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In this paper, we deal with anisotropic singular perturbations of some class of elliptic problem. We study the asymptotic behavior of the solution in certain second order pseudo Sobolev space.

Description of the problem

In this paper, we study di¤usion problems when the di¤usion coe¢ cients in certain directions are going toward zero. More precisely we are interested in studying the asymptotic behavior of the solution in certain second order pseudo Sobolev space. We consider the following elliptic problem

div(A ru ) = f u 2 W 1;2 0 ( ) (1) 
where 0 < 1 and is a bounded domain (i.e. open bounded connected subset) of R N and f 2 L 2 ( ): We denote by x = (x 1 ; :::; x N ) = (X 1 ; X 2 ) the points in R N where X 1 = (x 1 ; :::; x q ) and X 1 = (x q+1 ; :::; x N ); with this notation we set r = (@ x1 ; :::; @ x N ) T = r X1 r X2 ;

where r X1 = (@ x1 ; :::; @ xq ) T and r X2 = (@ xq+1 ; :::; @ x N ) T

The di¤usion matrix A is given by

A = (a ij ) = 2 A 11 A 12 A 21 A 22 with A = (a ij ) = A 11 A 12 A 21 A 22 ;
where A 11 and A 22 are q q and (N q) (N q) matrices. The coe¢ cients a ij are given by

a ij = 8 > > < > > :
2 a ij for i; j 2 f1; ::; qg a ij for i; j 2 fq + 1; ::; N g a ij for i 2 f1; ::; qg , j 2 fq + 1; ::; N g a ij for i 2 fq + 1; ::; N g , j 2 f1; ::; qg

We assume that A 2 L 1 ( ) and for some > 0 we have

A(x) j j 2 ,8 2 R N ; a.e x 2 : (2) 
Recall the Hilbert space introduced in [2]

V 1;2 = n u 2 L 2 ( ) j r X2 u 2 L 2 ( ) and u(X 1 ; ) 2 W 1;2 0 ( X1 ) a.e X 1 2 1 o ; :
equipped with the norm

kuk 1;2 = kuk 2 L 2 ( ) + kr X2 uk 2 L 2 ( ) 1 2 
:

Here X1 = X 2 2 R N q : (X 1 ; X 2 ) 2 and 1 = P 1 ( ) where P 1 is the natural projector R N ! R q :
We introduce the second order local pseudo Sobolev space

V 2;2 loc = u 2 V 1;2 j r 2 X2 u 2 L 2 loc ( ) ; equipped with the family of norms (k k ! 2;2 ) ! given by kuk ! 2;2 = kuk 2 L 2 ( ) + kr X2 uk 2 L 2 ( ) + r 2 X2 u 2 L 2 (!) 1 2
, ! open where r 2 X2 u is the Hessian matrix of u taken in the X 2 direction, the term

r 2 X2 u 2 L 2 (!)
is given by

r 2 X2 u 2 L 2 (!) = N X i;j=q+1 @ 2 ij u 2 L 2 (!) :
We can show that V 2;2 loc is a Fréchet space (i.e. locally convex, metrizable and complete). We also de…ne the following

r 2 X1 u 2 L 2 (!) = q X i;j=1 @ 2 ij u 2 L 2 (!) ;
and

r 2 X1X2 u 2 L 2 (!) = q X i=1 N X j=q+1 @ 2 ij u 2 L 2 (!) :
As ! 0, the Limit problem is given by

div(A 22 ru 0 (X 1 ; ) = f (X 1 ; ) u 0 (X 1 ; ) 2 W 1;2 0 ( X1 ) a.e X 1 2 1 (3) 
The existence and the uniqueness of the W 1;2 0 weak solutions to (1) and (3) follow from the Lax-Milgram theorem. In [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF] the authors studied the relationship between u and u 0 and they proved that u 0 2 V 1;2 and the following convergences (see Theorem 2.1 in the above reference)

u ! u 0 in V 1;2 and r X1 u ! 0 in L 2 ( ): (4) 
For the L p case we refer the reader to [START_REF] Ogabi | On the L p theory of anisotropic singular perturbations elliptic problems[END_REF], and [START_REF] Chipot | On a class of integro-di¤erential problems[END_REF], [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF], [START_REF] Chipot | Singular perturbations of some nonlinear problems[END_REF] for other related problems.

In this paper, we deal with the asymptotic behavior of the second derivatives of u , in other words we show the convergence of u in the space V 2;2 loc introduced previously. The arguments are based on the Riesz-Fréchet-Kolmogorov compacity theorem in L p spaces. Let us give the main result

Theorem 1. Assume that A 2 L 1 ( ) \ C 1 ( ) with (2), suppose that f 2 L 2 ( ) then u 0 2 V 2;2
loc and u ! u 0 in V 2;2 loc , where u 2 W 1;2 0 ( ) \ W 2;2 loc ( ) and u 0 are the unique weak solutions to (1) and ( 3) respectively. In addition, the convergences

2 r 2 X1 u ! 0, r 2 X1X2 u ! 0 hold in L 2 loc ( ):
2. Some useful tools Proposition 1. The vector space V 2;2 loc equipped with the family of norms

(k k ! 2;2 ) ! is a Fréchet space. Proof. Let (! n ) n2N be a countable open covering of with ! n , ! n ! n+1 for every n 2 N: The countable family (k k !n 2;
2 ) n2N de…ne a base of norms for the V 2;2 topology. The general theory of locally convex topological vector spaces shows that this topology is metrizable, explicitly a distance d which de…ne this topology is given by ( see for instance [START_REF] Vo Khac Khoan | Distributions, analyse de Fourier, opérateurs aux dérivées partielles Tome 1[END_REF])

d(u; v) = 1 X n=0 2 n ku vk !n 2;2 1 + ku vk !n 2;2 , u; v 2 V 2;2 loc : (5) 
Let (u m ) be a Cauchy sequence in V 2;2 loc then (u m ) is a Cauchy sequence for each norm k k

!n 2;2 , n 2 N: Whence, there exist u; v 2 L 2 ( ) such that u m ! u, r X2 u m ! v in L 2 ( ),
and for every n 2 N …xed there exists

w n 2 L 2 (! n ) such that r 2 X2 u m ! w n in L 2 (! n ):
The continuity of r X2 and r 2 X2 on D 0 ( ) and

D 0 (! n ) shows that v = r X2 u and r 2 X2 u = w n for every n 2 N: Hence u 2 V 2;2 loc and 8n 2 N : ku m uk !n 2;2 ! 0 as m ! 1:
Finally the normal convergence of the series (5) implies

d(u m ; u) ! 0 as m ! 1;
and therefore the completion of V 2;2 loc follows.

Remark 1. Notice that a sequence (u m ) in V 2;2 loc converges to u with respect to d if and only if ku m uk ! 2;2 ! 0 as m ! 1; for every ! open.

Now, let us give two useful lemmas

Lemma 1. Let f 2 L 2 (R N ); for every 2 (0; 1] let u 2 W 2;2 (R N ) such that 2 X1 u (x) X2 u (x) = f (x) a.e x 2 R N (6) 
then for every 2 (0; 1] we have the bounds

r 2 X2 u L 2 (R N ) kf k L 2 (R N ) ; 2 r 2 X1 u L 2 (R N ) kf k L 2 (R N ) ; p 2 r 2 X1X2 u L 2 (R N ) kf k L 2 (R N ) :
Proof. Let F be the Fourier transform de…ned on L 2 (R N ) as the extension, by density, of the Fourier transform de…ned on the Schwartz space S(R N ) by

F(u)( ) = (2 ) N 2 Z R N u(x)e ix dx, u 2 S(R N )
where is the standard scalar product of R N . Applying F on (6) we obtain 0

@ 2 q X i=1 2 i + N X i=q+1 2 i 1 A F(u )( ) = F(f )( ); then 0 @ 4 q X i;j=1 2 i 2 j + N X i;j=q+1 2 i 2 j + 2 2 N X j=q+1 q X i=1 2 i 2 j 1 A jF(u )( )j 2 = jF(f )( )j 2 ; (7) thus N X i;j=q+1 2 i 2 j jF(u )( )j 2 jF(f )( )j 2 ; hence N X i;j=q+1 F(@ 2 ij u )( ) 2 jF(f )( )j 2 ; then N X i;j=q+1 F(@ 2 ij u ) 2 L 2 (R N ) kF(f )k 2 L 2 (R N ) ;
and the Parseval identity gives

N X i;j=q+1 @ 2 ij u 2 L 2 (R N ) kf k 2 L 2 (R N ) : Hence r 2 X2 u L 2 (R N ) kf k L 2 (R N ) : Similarly we obtain from (7) the bounds 2 r 2 X1 u L 2 (R N ) kf k L 2 (R N ) ; p 2 r 2 X1X2 u L 2 (R N ) kf k L 2 (R N ) : Notation 1. For a function u 2 L p (R N ) and h 2 R N we denote h u(x) = u(x+h); x 2 R N : Lemma 2.
Let be an open bounded subset of R N and let (u k ) k2N be a converging sequence in L p ( ),1 p < 1 and let ! open, then for every > 0 there exists 0 < < dist(@ ; !) such that

8h 2 R N ; jhj ; 8k 2 N : k h u k u k k L p (!)
in other words we have lim

h!0 sup k2N k h u k u k k L p (!) = 0: Proof. Let ! open.
For a function v 2 L p ( ); extend v by 0 outside of ; since the translation h ! h v is continuous from R N to L p (R N ) (see for instance [START_REF] Vo Khac Khoan | Distributions, analyse de Fourier, opérateurs aux dérivées partielles Tome 1[END_REF]) then for every > 0 there exists 0 < < dist(@ ; !) such that

8h 2 R N ; jhj : k h v vk L p (!) : (8) 
We denote lim u k = u 2 L p ( ), and let > 0 then [START_REF] Vo Khac Khoan | Distributions, analyse de Fourier, opérateurs aux dérivées partielles Tome 1[END_REF] shows that there exists 0 < < dist(@ ; !) such that

8h 2 R N ; jhj : k h u uk L p (!) 2 :
By the triangular inequality and the invariance of the Lebesgue measure under translations we have for every k 2 N and jhj

k h u k u k k L p (!) 2 ku k uk L p ( ) + k h u uk L p (!) (9) 
Since u k ! u in L p ( ) then there exists k 0 2 N, such that

8k k 0 : ku k uk L p ( ) 4 
:
Then from (9) we obtain

8h 2 R N ; jhj ; 8k k 0 : k h u k u k k L p (!) (10) 
Similarly [START_REF] Vo Khac Khoan | Distributions, analyse de Fourier, opérateurs aux dérivées partielles Tome 1[END_REF] shows that for every k 2 f0; 1; 2; :::; k 0 1g there exists 0 < k < dist(@ ; !) such that

8h 2 R N ; jhj k : k h u k u k k L p (!)
; k 2 f0; 1; 2; :::; k 0 1g

Taking 0 = min k2f0;::;k0 1g ( k ; ) and combining (10) and (11) we obtain

8h 2 R N ; jhj 0 ; 8k 2 N : k h u k u k k L p (!) :

The perturbed Laplace equation

In this section we will prove Theorem 1 for the perturbed Laplace equation. We suppose that A = Id, and let u 2 W 1;2 0 ( ) be the unique solution to

2 X1 u X2 u = f u 2 W 1;2 0 ( ): (12) 
Notice that the elliptic regularity [START_REF] Trudinger | Elliptic Partial Di¤erential Equations of Second Order[END_REF] shows that u 2 W 2;2 loc ( ). Now, let ( k ) k2N be a sequence in (0; 1] with lim k = 0; and let u k = u k be the solution of (12) with replaced by k . then one can prove the following

Proposition 2. 1) Let ! open then lim h!0 sup k2N h r 2 X2 u k r 2 X2 u k L 2 (!) = 0; lim h!0 sup k2N 2 k ( h r 2 X1 u k r 2 X1 u k ) L 2 (!) = 0; lim h!0 sup k2N k ( h r 2 X1X2 u k r 2 X1X2 u k ) L 2 (!) = 0:
2) The sequences

r 2 X2 u k , ( 2 k r 2 X1 u k ), ( k r 2 X1X2 u k ) are bounded in L 2 loc ( ) i.

e. for every !

open there exists M 0 such that

sup k2N 2 k r 2 X1 u k L 2 (!) ; sup k2N r 2 X2 u k L 2 (!) ; sup k2N k r 2 X1X2 u k L 2 (!) M: Proof. 1) Let ! open; then one can choose ! 0 open such that ! ! 0 ; let 2 D(R N ) with = 1 on !, 0
1 and Supp( ) ! 0 . Let 0 < h < dist(! 0 ; @ ); to make the notations less heavy we set U h k = h u k u k , then U h k 2 W 2;2 (! 0 ): Notice that translation and derivation commute then we have

2 k X1 U h k (x) X2 U h k (x) = F h (x), a.e x 2 ! 0 , with F h = h f f . We set W h k = U h k then we get 2 k X1 W h k (x) X2 W h k (x) = (x)F h (x) 2 2 k r X1 (x) r X1 U h k (x) 2r X2 (x) r X2 U h k (x) U h k (x)( 2 k X1 (x) X2 (x)); for a.e x 2 ! 0 .
Since U h k 2 W 2;2 (! 0 ) then W h k 2 W 2;2 0 (! 0 ), so we can extend W h k by 0 outside of ! 0 then W h k 2 W 2 (R N ): The right hand side of the above equality is extended by 0 outside of ! 0 , hence the equation is satis…ed in the whole space, and thus by Lemma 1 we get

r 2 X2 W h k L 2 (R N ) F h L 2 (R N ) + 2 2 k r X1 r X1 U h k L 2 (R N ) + 2 r X2 r X2 U h k L 2 (R N ) + U h k ( 2 k X1 X2 ) L 2 (R N ) : Then r 2 X2 U h k L 2 (!) F h L 2 (! 0 ) + 2 k kr X1 k 1 k r X1 U h k L 2 (! 0 ) + 2 kr X2 k 1 r X2 U h k L 2 (! 0 ) + ( 2 k X1 X2 ) 1 U h k L 2 (! 0 ) :
Notice that by (4) we have

u k ! u in V 1;2 and k r X1 u k ! 0 in L 2 ( ), then by Lemma 2 we deduce lim h!0 sup k2N k r X1 U h k L 2 (! 0 ) = lim h!0 sup k2N k k ( h r X1 u k r X1 u k )k L 2 (! 0 ) = 0,
and similarly we obtain

lim h!0 sup k2N r X2 U h k L 2 (! 0 ) = 0, lim h!0 sup k2N F h L 2 (! 0 ) = 0, lim h!0 sup k2N U h k L 2 (! 0 ) = 0:
and hence

lim h!0 sup k2N h r 2 X2 u k r 2 X2 u k L 2 (!) = lim h!0 sup k2N r 2 X2 U h k L 2 (!) = 0: d(u k ; u 0 ) > .
It follows by the …rst part of this proof that there exists a subsequence still labeled (u k ) such that d(u k ; u 0 ) ! 0, which is a contradiction.. By using the same arguments we can show easily ( see the end of subsection 4.1) that 2 r 2 X1 u ! 0 and r 2 X1X2 u ! 0 strongly in L 2 loc ( ):

4. General elliptic problems 4.1. Proof of the main theorem. In this subsection we shall prove Theorem 1. Firstly, we suppose that the coe¢ cients of A are constants then we have the following Proposition 3. Suppose that the coe¢ cients of A are constants and assume (2); let (u ) 0< 1 be a sequence in W 2;2 (R N ) such that X i;j

a ij @ 2 ij u = f , with f 2 L 2 (R N )
then we have for every 2 (0; 1] :

r 2 X2 u L 2 (R N ) kf k L 2 (R N ) ; 2 r 2 X1 u L 2 (R N ) kf k L 2 (R N ) ; p 2 r 2 X1X2 u L 2 (R N ) kf k L 2 (R N ) :
Proof. As in proof of Lemma 1, we use the Fourier transform and we obtain 0 @ X i;j

a ij i j 1 A F(u )( ) = F(f )( ); 2 R N :
From the ellipticity assumption (2) we deduce

2 0 @ 2 q X i= 2 i + N X i=q+1 2 i 1 A 2 jF(u )( )j 2 jF(f )( )j 2 :
Thus, similarly we obtain the desired bounds. Now, suppose that A 2 L 1 ( ) \ C 1 ( ) and assume (2), and let u 2 W 1;2 0 ( ) be the unique weak solution to (1), then it follows by the elliptic regularity that u 2 W 2;2 loc ( ). We denote u k = u k the solution to [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF] where

( k ) is a sequence in (0; 1] such that, k ! 0 as k ! 1:
Under the above assumption we can prove the following Proposition 4. Let z 0 2 …xed then there exists ! 0 open with z 0 2 ! 0 such that the sequences r 2 X2 u k , r 2 X1 u k and r 2 X1X2 u k are bounded in L 2 (! 0 ):

Proof. Since u k 2 W 1;2 0 ( ) \ W 2;2 loc ( ) and A 2 C 1 ( ) then u k satis…es X i;j a k ij (x)@ 2 ij u k (x) X i;j @ i a k ij (x)@ j u k (x) = f (x); for a.e x 2 (13) 
where we have set

a k ij = a k ij .
Let z 0 2 …xed, and let > 0 such that

min n [ 3 (N q)] ; [ 3 q] ; h p 2 6(N q)q io 2 . ( 14 
)
By using the continuity of the a ij one can choose ! 1 , z 0 2 ! 1 such that

max i;j sup x2!1 ja ij (x) a ij (z 0 )j (15) 
Let ! 0 ! 1 open with z 0 2 ! 0 and let 2 D(R N ) such = 1 on ! 0 , 0 1 and Supp( ) ! 1 . We set U k = u k , and we extend it by 0 on the outside of ! 1 then U k 2 W 2;2 (R N ). Therefore from (13) we obtain

X i;j a k ij (z 0 )@ 2 ij U k (x) = X i;j (a k ij (x) a k ij (z 0 ))@ 2 ij U k (x)+g k (x), for a.e x 2 R N ;
where g k is given by

g k (x) = (x)f (x) + (x) X i;j @ i a k ij (x)@ j u k (x) (16) u k (x) X i;j a k ij (x)@ 2 ij (x) X i;j a k ij (x)@ i (x)@ j u k (x) X i;j a k ij (x)@ j (x)@ i u k (x);
and we have extended g k by 0 outside of ! 1 : Now, applying Proposition 3 to the above di¤erential equality we get

r 2 X2 U k L 2 (!1) + 2 k r 2 X1 U k L 2 (!1) + p 2 k r 2 X1X2 U k L 2 (!1) 3 X i;j (a k ij a k ij (z 0 ))@ 2 ij U k L 2 (!1) + 3 kgk L 2 (!1)
Whence, by using (15) we get

r 2 X2 U k L 2 (!1) + 2 k r 2 X1 U k L 2 (!1) + p 2 k r 2 X1X2 U k L 2 (!1) 3 2 k q X i;j=1 @ 2 ij U k L 2 (!1) + 3 N X i;j=q+1 @ 2 ij U k L 2 (!1) + 6 k q X i=1 N X j=q+1 @ 2 ij U k L 2 (!1) + 3 kgk L 2 (!1) ;
and thus by the discrete Cauchy-Schwarz inequality we deduce

r 2 X2 U k L 2 (!1) + 2 k r 2 X1 U k L 2 (!1) + p 2 k r 2 X1X2 U k L 2 (!1) 3 (N q) r 2 X2 U k L 2 (!1) + 2 k 3 q r 2 X1 U k L 2 (!1) + k 6(N q)q r 2 X1X2 U k 2 L 2 (!1) + 3 kgk L 2 (!1) ; and thus [ 3 (N q)] r 2 X2 U k L 2 (!1) + 2 k [ 3 q] r 2 X1 U k L 2 (!1) + k h p 2 6(N q)q i r 2 X1X2 U k L 2 (!1) 3 kg k k L 2 (!1) :
Using the boundedness of the a ij and the boundedness of and its derivatives on ! 1 we get from (17)

G h k L 2 (!1) M U h k L 2 (!1) + M k r X1 U h k L 2 (!1) (18) +M r X2 U h k L 2 (!1) + k h f f k L 2 (!1) + X i;j a k ij h a k ij h @ 2 ij u k L 2 (!1) + X i;j @ i a k ij @ j u k h @ i a k ij h @ j u k L 2 (!1) ;
where M 0 is independent of h and k: Now, estimating the …fth term of the right hand side of the above inequality

X i;j a k ij h a k ij h @ 2 ij u k L 2 (!1) C q;N max i;j sup x2!1 ja ij (x) h a ij (x)j r 2 X2 u k L 2 (!1+h) + 2 k r 2 X1 u k L 2 (!1+h) + k r 2 X1X2 u k L 2 (! 1+h 
) ; where C q;N > 0 is only depends in q and N .

Let > 0 small enough such that for every jhj we have ! 1 + h . Then it follows by Corollary 1, applied on ! 1 + h, that the quantity Now, estimating the last term of (18). By the triangular inequality we obtain X i;j @ i a k ij @ j u k h @ i a k ij h @ j u k L 2 (!1) X i;j @ i a k ij @ j u k h @ i a k ij @ j u k L 2 (!1) + X i;j h @ i a k ij @ j u k @ i h a k ij h @ j u k L 2 (!1) ; and thus, by using the boundedness of the …rst derivatives of the a ij on ! 1 we get X i;j @ i a k ij @ j u k @ i h a k ij @ j h u k L 2 (!1)

r 2 X2 u k L 2 (!1+h) + 2 k r 2 X1 u k L 2 (!1+h) + k r 2 X1X2 u k L 2 (!
C 0 q;N max i;j sup x2!1 j@ i a ij (x) @ i h a ij (x)j k kr X1 u k k L 2 (!1) + kr X2 u k k L 2 (!1)

+ M 0 k r X1 U h k L 2 (!1) + r X2 U h k L 2 (!1) ;
where M 0 0 and C 0 q;N > 0 are independent of h and k. Now, since the @ i a ij are uniformly continuous (recall that A 2 C 1 ( )) on every ! then lim h!0 max i;j sup x2!1 j@ i a ij (x) h @ i a ij (x)j = 0;

  1+h) is uniformly bounded in k and h (for jhj). Since the a ij are uniformly continuous on every !

Similarly we obtain

and

2) Following the same arguments, we get the estimation

The convergences u k ! u in V 1;2 , k r X1 u k ! 0 in L 2 ( ) and boundedness of and its derivatives show that the right hand side of the above inequality is uniformly bounded in k, i.e. for some M 0 independent of k we have

and therefore, the sequences

Now, we are ready to prove the following Theorem 2. Let u 2 W 1;2 0 ( ) \ W 2;2 loc ( ) be the solution of (12) then u ! u 0 strongly in V 2;2 loc where u 0 2 V 2;2 loc is the solution of the limit problem. In addition, we have 2 r 2 X1 u ! 0 and r 2 X1X2 u ! 0; strongly in L 2 loc ( ): Proof. Let u 0 2 V 1;2 be the solution of the limit problem and let (u k ) k2N ; u k = u k 2 W 1;2 0 ( ) \ W 2;2 loc ( ) be a sequence of solutions to (12) with replaced by k . Then Proposition 2 shows that the hypothesis of the Riesz-Fréchet-Kolmogorov theorem are ful…lled (For the statement of the theorem, see for instance [START_REF] Chipot | Elliptic Equations, An Introductory Cours[END_REF]). Whence, it follows that r 2 X2 u k k2N is relatively compact in L 2 (!) for every ! open. Now, for ! …xed there exists u ! 0 2 L 2 (!) and a subsequence still labeled (r

N: Then by the diagonal process one can construct a subsequence still labeled (u k ) such that

Combining this with the convergence u k ! u 0 of (4) we get u k ! u 0 strongly in V 2;2 loc ; i.e. d(u k ; u 0 ) ! 0 as k ! 1; where d is the distance of the Fréchet space V 2;2 loc : To prove the convergence of the whole sequence (u ) 0< 1 we can reason by contradiction. Suppose that there exists > 0 and a subsequence (u k ) such that Hence, by (14) we get

To complete the proof, we will show the boundedness of (g k ) in L 2 (! 1 ). Indeed, and its derivatives, a ij and their …rst derivatives are bounded on ! 1 , moreover [START_REF] Chipot | On some anisotropic singular perturbation problems[END_REF] shows that the sequences ( k r X1 u k ), (r X2 u k ) and (u k ) are bounded in L 2 ( ); and therefore from ( 16) the boundedness of (g k ) in L 2 (! 1 ) follows.

open, for every z 2 ! there exists ! z , z 2 ! z which satis…es the a¢ rmations of Proposition 4 in L 2 (! z ). By using the compacity of !, one can extract a …nite cover (! zi ), and hence the sequences

Proposition 5. Let z 0 2 then there exists ! 0 , z 0 2 ! 0 such that

Proof. Let z 0 2 …xed and let > 0 then using the continuity of the a ij one can choose ! 1 , z 0 2 ! 1 such that we have (15) with is chosen as in (14). Let ! 0 ! 1 ; with z 0 2 ! 0 ; and let 2 D(R N ) with = 1 on ! 0 , 0 1; and Supp( )

and extend it by 0 on the outside of ! 1 then W h k 2 W 2;2 (R N ), therefore using (13) we have:

where

and G h k is extended by 0 outside of ! 1 : Then, as in proof of Proposition 4, we obtain

To complete the proof, we have to show that lim

and therefore, from the above inequality we get

where we have used (4) and Lemma 2.

Passing to the limit in (18) by using ( 19), ( 20) and ( 4) with Lemma 2 we deduce

and the proposition follows.

Corollary 2.

For every ! open we have

Proof. Similar to proof of Corollary 1,where we use the compacity of ! and Proposition 5.

Now, we are able to give the proof of the main theorem. Indeed it is similar to proof of Theorem 2, where we will use Corollary 1 and Corollary 2. Let us prove the convergence

Fix ! open, and let u k 2 W 1;2 0 ( ) \ W 2;2 loc ( ) be a sequence of solutions of (1), then it follows from Corollary 1 and 2 that the subset 2 k r 2 X1 u k k2N is relatively compact in L 2 (!) then there exists v ! 2 L 2 (!) and a subsequence still labeled

and since 2 k u k ! 0 in L 2 (!) then v ! = 0 (we used the continuity of r 2 X1 on D 0 (!)).

Hence by the diagonal process one can construct a sequence still labeled

To prove the convergence for the whole sequence ( 2 r 2 X1 u ) 0< 1 , we can reason by contradiction (recall that L 2 loc ( ) equipped with the family of semi norms

is a Fréchet space), and the proof of the main theorem is …nished.

4.2.

A convergence result for some class of semilinear problem. In this section we deal with the following semilinear elliptic problem

where a : R ! R a continuous nonincreasing real valued function which satis…es the growth condition

for some c 0: This problem has been treated in [START_REF] Ogabi | On the L p theory of anisotropic singular perturbations elliptic problems[END_REF] for f 2 L p ( ), 1 < p 2, and the author have proved the convergences

where u 0 is the solution of the limit problem. Let f 2 L 2 ( ) and assume A as in Theorem 1 then the unique W 1;2 0 ( ) weak solution u to (21) belongs to W 2;2 loc ( ). Following the same arguments exposed in the above subsection one can prove the theorem Theorem 3. Under the above assumptions we have u ! u 0 in V 2;2 loc , 2 r 2 X1 u ! 0 and r 2 X1X2 u ! 0 strongly in L 2 loc ( ): Proof. The arguments are similar, we only give the proof for the Laplacian case, so assume that A = Id.

Let ! open; then one can choose ! 0 open such that ! ! 0 ; let 2 D(R N ) with = 1 on !, 0 1 and Supp( ) ! 0 . Let 0 < h < dist(@! 0 ; ); we use the same notations of the above subsection, we set

We can prove easily, by using the continuity of the function a and (22), that the Nemytskii operator a maps continuously L 2 ( ) to L 2 ( ). Therefore, the convergence u k ! u 0 in L 2 ( ) gives a(u k ) ! a(u 0 ) in L 2 ( ), and hence Lemma 2 gives

and …nally the convergences (23) give

Similarly, using boundedness of the sequences (u k ), ( k r X1 u k ), (r X2 u k )and a(u k ) in L 2 ( ); and boundedness of and its derivatives we get r 2 X2 u k L 2 (!) M 0 ; and we conclude as in proof of Theorem 2.

We complete this paper by giving an open question

Problem 1. Let f 2 L p ( ) with 1 < p < 2, and consider problem [START_REF] Chipot | On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems[END_REF]. In [START_REF] Ogabi | On the L p theory of anisotropic singular perturbations elliptic problems[END_REF] the author have proved the convergence u ! u 0 in the Banach space V 1;p de…ned by Can one prove that u ! u 0 in V 2;p loc ?