fstruct/fsoil), with a synaptic weight exceeding 58% (when PGA 

represents 27.05%, the impedance contrast 10.44% and ductility 4.24%). The leading parameter, i.e. the fstruct/fsoil ratio, 

controls also the damage increment when considering various ductility classes with a synaptic weight percentage of 45%; 

the parameter that follows is the PGA. 
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1. Introduction 

Most of the destructive effects of an earthquake come from vibrations associated to waves that are generated by 

a sudden slip along a fault. These vibrations are characterized by their frequencies and associated amplitudes, 

whereas waves are characterized by their type (body waves – compression or shear - and surface waves) and 

their velocity. The latter is relatively stable in the deepest layers, but highly variable when approaching the 

surface because it is directly related to the soil profile and bedrock. Therefore, the propagation of these waves is 

strongly affected by surface heterogeneities, and this spatial variability linked to geology is usually called "site 

effects". The amplitude and frequency characteristics have obviously an impact on the structural behavior. As a 

first approximation, a building can be considered as an "inverted pendulum", or as a cantilever embedded in soil: 

its vibratory behavior is similar to that of an oscillator with one or more degrees of freedom, and one or more 

vibration modes, and is characterized by its frequencies, mode shapes and damping; damages in a building are 

mostly related to internal deformations it undergoes, which in turn are linked to the total displacement imposed 

by the earthquake and the fundamental frequency of the building. If one of the soil frequencies coincides with 

the frequency of the building, and the incident energy is sufficient, the corresponding mode will be particularly 

activated, and the resulting deformation will be greater. Thus the coupling between resonators is a key parameter 

in the spatial distribution of damage during an earthquake, connected to the frequency distribution of soil and 

buildings, and the level of associated resonances (as a function of the rigidity contrast and the damping in soils 

and structures). This theoretical concept of a double resonator is repeatedly observed in post-seismic 

investigations (Caracas 1967, Mexico 1985, Pujili 1996): buildings with fundamental frequencies coinciding 

with the resonance frequencies of the soil are subjected to greater damage. 

However, this observation is generally not taken into account neither in the current seismic regulations 

(small scale), nor in the analysis of seismic risk at urban scale. There is often a lack of consistency between the 

seismic risk studies that consider the actual frequencies of the ground, and the large-scale seismic risk maps that 

only account for the building frequency. Most often, the estimation of seismic hazards include the modeling of 

seismic actions based on local geological conditions, through a "site proxy ": the average velocity of S waves 

over a depth of 30 m, Vs30, is the most commonly used. Many recent studies emphasize the relevance of the 

fundamental frequency of soil as another potential "proxy", especially as its measurement is easily obtained by 

ambient vibration method (H/V method widely spread over the last two decades (Nakamura 1989 [1])). 

However, most of the seismic risk and vulnerability studies do not consider the dynamic parameters that could 

be easily extracted (Dunand 2005 [2]); instead they use traditional information such as the type and age of 

buildings to establish empirical formulas correlating damage to the macroseismic intensity at large scale.  

The objective of this paper is to focus on the effects of the coincidence between soil and buildings 

frequencies, in order to derive an estimate of the damage increment, which could be applied to real sites where a 

lack of information on soil or structure does not allow an appropriate modeling of their behavior. In this 

perspective, a theoretical approach is undergone to establish both a mechanical understanding and a quantitative 

relationship between the expected damage and the various physical parameters related to the input seismic 

signal, and to the response of the soil foundation and the structure, considering the coincidence of frequencies. 

To that end, the Artificial Neural Network approach is used to analyze a large number of combinations 

composed of incident signals, realistic soil profiles and single degree of freedom buildings a; this approach does 

not require any prior idea on functional forms and connects the output parameter (increment of damage) to 

various input parameters (PGA, typology class, impedance contrast and frequency ratio structure/soil). 

2. Realistic Case: Oscillator with a single-degree-of-freedom on a multi-layered profile  

The study of the coincidence of frequencies between soil and structure involves the combination of a structure 

associated, a multilayered soil profile and a seismic signal injected at the base:  

i. the seismic excitation considered here consists of a series of 60 synthetic realistic accelerograms for 

different scenarios (magnitude between 3 and 7, distance between 5 and 100 km, PGA from 0.02 m.s-2 to 

8.6 m.s-2), that are simulated using Sabetta and Pugliese (1996 [3]) approach which has the particularity 

to (i) reproduce the real ground motion, by taking into account the nonstationarity of its amplitude and 
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frequency and (ii) generate multiple time histories having the same magnitude and distance source to site 

with a different random seed.  

ii. 887 multilayer realistic soil profiles are compiled from KIKNET (Japanese site), Boore (California sites) 

and NERIES (European sites) database. Each soil profile is defined by a number of layers, and their 

thickness, Vp, Vs and density. In the absence of any further information about the quality factors Qp and 

Qs, we assumed Qp = 2Qs = Vs/5 (Aki and Richards 1980 [4]; Bertil et al. 1989 [5]). 

iii. 141 oscillators with one degree of freedom with an elastoplastic behavior and realistic properties (Fig. 1) 

from the European Risk-UE project (Lagomarsino and Giovinazzi 2006 [6]): it covers a wide range of 

fundamental periods, elastic yield displacement, ductility coefficients; structures are classified into 5 

main categories: Masonry, non-designed reinforced concrete reinforced concrete with Low (DCL), 

Medium (DCM), and High Ductility class (DCH) 

 

Fig. 1 – Distribution of the 141 structures taken from Lagomarsino and Giovinazzi (2006): a) yielding 

displacement dy (m), b) du/dy as a function of the period (s) with respect to the 5 typology classes.  

A seismic signal is introduced and modified while propagating through the various layers of the soil 

medium due to the reflection and transmission mechanism at the interfaces (Kennet 1983 [7]). The signal 

modified at the soil surface is then injected at the base of the structure having an elastoplastic behavior without 

including the soil structure interaction. The equation of motion of a damped elastoplastic oscillator having a 

damping of 5% under a seismic excitation is solved by the step by step method of Newmark (Eq. (1)): 

 gxmkxxcxm    (1) 

The maximum displacement at the top of the oscillator is thus obtained: if it is less than the elastic limit 

then the structure is not damaged and its behavior is in this case elastic; on the contrary if the maximum 

displacement exceeds the elastic limit, the structure enters the plastic range with irreversible damage. A total of 

7504020 combinations (887 soil profiles x 60 seismic signals x 141 types of structure) are considered. For each 

model, maximum displacements are computed for two configurations: one where the structure is coupled to the 

soil foundation, and the other taking into account the same structure on the corresponding outcropping bedrock. 

A new index is designed to quantify the damage increment based on the European Risk-UE project 

(Lagomarsino and Giovinazzi 2006 [6]). The damage index D is a real number from 0 to 4 describing the state 

damage by comparing the maximum displacement of the structure with different displacement thresholds 

according to the following equations (Eq. (2)) and Fig. 2: 
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 (2) 

The next step is to statistically link the damage increment soil/rock (ΔDI=Dsoil-Drock) to main input 

parameters: the frequency ratio structure/soil, the impedance contrast, the peak ground acceleration (PGA), the 

ductility. Given the huge number of results, the Artificial Neural Network approach is considered as a suitable 

technique to obtain correlations between these parameters without any prior assumption on functional forms that 

describe the dependency between parameters (Derras et al. 2012 [8]). 

 

Fig. 2 – Damage index definition based on the damage state and displacements thresholds of Lagomarsino and 

Giovinazzi (2006 [6]).The black line is the capacity curve, the red line is the new damage index.  

3. Artificial Neural Network (ANN) approach  

3.1 Creating the network 

The optimal neural network selected for this database (found after many trial) is a network composed of 4 

input parameters: log (fstruct/fsoil), log (PGA), log (impedance contrast) and ductility (ratio of ultimate limit du 

over the yield dy); 1 output: the damage increment between soil and rock; with an intermediate layer of 15 

'hidden' neurons. A preliminary training leads to the following synaptic weights percentages: 58% for the 

structure/soil ratio, 27.05% for PGA, 10.44% for the impedance contrast and 4.24% for the ductility. At first the 

leading parameter that controls the damage increment is the frequency ratio between structure and soil; since the 

ductility has the lowest impact, we neglect it as an input and considered only the first 3 inputs, however taking 

into account 5 neural networks with respect to the 5 typology classes already defined. The activation function is 

tanh sigmoid for the intermediate layer and linear for the output layer. The algorithm used is Broyden-Fletcher-

Goldfarb-Shannoare BFGS (quasi -Newton method). The training is executed 10 times to ensure a good 

accuracy for the neural network due to the change in the initial conditions (weight and bias) at each training, and 

the problem of overfitting is avoided with the early stopping technique after randomly dividing each neural 

network into 3 data sets: 70% for training set, 15% for validation set and 15% for the test. 

The input (In) and target (Tn) parameters are then normalized (Eq. (3)): This step is important to improve 

the efficiency of the training of the neural network and accelerate the computation process. The goal is to ensure 

that the extreme bounds of values for each net input and output are the same -1 and +1 (Meenakshi and Mohan 

2012 [9]). 
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Imin and Imax, Tmin and Tmax are respectively the minimum and maximum values for the input In and the target Tn. 

The optimal number of hidden neurons is determined from the information criterion of Akaike (AIC) 

proposed by Akaike (1974 [10] and the root mean square error RMSE (Eq . (4), (6)). The more AIC and RMSE 

parameters are low, the better is the neural model (Fogel 1990 [11]; Murata et al. 1994 [12]) 

  m  2  logMSE  L  AIC   (4) 
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


L

i

ll yd
L 1

2)(
1

 MSE  (5) 

 MSE RMSE  (6) 

with L: number of samples used for learning; m: number of synaptic weights in the network= 

(input+output) x hidden neurons; in other terms it is the number of degrees of freedom of the ANN, dl is the 

normalized target value for the sample l and yl is the normalized generated output by the ANN for the sample l. 

Fig. 3 shows that the optimal number of hidden neurons is equal to 10.  

 

Fig. 3 – Choice of the number of neurons as a function of RMSE and AIC 

The final architecture of the neural network is displayed in Fig. 4. 
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Fig. 4 – Architecture of the Neural Network for each of the 5 classes: inputs are the structure soil frequencies 

ratio, the impedance contrast and the PGA; the output is the damage increment between soil and rock. 

3.2 Validating the network 

The performance of the neural network is assessed based on statistical indicators (Longhi et al. 2005 [13]): 

the coefficient of determination (R2) and the mean square error (MSE). Early stopping method is used to avoid 

overfitting. Table 1 summarizes the statistical parameters measuring the performance of the network (MSE and 

R2) with respect to the 5 typology classes. 

Table 1 – Statistical parameters measuring the performance of the network (MSE and R2) with respect to the 5 

typology classes. 

 Standard 

deviation of 

normalized 

target 

All the data Training (70%) Validation (15%) Test (15%) 

 MSE RMSE MSE R
2
 MSE R

2
 MSE R

2
 

Class1 0.1817 0.0157922 0.12566701 0.01581063 0.81158 0.01574783 0.81091 0.01575056 0.80836 

Class2 0.17 0.01030307 0.10150402 0.01025234 0.80092 0.0106814 0.8012 0.01016147 0.80084 

Class3 0.1724 0.01264732 0.11246029 0.01247183 0.80798 0.01260141 0.80808 0.01351214 0.80915 

Class4 0.1525 0.00883103 0.09397356 0.00881253 0.80764 0.00893056 0.80543 0.00881781 0.80631 

Class5 0.1473 0.00915062 0.09565889 0.00910931 0.81657 0.00926024 0.81543 0.00923381 0.80996 

 

R2 is about ~0.8 for the training (70%), validation (15%) and test (15%) sets, therefore this is an indication 

of a good fit and the model is thus validated. 
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3.3 Using the network 

After building and validating the network, correlations between the inputs and outputs are determined 

based on matrices of weights and biases and on the predefined activation functions (tanh sigmoid and linear) 

according to the equation (Eq. (7)): 

   ]]I11[]2[2[ T n12n wbwb  (7) 

Where ϕ1 and ϕ2 are respectively the activation functions in the hidden (tangent sigmoid function) and the 

output layers (linear function); w1, b1, w2, b2 are respectively the matrices of weights and bias in the hidden and 

output layers.  

Then in the post-processing phase inputs I and outputs O are denormalized using the same preprocessing 

parameters and based on Eq. (8): 

 minminmaxn I)II()1I(
2

1
  I    

 minminmaxn T)TT()1O(
2

1
  O   (8) 

Each input parameter that is introduced is initialized with an arbitrary weight: during the training process 

weights are updated in order to minimize the error between the computed output and the targets. Once the 

convergence occurs, the percentage of the synaptic weight for each input is computed based on Eq. (9): 

 (%)  P

1
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1j
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1j

i
h

h




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


N

i

h

ij

h

ij

w

w

 (9) 

N: number of inputs, Nh: number of hidden neurons and 
h

ijw  synaptic weight between the ith node of the 

input layer and the jth node of the hidden layer.  

Fig. 5 highlights the percentages of synaptic weights for each of the 3 input parameters considering the 5 

typology classes: the most predominant parameter is the frequency ratio between soil and structure (~45%) 

whatever the typology class, which confirms the relevance of this parameter in the prediction of the damage 

increment. However it can be noted that the second significant parameter is the PGA (~30%), namely, the 

excitation level, and the last parameter (the lowest synaptic weight) is the impedance contrast (~20%).  

Using the final matrices of weights and biases and replacing in the activation functions (Eq. [7]), we can 

compute the output (i.e. the damage increment between soil and rock) generated from the Neural Network as a 

function of the input variables considered. In this paper we considered only the class 3 (i.e. low ductility class 

DCL). The resulting graphs (Fig. 6) present the variation of the damage increment with respect to the 

structure/soil frequency ratio and the impedance contrast (C) (Fig. 6a, b), and the loading level (PGA) (Fig. 6c, 

d). Many observations can be noted when interpreting these graphs: 

i.  The effect of the spectral coincidence is clear with a peak of damages observed for fstruct/fsol= 1. 

The peak is less pronounced at intermediate PGA; however we can notice that for low ductility it 

is shifted towards high ratio of fstruct/fsoil at PGA >2 m/s2: this can be explained by the fact that 

at high PGA the structure enters the plasticity domain: its frequency is thus decreased and its 
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damping increased and the frequency coincidence can thus occur for originally stiffer degrading 

buildings. 

ii. When the impedance contrast increases the damage increment increases because of the increase of 

the soil amplification.  

iii. When PGA increases the damage increment increases as expected due to the level of excitation. 

Thus, the Neural Network can estimate the damage increment from the information about 4 parameters: 

PGA on the rock (a proxy for an earthquake scenario), ductility (the typology of the building), the velocity 

contrast (a proxy for the amplification of the soil) and the frequency ratio. The latter is relatively easy to measure 

or predict from the ambient vibration measurements. A final major conclusion is made by comparing the 

standard deviation of the desired normalized targets and the standard deviation RMSE of the generated output 

from the ANN in Table 1: we can notice for all typology classes that the initial standard deviation was reduced to 

almost 30~50% of its value; this confirms the performance of the Neural Network to better fit the data available 

highlighted by a very good coefficient of determination R2. 

 

Fig. 5 – Synaptic weights percentage distribution according to the input parameters and the typology classes. 
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Fig. 6 – Class 3:Variation of the damage increment between soil and rock as a function of the structure to soil 

frequency ratio and: a) the impedance contrast , and b) for 4 values of c, for different ranges of PGA (m/s2); c) 

the PGA (m/s2), and d) for 4 values of PGA , for different ranges of contrast. 
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4. Conclusion 

The effect of the spectral coincidence between soil and structure is investigated using the response of a 

simple oscillator with a perfect elastoplastic behavior (defined by: the elastic limit, the fundamental frequency, 

the ductility) associated to a multilayer soil profile (characterized by two key parameters: the impedance 

contrast, and fundamental frequency) and a series of synthetic accelerograms mimicking an earthquake with a 

variable range of distances and magnitudes (related to the peak ground acceleration PGA and spectral content). 

Structural damage is defined as the ductility demand (ratio of the maximum displacement with respect to the 

elastic limit), and the damage increase due to the soil amplification is quantified by comparing the ductility when 

the same elastoplastic oscillator is on the soil or on the outcropping bedrock. Hundreds of realistic soil profiles 

are considered to explore the effects of spectral coincidence on damage considering a wide range of typologies 

of conventional construction from Risk-UE project. A new damage index was introduced to quantify the 

increment damage due to amplification of the soil. The large number of results (over 7.5 million) led us to use a 

Neural Network approach to explore the dependence of damage on mechanical properties of the soil and 

structure. Despite the absence of any prior functional form, it was confirmed that the key parameter that controls 

the damage increment is the ratio fstruct/fsoil with a synaptic weight close to 45%. The effect of this spectral 

coincidence between the soil and the structure is very clear at moderate PGA with a pronounced peak at 

fstruct/fsoil = 1. This interesting tool (Neural Network), which is not only used in seismology but in many other 

fields, proved to be an ad hoc tool to analyze our large dataset of soil/structures/signals and to highlight the most 

impacting parameter (the coincidence of frequencies) in the estimation of the buildings “damage”. The reduction 

of the standard deviation in the target set by almost 30~50% when computing the generated output, highlights 

the efficiency of the Neural Network and its high capacity of performing and fitting the model. This efficiency is 

also demonstrated by investigating the mean squared errors MSE and the coefficient of determination R2 which 

show very good values and the relevancy of the selected parameters as well. An important next step would be to 

find a proxy for the amplification of the soil that would be measured more easily, namely the H/V amplitude 

obtained from ambient noise measurements instead of the impedance contrast that needs geotechnical testing 

which is less economic and more difficult to acquire. Another direction for further investigations would be to 

look for other sets of site and building parameters that could lead to a larger variance reduction. However, in 

view of applications at an urban scale, one must always search the optimal compromise between physical 

relevance and practical considerations (i.e., the easy availability of the selected parameters). 
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