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W 2;2 INTERIOR CONVERGENCE FOR SOME CLASS OF
ELLIPTIC ANISOTROPIC SINGULAR PERTUBATIONS

PROBLEMS

CHOKRI OGABI

Abstract. In this paper, we deal with anisotropic singular perturbations of
some class of elliptic problem. We study the asymptotic behavior of the solu-
tion in certain second order pseudo Sobolev space.

1. Description of the problem

In this paper, we study di¤usion problems when the di¤usion coe¢ cients in cer-
tain directions are going toward zero. More precisely we are interested in studying
the asymptotic behavior of the solution in certain second order pseudo Sobolev
space. We consider the following elliptic problem

�
�div(A�ru�) = f
u� 2W 1;2

0 (
)
(1)

where 0 < � � 1 and 
 is a bounded domain (i.e. open bounded connected subset)
of RN and f 2 L2(
): We denote by x = (x1; :::; xN ) = (X1; X2) the points in RN
where

X1 = (x1; :::; xq) and X1 = (xq+1; :::; xN );

with this notation we set

r = (@x1 ; :::; @xN )T =
�
rX1

rX2

�
;

where

rX1
= (@x1 ; :::; @xq )

T and rX2
= (@xq+1 ; :::; @xN )

T

The di¤usion matrix A� is given by

A� = (a
�
ij) =

�
�2A11 �A12
�A21 A22

�
with A = (aij) =

�
A11 A12
A21 A22

�
;
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where A11 and A22 are q � q and (N � q)� (N � q) matrices. The coe¢ cients a�ij
are given by

a�ij =

8>><>>:
�2aij for i; j 2 f1; ::; qg
aij for i; j 2 fq + 1; ::; Ng
�aij for i 2 f1; ::; qg , j 2 fq + 1; ::; Ng
�a�ij for i 2 fq + 1; ::; Ng , j 2 f1; ::; qg

We assume that A 2 L1(
) and for some � > 0 we have

A(x)� � � � � j�j2 ,8� 2 RN ; a.e x 2 
: (2)

Recall the Hilbert space introduced in [2]

V 1;2 =
n
u 2 L2(
) j rX2u 2 L2(
) and u(X1; �) 2W

1;2
0 (
X1) a.e X1 2 
1

o
; :

equipped with the norm

kuk1;2 =
�
kuk2L2(
) + krX2

uk2L2(
)
� 1
2

:

Here 
X1
=
�
X2 2 RN�q : (X1; X2) 2 


	
and 
1 = P1(
) where P1 is the natural

projector RN ! Rq:
We introduce the second order local pseudo Sobolev space

V 2;2loc =
�
u 2 V 1;2 j r2X2

u 2 L2loc(
)
	
;

equipped with the family of norms (k�k!2;2)! given by

kuk!2;2 =
�
kuk2L2(
) + krX2

uk2L2(
) +
r2X2

u
2
L2(!)

� 1
2

, ! �� 
 open

wherer2X2
u is the Hessian matrix of u taken in theX2 direction, the term

r2X2
u
2
L2(!)

is given byr2X2
u
2
L2(!)

=
NX

i;j=q+1

@2iju2L2(!) :
We can show that V 2;2loc is a Fréchet space (i.e. locally convex, metrizable and
complete). We also de�ne the followingr2X1

u
2
L2(!)

=

qX
i;j=1

@2iju2L2(!) ;
and r2X1X2

u
2
L2(!)

=

qX
i=1

NX
j=q+1

@2iju2L2(!) :
As �! 0, the Limit problem is given by

�
�div(A22ru0(X1; �) = f(X1; �)
u0(X1; �) 2W 1;2

0 (
X1
) a.e X1 2 
1

(3)

The existence and the uniqueness of the W 1;2
0 weak solutions to (1) and (3)

follow from the Lax-Milgram theorem. In [1] the authors studied the relationship
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between u� and u0 and they proved that u0 2 V 1;2 and the following convergences
(see Theorem 2.1 in the above reference)

u� ! u0 in V 1;2 and �rX1u� ! 0 in L2(
): (4)

For the Lp case we refer the reader to [6], and [2],[4], [5] for other related problems.
In this paper, we deal with the asymptotic behavior of the second derivatives of
u�, in other words we show the convergence of u� in the space V

2;2
loc introduced

previously. The arguments are based on the Riesz-Fréchet-Kolmogorov compacity
theorem in Lp spaces. Let us give the main result

Theorem 1. Assume that A 2 L1(
) \ C1(
) with (2), suppose that f 2 L2(
)
then u0 2 V 2;2loc and u� ! u0 in V

2;2
loc , where u� 2 W

1;2
0 (
) \W 2;2

loc (
) and u0 are
the unique weak solutions to (1) and (3) respectively. In addition, the convergences
�2r2X1

u� ! 0, �r2X1X2
u� ! 0 hold in L2loc(
):

2. Some useful tools

Proposition 1. The vector space V 2;2loc equipped with the family of norms (k�k
!
2;2)!

is a Fréchet space.

Proof. Let (!n)n2N be a countable open covering of 
 with !n �� 
, !n � !n+1
for every n 2 N: The countable family (k�k!n2;2)n2N de�ne a base of norms for the
V 2;2 topology. The general theory of locally convex topological vector spaces shows
that this topology is metrizable, explicitly a distance d which de�ne this topology
is given by ( see for instance [8])

d(u; v) =
1X
n=0

2�n
ku� vk!n2;2

1 + ku� vk!n2;2
, u; v 2 V 2;2loc : (5)

Let (um) be a Cauchy sequence in V
2;2
loc then (um) is a Cauchy sequence for each

norm k�k!n2;2, n 2 N: Whence, there exist u; v 2 L2(
) such that

um ! u, rX2
um ! v in L2(
),

and for every n 2 N �xed there exists wn 2 L2(!n) such that

r2X2
um ! wn in L2(!n):

The continuity of rX2 and r2X2
on D0(
) and D0(!n) shows that v = rX2u and

r2X2
u = wn for every n 2 N: Hence u 2 V 2;2loc and

8n 2 N : kum � uk!n2;2 ! 0 as m!1:

Finally the normal convergence of the series (5) implies

d(um; u)! 0 as m!1;

and therefore the completion of V 2;2loc follows. �

Remark 1. Notice that a sequence (um) in V
2;2
loc converges to u with respect to d

if and only if kum � uk!2;2 ! 0 as m!1; for every ! �� 
 open.

Now, let us give two useful lemmas
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Lemma 1. Let f 2 L2(RN ); for every � 2 (0; 1] let u� 2W 2;2(RN ) such that

��2�X1u�(x)��X2u�(x) = f(x) a.e x 2 RN (6)

then for every � 2 (0; 1] we have the boundsr2X2
u�

L2(RN ) � kfkL2(RN ) ;

�2
r2X1

u�

L2(RN ) � kfkL2(RN ) ;

p
2�
r2X1X2

u�

L2(RN ) � kfkL2(RN ) :

Proof. Let F be the Fourier transform de�ned on L2(RN ) as the extension, by
density, of the Fourier transform de�ned on the Schwartz space S(RN ) by

F(u)(�) = (2�)�N
2

Z
RN
u(x)e�ix��dx, u 2 S(RN )

where � is the standard scalar product of RN . Applying F on (6) we obtain0@�2 qX
i=1

�2i +

NX
i=q+1

�2i

1AF(u�)(�) = F(f)(�);
then 0@�4 qX

i;j=1

�2i �
2
j +

NX
i;j=q+1

�2i �
2
j + 2�

2
NX

j=q+1

qX
i=1

�2i �
2
j

1A jF(u�)(�)j2 = jF(f)(�)j2 ;
(7)

thus
NX

i;j=q+1

�2i �
2
j jF(u�)(�)j

2 � jF(f)(�)j2 ;

hence
NX

i;j=q+1

��F(@2iju�)(�)��2 � jF(f)(�)j2 ;
then

NX
i;j=q+1

F(@2iju�)2L2(RN ) � kF(f)k2L2(RN ) ;
and the Parseval identity gives

NX
i;j=q+1

@2iju�2L2(RN ) � kfk2L2(RN ) :
Hence r2X2

u�

L2(RN ) � kfkL2(RN ) :

Similarly we obtain from (7) the bounds

�2
r2X1

u�

L2(RN ) � kfkL2(RN ) ;

p
2�
r2X1X2

u�

L2(RN ) � kfkL2(RN ) :
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�
Notation 1. For a function u 2 Lp(RN ) and h 2 RN we denote �hu(x) = u(x+h);
x 2 RN :

Lemma 2. Let 
 be an open bounded subset of RN and let (uk)k2N be a converging
sequence in Lp(
),1 � p < 1 and let ! �� 
 open, then for every � > 0 there
exists 0 < � < dist(@
; !) such that

8h 2 RN ; jhj � �;8k 2 N : k�huk � ukkLp(!) � �
in other words we have lim

h!0
sup
k2N

k�huk � ukkLp(!) = 0:

Proof. Let ! �� 
 open. For a function v 2 Lp(
); extend v by 0 outside of 
;
since the translation h ! �hv is continuous from RN to Lp(RN ) (see for instance
[8]) then for every � > 0 there exists 0 < � < dist(@
; !) such that

8h 2 RN ; jhj � � : k�hv � vkLp(!) � �: (8)

We denote limuk = u 2 Lp(
), and let � > 0 then (8) shows that there exists
0 < � < dist(@
; !) such that

8h 2 RN ; jhj � � : k�hu� ukLp(!) �
�

2
:

By the triangular inequality and the invariance of the Lebesgue measure under
translations we have for every k 2 N and jhj � �

k�huk � ukkLp(!) � 2 kuk � ukLp(
) + k�hu� ukLp(!) (9)

Since uk ! u in Lp(
) then there exists k0 2 N, such that

8k � k0 : kuk � ukLp(
) �
�

4
:

Then from (9) we obtain

8h 2 RN ; jhj � �;8k � k0 : k�huk � ukkLp(!) � � (10)

Similarly (8) shows that for every k 2 f0; 1; 2; :::; k0 � 1g there exists 0 < �k <
dist(@
; !) such that

8h 2 RN ; jhj � �k : k�huk � ukkLp(!) � �; k 2 f0; 1; 2; :::; k0 � 1g (11)

Taking �0 = min
k2f0;::;k0�1g

(�k; �) and combining (10) and (11) we obtain

8h 2 RN ; jhj � �0;8k 2 N : k�huk � ukkLp(!) � �:
�

3. The perturbed Laplace equation

In this section we will prove Theorem 1 for the perturbed Laplace equation.
We suppose that A = Id, and let u� 2W 1;2

0 (
) be the unique solution to�
��2�X1

u� ��X2
u� = f

u� 2W 1;2
0 (
):

(12)

Notice that the elliptic regularity [7] shows that u� 2W 2;2
loc (
). Now, let (�k)k2N be

a sequence in (0; 1] with lim �k = 0; and let uk = u�k be the solution of (12) with �
replaced by �k. then one can prove the following
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Proposition 2. 1) Let ! �� 
 open then
lim
h!0

sup
k2N

�hr2X2
uk �r2X2

uk

L2(!)

= 0;

lim
h!0

sup
k2N

�2k(�hr2X1
uk �r2X1

uk)

L2(!)

= 0;

lim
h!0

sup
k2N

�k(�hr2X1X2
uk �r2X1X2

uk)

L2(!)

= 0:

2) The sequences
�
r2X2

uk
�
, (�2kr

2
X1
uk), (�kr2X1X2

uk) are bounded in L2loc(
) i.e.
for every ! �� 
 open there exists M � 0 such that

sup
k2N

�2kr2X1
uk

L2(!)

; sup
k2N

r2X2
uk

L2(!)

; sup
k2N

�kr2X1X2
uk

L2(!)

�M:

Proof. 1) Let ! �� 
 open; then one can choose !0 open such that ! �� !0 ��

; let � 2 D(RN ) with � = 1 on !, 0 � � � 1 and Supp(�) � !0. Let 0 <
h < dist(!0; @
); to make the notations less heavy we set Uhk = �huk � uk, then
Uhk 2W 2;2(!0): Notice that translation and derivation commute then we have

��2k�X1
Uhk (x)��X2

Uhk (x) = F
h(x), a.e x 2 !0,

with Fh = �hf � f .
We set Wh

k = �U
h
k then we get

� �2k�X1
Wh
k (x)��X2

Wh
k (x) = �(x)F

h(x)� 2�2krX1
�(x) � rX1

Uhk (x)

� 2rX2
�(x) � rX2

Uhk (x)� Uhk (x)(�2k�X1
�(x)��X2

�(x));

for a.e x 2 !0.
Since Uhk 2 W 2;2(!0) then Wh

k 2 W
2;2
0 (!0), so we can extend Wh

k by 0 outside
of !0 then Wh

k 2 W 2(RN ): The right hand side of the above equality is extended
by 0 outside of !0, hence the equation is satis�ed in the whole space, and thus by
Lemma 1 we getr2X2

Wh
k


L2(RN ) �

�Fh
L2(RN ) + 2�

2
k

rX1
� � rX1

Uhk

L2(RN )

+ 2
rX2� � rX2U

h
k


L2(RN ) +

Uhk (�2k�X1���X2�)

L2(RN ) :

Then r2X2
Uhk

L2(!)

�
Fh

L2(!0)
+ 2�k krX1

�k1
�krX1

Uhk

L2(!0)

+ 2 krX2
�k1

rX2
Uhk

L2(!0)

+
(�2k�X1

���X2
�)

1

Uhk L2(!0) :
Notice that by (4) we have uk ! u in V 1;2 and �krX1

uk ! 0 in L2(
), then by
Lemma 2 we deduce

lim
h!0

sup
k2N

�krX1U
h
k


L2(!0)

= lim
h!0

sup
k2N

k�k(�hrX1uk �rX1uk)kL2(!0) = 0,

and similarly we obtain

lim
h!0

sup
k2N

rX2
Uhk

L2(!0)

= 0, lim
h!0

sup
k2N

Fh
L2(!0)

= 0,

lim
h!0

sup
k2N

Uhk L2(!0) = 0:

and hence

lim
h!0

sup
k2N

�hr2X2
uk �r2X2

uk

L2(!)

= lim
h!0

sup
k2N

r2X2
Uhk

L2(!)

= 0:
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Similarly we obtain

lim
h!0

sup
k2N

�2k(�hr2X1
uk �r2X1

uk)

L2(!)

= 0;

and

lim
h!0

sup
k2N

�k(�hr2X1X2
uk �r2X1X2

uk)

L2(!)

= 0:

2) Following the same arguments, we get the estimation

�2k
r2X1

uk

L2(!)

+
r2X2

uk

L2(!)

+
p
2�k

r2X1X2
uk

L2(!)

�
3 kfkL2(!0) + 6�k krX1

�k1 k�krX1
ukkL2(!0)

+ 6 krX2
�k1 krX2

ukkL2(!0) + 3
(�2k�X1

���X2
�)

1 kukkL2(!0) :

The convergences uk ! u in V 1;2, �krX1
uk ! 0 in L2(
) and boundedness of �

and its derivatives show that the right hand side of the above inequality is uniformly
bounded in k, i.e. for some M � 0 independent of k we have

�2k
r2X1

uk

L2(!)

+
r2X2

uk

L2(!)

+
p
2�k

r2X1X2
uk

L2(!)

�M; 8k 2 N;

and therefore, the sequences
�
r2X2

uk
�
, (�2kr

2
X1
uk), (�kr2X1X2

uk) are bounded in
L2loc(
): �

Now, we are ready to prove the following

Theorem 2. Let u� 2 W 1;2
0 (
) \W 2;2

loc (
) be the solution of (12) then u� ! u0
strongly in V 2;2loc where u0 2 V

2;2
loc is the solution of the limit problem. In addition,

we have

�2r2X1
u� ! 0 and �r2X1X2

u� ! 0; strongly in L2loc(
):

Proof. Let u0 2 V 1;2 be the solution of the limit problem and let (uk)k2N; uk =
u�k 2 W

1;2
0 (
) \W 2;2

loc (
) be a sequence of solutions to (12) with � replaced by �k.
Then Proposition 2 shows that the hypothesis of the Riesz-Fréchet-Kolmogorov
theorem are ful�lled (For the statement of the theorem, see for instance [3]).
Whence, it follows that

�
r2X2

uk
	
k2N is relatively compact in L2(!) for every

! �� 
 open. Now, for ! �� 
 �xed there exists u!0 2 L2(!) and a subsequence
still labeled (r2X2

uk)k2N such that r2X2
uk ! u!0 in L

2(!) strongly. Since uk ! u0
in L2(!) and the second order di¤erential operators @2ij are continuous on D0(!)
then u!0 = rX2

u0 on !: Whence, since ! is arbitrary we get r2X2
u0 2 L2loc(
), i.e.

u0 2 V 2;2loc :
Now, Let (!n) be a countable covering of 
 with !n �� 
; !n � !n+1,8n 2 N:

Then by the diagonal process one can construct a subsequence still labeled (uk)
such that

r2X2
uk ! r2X2

u0 in L2loc(
) strongly.

Combining this with the convergence uk ! u0 of (4) we get

uk ! u0 strongly in V
2;2
loc ; i.e. d(uk; u0)! 0 as k !1;

where d is the distance of the Fréchet space V 2;2loc :
To prove the convergence of the whole sequence (u�)0<��1 we can reason by

contradiction. Suppose that there exists � > 0 and a subsequence (uk) such that
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d(uk; u0) > �. It follows by the �rst part of this proof that there exists a subsequence
still labeled (uk) such that d(uk; u0)! 0, which is a contradiction..
By using the same arguments we can show easily ( see the end of subsection 4.1)

that

�2r2X1
u� ! 0 and �r2X1X2

u� ! 0 strongly in L2loc(
):

�

4. General elliptic problems

4.1. Proof of the main theorem. In this subsection we shall prove Theorem
1. Firstly, we suppose that the coe¢ cients of A are constants then we have the
following

Proposition 3. Suppose that the coe¢ cients of A are constants and assume (2); let
(u�)0<��1 be a sequence inW 2;2(RN ) such that �

X
i;j

a�ij@
2
iju� = f , with f 2 L2(RN )

then we have for every � 2 (0; 1] :
�
r2X2

u�

L2(RN ) � kfkL2(RN ) ;

��2
r2X1

u�

L2(RN ) � kfkL2(RN ) ;

p
2��

r2X1X2
u

L2(RN ) � kfkL2(RN ) :

Proof. As in proof of Lemma 1, we use the Fourier transform and we obtain0@X
i;j

a�ij�i�j

1AF(u�)(�) = F(f)(�); � 2 RN :
From the ellipticity assumption (2) we deduce

�2

0@�2 qX
i=

�2i +
NX

i=q+1

�2i

1A2

jF(u�)(�)j2 � jF(f)(�)j2 :

Thus, similarly we obtain the desired bounds. �

Now, suppose that A 2 L1(
) \ C1(
) and assume (2), and let u� 2 W 1;2
0 (
)

be the unique weak solution to (1), then it follows by the elliptic regularity that
u� 2 W 2;2

loc (
). We denote uk = u�kthe solution to (1) where (�k) is a sequence in
(0; 1] such that, �k ! 0 as k !1:
Under the above assumption we can prove the following

Proposition 4. Let z0 2 
 �xed then there exists !0 �� 
 open with z0 2 !0 such
that the sequences

�
r2X2

uk
�
,
�
r2X1

uk
�
and

�
r2X1X2

uk
�
are bounded in L2(!0):

Proof. Since uk 2W 1;2
0 (
) \W 2;2

loc (
) and A 2 C1(
) then uk satis�es

�
X
i;j

akij(x)@
2
ijuk(x)�

X
i;j

@ia
k
ij(x)@juk(x) = f(x); for a.e x 2 
 (13)

where we have set akij = a
�k
ij .
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Let z0 2 
 �xed, and let � > 0 such that

min
n
[�� 3�(N � q)] ; [�� 3�q] ;

hp
2�� 6(N � q)q�

io
� �

2
. (14)

By using the continuity of the aij one can choose !1 �� 
, z0 2 !1 such that

max
i;j

sup
x2!1

jaij(x)� aij(z0)j � � (15)

Let !0 �� !1 open with z0 2 !0 and let � 2 D(RN ) such � = 1 on !0, 0 � � � 1
and Supp(�) � !1. We set Uk = �uk, and we extend it by 0 on the outside of !1
then Uk 2W 2;2(RN ). Therefore from (13) we obtain

�
X
i;j

akij(z0)@
2
ijUk(x) =

X
i;j

(akij(x)�akij(z0))@2ijUk(x)+gk(x), for a.e x 2 RN ;

where gk is given by

gk(x) = �(x)f(x) + �(x)
X
i;j

@ia
k
ij(x)@juk(x) (16)

�uk(x)
X
i;j

akij(x)@
2
ij�(x)�

X
i;j

akij(x)@i�(x)@juk(x)�
X
i;j

akij(x)@j�(x)@iuk(x);

and we have extended gk by 0 outside of !1:
Now, applying Proposition 3 to the above di¤erential equality we get

�
r2X2

Uk

L2(!1)

+ ��2k
r2X1

Uk

L2(!1)

+
p
2��k

r2X1X2
Uk

L2(!1)

� 3


X
i;j

(akij � akij(z0))@2ijUk


L2(!1)

+ 3 kgkL2(!1)

Whence, by using (15) we get

�
r2X2

Uk

L2(!1)

+ ��2k
r2X1

Uk

L2(!1)

+
p
2��k

r2X1X2
Uk

L2(!1)

� 3��2k
qX

i;j=1

@2ijUkL2(!1) + 3� NX
i;j=q+1

@2ijUkL2(!1)
+ 6��k

qX
i=1

NX
j=q+1

@2ijUkL2(!1) + 3 kgkL2(!1) ;
and thus by the discrete Cauchy-Schwarz inequality we deduce

�
r2X2

Uk

L2(!1)

+ ��2k
r2X1

Uk

L2(!1)

+
p
2��k

r2X1X2
Uk

L2(!1)

� 3�(N � q)
r2X2

Uk

L2(!1)

+ �2k3�q
r2X1

Uk

L2(!1)

+ �k6(N � q)q�
r2X1X2

Uk
2
L2(!1)

+ 3 kgkL2(!1) ;

and thus

[�� 3�(N � q)]
r2X2

Uk

L2(!1)

+ �2k [�� 3�q]
r2X1

Uk

L2(!1)

+

�k

hp
2�� 6(N � q)q�

i r2X1X2
Uk

L2(!1)

� 3 kgkkL2(!1) :
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Hence, by (14) we getr2X2
uk

L2(!0)

+ �2k
r2X1

uk

L2(!0)

+ �k
r2X1X2

uk

L2(!0)

� 6

�
kgkkL2(!1) :

To complete the proof, we will show the boundedness of (gk) in L2(!1). Indeed, �
and its derivatives, aij and their �rst derivatives are bounded on !1, moreover (4)
shows that the sequences (�krX1uk), (rX2uk) and (uk) are bounded in L

2(
); and
therefore from (16) the boundedness of (gk) in L2(!1) follows. �

Corollary 1. The sequences
�
r2X2

uk
�
,
�
�2kr

2
X1
uk
�
,
�
�kr2X1X2

uk
�
are bounded in

L2loc(
):

Proof. Let ! �� 
 open, for every z 2 �! there exists !z �� 
, z 2 !z which
satis�es the a¢ rmations of Proposition 4 in L2(!z). By using the compacity of �!,
one can extract a �nite cover (!zi), and hence the sequences

�
r2X2

uk
�
,
�
�2kr

2
X1
uk
�
,�

�kr2X1X2
uk
�
are bounded in L2(!). �

Proposition 5. Let z0 2 
 then there exists !0 �� 
, z0 2 !0 such that
lim
h!0

sup
k2N

�hr2X2
uk �r2X2

uk

Lp(!0)

= 0,

lim
h!0

sup
k2N

�2k(�hr2X1
uk �r2X1

uk)

Lp(!0)

= 0,

lim
h!0

sup
k2N

�k(�hr2X1X2
uk �r2X1X2

uk)

Lp(!0)

= 0.

Proof. Let z0 2 
 �xed and let � > 0 then using the continuity of the aij one can
choose !1 �� 
, z0 2 !1 such that we have (15) with � is chosen as in (14). Let
!0 �� !1; with z0 2 !0; and let � 2 D(RN ) with � = 1 on !0, 0 � � � 1; and
Supp(�) � !1. Let 0 < h < dist(!1; @
); we setWh

k = �U
k
h , with U

h
k = (�huk�uk)

and extend it by 0 on the outside of !1 then Wh
k 2W 2;2(RN ), therefore using (13)

we have:

�
X
i;j

akij(z0)@
2
ijWh

k (x) =
X
i;j

(akij(x)�akij(z0))@2ijWh
k (x)+G

h
k(x); a.e x 2 RN

where

�Ghk(x) = Uhk
X
i;j

akij(x)@
2
ij�+

X
i;j

akij(x)@i�@jU
h
k +

X
i;j

akij(x)@j�@iU
h
k (17)

+�
X
i;j

�
akij(x)� �hakij(x)

�
�h@

2
ijuk(x) + �(x) (f(x)� �hf(x))

+�
X
i;j

�
@ia

k
ij(x)@juk(x)� @i�hakij(x)@j�huk(x)

�
;

and Ghk is extended by 0 outside of !1:
Then, as in proof of Proposition 4, we obtain�hr2X2

uk �r2X2
uk

L2(!0)

+ �2k
�hr2X1

uk �r2X1
uk

L2(!0)

+ �k
�hr2X1X2

uk �r2X1X2
uk

L2(!0)

� 6

�

GhkL2(!1) :
To complete the proof, we have to show that lim

h!0
sup
k2N

GhkL2(!1) = 0.
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Using the boundedness of the aij and the boundedness of � and its derivatives
on !1 we get from (17)GhkL2(!1) � M

Uhk L2(!1) +M�k rX1
Uhk

L2(!1)

(18)

+M
rX2

Uhk

L2(!1)

+ k�hf � fkL2(!1)
+
X
i;j

�akij � �hakij� �h@2ijukL2(!1)
+
X
i;j

@iakij@juk � �h@iakij�h@jukL2(!1) ;
where M � 0 is independent of h and k: Now, estimating the �fth term of the right
hand side of the above inequalityX

i;j

�akij � �hakij� �h@2ijukL2(!1) � Cq;Nmaxi;j
sup
x2!1

jaij(x)� �haij(x)j ��r2X2
uk

L2(!1+h)

+ �2k
r2X1

uk

L2(!1+h)

+ �k
r2X1X2

uk

L2(!1+h)

�
;

where Cq;N > 0 is only depends in q and N .
Let � > 0 small enough such that for every jhj � � we have !1 + h �� 
. Then

it follows by Corollary 1, applied on !1 + h, that the quantityr2X2
uk

L2(!1+h)

+ �2k
r2X1

uk

L2(!1+h)

+ �k
r2X1X2

uk

L2(!1+h)

is uniformly bounded in k and h (for jhj � �). Since the aij are uniformly continuous
on every ! �� 
 open then

lim
h!0

max
i;j

sup
x2!1

jaij(x)� �haij(x)j = 0;

and hence

lim
h!0

sup
k2N

X
i;j

�akij � �hakij� �h@2ijukL2(!1) = 0: (19)

Now, estimating the last term of (18). By the triangular inequality we obtainX
i;j

@iakij@juk � �h@iakij�h@jukL2(!1) �X
i;j

@iakij@juk � �h@iakij@jukL2(!1)
+
X
i;j

�h@iakij@juk � @i�hakij�h@jukL2(!1) ;
and thus, by using the boundedness of the �rst derivatives of the aij on !1 we getX

i;j

@iakij@juk � @i�hakij@j�hukL2(!1)
� C 0q;Nmax

i;j
sup
x2!1

j@iaij(x)� @i�haij(x)j
�
�k krX1

ukkL2(!1) + krX2
ukkL2(!1)

�
+M 0

�
�k
rX1

Uhk

L2(!1)

+
rX2U

h
k


L2(!1)

�
;

where M 0 � 0 and C 0q;N > 0 are independent of h and k. Now, since the @iaij are
uniformly continuous (recall that A 2 C1(
)) on every ! �� 
 then

lim
h!0

max
i;j

sup
x2!1

j@iaij(x)� �h@iaij(x)j = 0;
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and therefore, from the above inequality we get

lim
h!0

sup
k2N

X
i;j

@iakij@juk � @i�hakij@j�hukL2(!1) = 0; (20)

where we have used (4) and Lemma 2.
Passing to the limit in (18) by using (19), (20) and (4) with Lemma 2 we deduce

lim
h!0

sup
k2N

GhkL2(!1) = 0:
and the proposition follows. �

Corollary 2. For every ! �� 
 open we have

lim
h!0

sup
k2N

�hr2X2
uk �r2X2

uk

Lp(!)

= 0;

lim
h!0

sup
k2N

�2k(�hr2X1
uk �r2X1

uk)

Lp(!)

= 0;

lim
h!0

sup
k2N

�k(�hr2X1X2
uk �r2X1X2

uk)

Lp(!)

= 0.

Proof. Similar to proof of Corollary 1,where we use the compacity of �! and
Proposition 5. �

Now, we are able to give the proof of the main theorem. Indeed it is similar to
proof of Theorem 2, where we will use Corollary 1 and Corollary 2. Let us
prove the convergence

�2r2X1
u� ! 0 in L2loc(
):

Fix ! �� 
 open, and let uk 2 W 1;2
0 (
) \W 2;2

loc (
) be a sequence of solutions
of (1), then it follows from Corollary 1 and 2 that the subset

�
�2kr

2
X1
uk
	
k2N is

relatively compact in L2(!) then there exists v! 2 L2(!) and a subsequence still
labeled (�2kr

2
X1
uk) such that

�2kr2X1
uk ! v! in L2(!);

and since �2kuk ! 0 in L2(!) then v! = 0 (we used the continuity of r2X1
on D0

(!)).
Hence by the diagonal process one can construct a sequence still labeled (�2kr

2
X1
uk)

such that

�2kr2X1
uk ! 0 in L2loc(
):

To prove the convergence for the whole sequence (�2r2X1
u�)0<��1, we can rea-

son by contradiction (recall that L2loc(
) equipped with the family of semi norms
(k�kL2(!))!��
 is a Fréchet space), and the proof of the main theorem is �nished.

4.2. A convergence result for some class of semilinear problem. In this
section we deal with the following semilinear elliptic problem�

�div(A�ru�) = a(u�) + f
u� 2W 1;2

0 (
)
; (21)

where a : R ! R a continuous nonincreasing real valued function which satis�es
the growth condition

8x 2 R : ja(x)j � c (1 + jxj) ; (22)
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for some c � 0: This problem has been treated in [6] for f 2 Lp(
), 1 < p � 2, and
the author have proved the convergences

�rX1u� ! 0, u� ! u0, rX2u� ! rX2u0 in L
p(
); (23)

where u0 is the solution of the limit problem.
Let f 2 L2(
) and assume A as in Theorem 1 then the unique W 1;2

0 (
) weak
solution u� to (21) belongs to W

2;2
loc (
). Following the same arguments exposed in

the above subsection one can prove the theorem

Theorem 3. Under the above assumptions we have u� ! u0 in V
2;2
loc , �

2r2X1
u� ! 0

and �r2X1X2
u� ! 0 strongly in L2loc(
):

Proof. The arguments are similar, we only give the proof for the Laplacian case, so
assume that A = Id.
Let ! �� 
 open; then one can choose !0 open such that ! �� !0 �� 
; let

� 2 D(RN ) with � = 1 on !, 0 � � � 1 and Supp(�) � !0. Let 0 < h < dist(@!0;

); we use the same notations of the above subsection, we set Uhk = �huk � uk,
then Uhk 2W 1;2(!0) and we have

��2k�X1U
h
k (x)��X2U

h
k (x) = F

h(x) + �ha(u)(x)� a(u)(x), a.e x 2 !0;
with Fh = �hf � f . We set Wh

k = �U
h
k then we get as in Proposition 2�hr2X2

uk �r2X2
uk

L2(!)

�
Fh

L2(!0)
+M

�krX1
Uhk

L2(!0)

+ k�ha(uk)� a(uk)kL2(!0)
+M

rX2
Uhk

L2(!0)

+M
Uhk L2(!0) :

We can prove easily, by using the continuity of the function a and (22), that the Ne-
mytskii operator a maps continuously L2(
) to L2(
). Therefore, the convergence
uk ! u0 in L2(
) gives a(uk)! a(u0) in L2(
), and hence Lemma 2 gives

lim
h!0

sup
k2N

k�ha(uk)� a(uk)kL2(!) = 0;

and �nally the convergences (23) give

lim
h!0

sup
k2N

�hr2X2
uk �r2X2

uk

L2(!)

= 0:

Similarly, using boundedness of the sequences (uk), (�krX1
uk), (rX2

uk)and a(uk)
in L2(
); and boundedness of � and its derivatives we getr2X2

uk

L2(!)

�M 0;

and we conclude as in proof of Theorem 2. �

We complete this paper by giving an open question

Problem 1. Let f 2 Lp(
) with 1 < p < 2, and consider problem (1). In [6] the
author have proved the convergence u� ! u0 in the Banach space V 1;p de�ned by

V 1;p =
n
u 2 Lp(
) j rX2

u 2 Lp(
) and u(X1; �) 2W 1;p
0 (
X1

) a.e X1 2 
1
o
;

equipped with the norm

kuk1;p =
�
kukpLp(
) + krX2

ukpLp(
)
� 1
p

:
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Similarly we introduce the Fréchet space

V 2;ploc =
�
u 2 V 1;p j r2X2

u 2 Lp(
)
	
;

equipped with family of norms

kuk!2;p =
�
kukpLp(
) + krX2

ukpLp(
) +
r2X2

u
p
Lp(!)

� 1
p

, ! �� 
 open.

Can one prove that u� ! u0 in V
2;p
loc ?
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