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W 2;2 INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC
ANISOTRPIC SINGULAR PERTUBATIONS PROBLEMS

CHOKRI OGABI

Abstract. In this note we study the interior regularity of the asymptotic
behavior of a linear elliptic anisotropic singular pertubations problem. We
show the convergence of the seconde derivatives.

1. Introduction

In this note we study the regularity of the asymptotic behavior of the following
elliptic problem�

�div(A�ru�) = f
u� = 0 on @
;

(1)

where 0 < � � 1, 
 is bounded Lipschitz domain and f 2 L2(
): we denote by
x = (x1; :::; xN ) = (X1; X2) the points in RN where

X1 = (x1; :::; xq) and X1 = (xq+1; :::; xN );

with this notation we set

r = (@x1 ; :::; @xN )T =
�
rX1

rX2

�
;

where

rX1
= (@x1 ; :::; @xq )

T and rX2
= (@xq+1 ; :::; @xN )

T

The di¤usion matrix A� is given by

A� = (a
�
ij) =

�
�2A11 �A12
�A21 A22

�
with A = (aij) =

�
A11 A12
A21 A22

�
;

where A11 and A22 are q � q and (N � q)� (N � q) matrices. The coe¢ cients a�ij
are given by

a�ij =

8>><>>:
�2aij for i; j 2 f1; ::; qg
aij for i; j 2 fq + 1; ::; Ng
�aij for i 2 f1; ::; qg , j 2 fq + 1; ::; Ng
�a�ij for i 2 fq + 1; ::; Ng , j 2 f1; ::; qg

We assume A 2 C1(
) \ L1(
) and satis�es the ellipticity assumption

9� > 0;8x 2 
;8� 2 RN : A(x)� � � � � j�j2 : (2)

Date : 31 January 2017.
Key words and phrases. Regularity, anisotropic singular pertubation, asymptotic behavior.

1



2 CHOKRI OGABI

Recall the �rst order pseudo Sobolev space introduced in [2]

V 1;2 =
n
u 2 L2(
) j rX2u 2 L2(
) and u(X1; �) 2W

1;2
0 (
X1) a.e X1 2 
1

o
; :

equipped with the norm

kuk1;2 =
�
kuk2L2(
) + krX2

uk2L2(
)
� 1
2

:

Here 
X1
=
�
X2 2 RN�q : (X1; X2) 2 


	
and 
1 = P1(
) where P1 is the natural

projector RN ! Rq:
We introduce the second order local pseudo Sobolev space

V 2;2loc =
�
u 2 V 1;2 j r2X2

u 2 L2loc(
)
	
;

equipped with the family of normsk�k!2;2 given by

kuk!2;2 =
�
kuk2L2(
) + krX2

uk2L2(
) +


r2X2

u


2
L2(!)

� 1
2

, ! �� 


wherer2X2
u is the Hessian matrix of u taken in theX2 direction, the term



r2X2
u


2
L2(!)

is given by



r2X2
u


2
L2(!)

=
NX

i;j=q+1



@2iju

2L2(!) :
We can show easily thatV 2;2loc is a Fréchet space (locally convex, metrizable and
complete). We also de�ne the following

r2X1

u


2
L2(!)

=

qX
i;j=1



@2iju

2L2(!) ;
and 

r2X1X2

u


2
L2(!)

=

qX
i=1

NX
j=q+1



@2iju

2L2(!) :
The formal passage to the limit gives the unperturbed problem

�
�div(A22ru0(X1; �) = f(X1; �)
u0(X1; �) = 0 on @
X1

; a.e X1 2 
1
(3)

Since A 2 C1(
) which satis�es (2) then it is well known by the elliptic regularity
[5] that the unique W 1;2

0 (
) weak solution of (1) belongs to W 2;2
loc (
). Similarly the

unique W 1;2
0 (
X1) weak solution u0(X1; �) of (3) belongs to W

2;2
loc (
X1):

In [1] the authors have proved the convergences u� ! u0 in V 1;2and �rX1
u� ! 0

in L2(
) (see [4] for the Lp case). In this paper we deal with the convergences in
the space V 2;2loc introduced above. Let us give our main result.

Theorem 1. Assume that A 2 L1(
) \ C1(
) which satis�es (2), suppose that
f 2 L2(
) then u0 2 V 2;2loc and u� ! u0 in V

2;2
loc where u� 2 W 1;2

0 (
) \W 2;2
loc (
)

and u0 are the unique weak solutions to (1) and (3) respectively, in addition the
convergences �2r2X1

u� ! 0, �r2X1X2
u� ! 0 hold in L2loc(
):
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The arguments are based on the Riesz-Fréchet-Kolmogorov compacity theorem
in Lp spaces. We begin by a basic case, the Laplace equation, and we give the proof
in the general case using standard elliptic equations techniques.

2. The perturbed Laplace equation

Let us begin with some useful lemmas

Lemma 1. Let f 2 L2(RN ); for every � 2 (0; 1] let u� 2W 2;2(RN ) such that

��2�X1
u�(x)��X2

u�(x) = f(x) a.e x 2 RN (4)

then for every � 2 (0; 1] we have the bounds

r2X2
u�



L2(RN ) � kfkL2(RN ) ;

�2


r2X1

u�



L2(RN ) � kfkL2(RN ) ;

p
2�


r2X1X2

u�



L2(RN ) � kfkL2(RN ) :

Proof. Let F be the Fourier transform on L2(RN ) de�ned as the extension, by
density, of the Fourier transform de�ned on the Schwartz space S(RN ) by

F(u)(�) = (2�)�N
2

Z
RN
u(x)e�ix��dx, u 2 S(RN )

where � is the standard scalare product of RN . Applying F on (4) we obtain0@�2 qX
i=1

�2i +
NX

i=q+1

�2i

1AF(u�)(�) = F(f)(�);
then 0@�4 qX

i;j=1

�2i �
2
j +

NX
i;j=q+1

�2i �
2
j + 2�

2
NX

j=q+1

qX
i=1

�2i �
2
j

1A jF(u�)(�)j2 = jF(f)(�)j2 ;
(5)

thus
NX

i;j=q+1

�2i �
2
j jF(u�)(�)j

2 � jF(f)(�)j2 ;

hence
NX

i;j=q+1

��F(@2iju�)(�)��2 � jF(f)(�)j2 ;
then

NX
i;j=q+1



F(@2iju�)

2L2(RN ) � kF(f)k2L2(RN ) ;
and the Parseval identity gives

NX
i;j=q+1



@2iju�

2L2(RN ) � kfk2L2(RN ) :
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Hence 

r2X2
u�



L2(RN ) � kfkL2(RN ) :

Similarly we obtain from (5) the bounds

�2


r2X1

u�



L2(RN ) � kfkL2(RN ) ;

p
2�


r2X1X2

u�



L2(RN ) � kfkL2(RN ) :

�

Notation 1. For any function u 2 Lp(RN ) and h 2 RN we denote �hu(x) =
u(x+ h); x 2 RN :

Lemma 2. Let 
 be an open bounded subset of RN and let (uk)k2N be a converging
sequence in Lp(
),1 � p < 1 and let ! �� 
 open, then for every � > 0 there
exists 0 < � < dist(@
; !) such that

8h 2 RN ; jhj � �;8k 2 N : k�huk � ukkLp(!) � �

in other words we have lim
h!0

sup
k2N

k�huk � ukkLp(!) = 0:

Proof. Let ! �� 
 open. For any function v 2 Lp(
); extend v by 0 outside of 
;
since the translation h ! �hv is continuous from RN to Lp(RN ) (see for instance
[6]) then for every � > 0 there exists 0 < � < dist(@
; !) such that

8h 2 RN ; jhj � � : k�hv � vkLp(!) � �: (6)

We denote limuk = u 2 Lp(
), and let � > 0 then (6) shows that there exists
0 < � < dist(@
; !) such that

8h 2 RN ; jhj � � : k�hu� ukLp(!) �
�

2
:

By the triangular inequality and the invariance of the Lebesgue measure under
translations we have for every k 2 N and jhj � �

k�huk � ukkLp(!) � 2 kuk � ukLp(
) + k�hu� ukLp(!) (7)

Since uk ! u in Lp(
) then there exists k0 2 N, such that

8k � k0 : kuk � ukLp(
) �
�

4
:

Then from (7) we obtain

8h 2 RN ; jhj � �;8k � k0 : k�huk � ukkLp(!) � � (8)

Similarly (6) shows that for every k 2 f0; 1; 2; :::; k0 � 1g there exists 0 < �k <
dist(@
; !) such that

8h 2 RN ; jhj � �k : k�huk � ukkLp(!) � �; k 2 f0; 1; 2; :::; k0 � 1g (9)

Taking �0 = min
k2f0;::;k0�1g

(�k; �) and combining (8) and (9) we obtain

8h 2 RN ; jhj � �0;8k 2 N : k�huk � ukkLp(!) � �:

�
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Now, suppose that A = Id be the identity matrix then (1) becomes�
��2�X1

u� ��X2
u� = f

u� = 0 on @
;
(10)

Let (�k)k2N be sequence in (0; 1] with lim �k = 0 and let uk = u�k 2 W
1;2
0 (
) \

W 2;2
loc (
) be the solution of (10) then we have the following

Proposition 1. 1) Let ! �� 
 open then

lim
h!0

sup
k2N



�hr2X2
uk �r2X2

uk



L2(!)

= 0;

lim
h!0

sup
k2N



�2k(�hr2X1
uk �r2X1

uk)



L2(!)

= 0;

lim
h!0

sup
k2N



�k(�hr2X1X2
uk �r2X1X2

uk)



L2(!)

= 0:

2) The sequences
�
r2X2

uk
�
, (�2kr

2
X1
uk), (�kr2X1X2

uk) are bounded in L2loc(
) i.e.
for every ! �� 
 there exists M � 0 such that

sup
k2N



�2kr2X1
uk



L2(!)

; sup
k2N



r2X2
uk



L2(!)

; sup
k2N



�kr2X1X2
uk



L2(!)

�M:

Proof. 1) Let ! �� 
 open; then one can choose !0 open such that ! �� !0 ��

; let � 2 D(RN ) with � = 1 on !, 0 � � � 1 and Supp(�) � !0. Let 0 <
h < dist(!0; @
); to make the notations less heavy we set Uhk = �huk � uk, then
Uhk 2W 2;2(!0): Notice that translation and derivation commute then we have

��2k�X1U
h
k (x)��X2U

h
k (x) = F

h(x), a.e x 2 !0,

with Fh = �hf � f . We set Wh
k = �U

h
k then we get for a.e x 2 !0

� �2k�X1Wh
k (x)��X2Wh

k (x) = �(x)F
h(x)� 2�2krX1�(x) � rX1U

h
k (x)

� 2rX2
�(x) � rX2

Uhk (x)� Uhk (x)(�2k�X1
�(x)��X2

�(x)):

Since Uhk 2 W 2;2(!0) then Wh
k 2 W

2;2
0 (!0), so we can extend Wh

k by 0 outside of
!0 then Wh

k 2 W 2(RN ): The right hand side of the above equality is extended by
0 outside of !0, hence the equation is satis�ed in the whole space, so by Lemma 1
we get 

r2X2

Wh
k




L2(RN ) �



�Fh


L2(RN ) + 2�

2
k



rX1
� � rX1

Uhk



L2(RN )

+ 2


rX2

� � rX2
Uhk



L2(RN ) +



Uhk (�2k�X1
���X2

�)



L2(RN ) :

Then 

r2X2
Uhk



L2(!)

�


Fh



L2(!0)
+ 2�k krX1

�k1


�krX1

Uhk



L2(!0)

+ 2 krX2
�k1



rX2
Uhk



L2(!0)

+


(�2k�X1

���X2
�)



1



Uhk 

L2(!0) :
Recall that uk ! u in V 1;2 and �krX1uk ! 0 in L2(
), then by Lemma 2 we
have

lim
h!0

sup
k2N



�krX1U
h
k




L2(!0)

= lim
h!0

sup
k2N

k�k(�hrX1uk �rX1uk)kL2(!0) = 0,
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and similarly we have

lim
h!0

sup
k2N



rX2U
h
k




L2(!0)

= 0, lim
h!0

sup
k2N



Fh


L2(!0)

= 0,

lim
h!0

sup
k2N



Uhk 

L2(!0) = 0:

and hence

lim
h!0

sup
k2N



�hr2X2
uk �r2X2

uk



L2(!)

= lim
h!0

sup
k2N



r2X2
Uhk



L2(!)

= 0:

Similarly we obtain

lim
h!0

sup
k2N



�2k(�hr2X1
uk �r2X1

uk)



L2(!)

= 0;

and

lim
h!0

sup
k2N



�k(�hr2X1X2
uk �r2X1X2

uk)



L2(!)

= 0:

2) Following the same arguments, we obtain

�2k


r2X1

uk



L2(!)

+


r2X2

uk



L2(!)

+
p
2�k



r2X1X2
uk



L2(!)

�
3 kfkL2(!0) + 6�k krX1

�k1 k�krX1
ukkL2(!0)

+ 6 krX2
�k1 krX2

ukkL2(!0) + 3


(�2k�X1

���X2
�)



1 kukkL2(!0) :

The convergences uk ! u in V 1;2, �krX1uk ! 0 in L2(
) and boundedness of �
and its derivatives show that the right hand side of the above inequality is uniformly
bounded in k, i.e for some M > 0 independent of k

�2k


r2X1

uk



L2(!)

+


r2X2

uk



L2(!)

+
p
2�k



r2X1X2
uk



L2(!)

�M:

�
Now, we are ready to prove the following

Theorem 2. Let u� 2 W 1;2
0 (
) \W 2;2

loc (
) be the solution of (10) then u� ! u0
strongly in V 2;2loc where u0 2 V

2;2
loc is the solution of the limit problem. In addition,

we have

�2r2X1
u� ! 0 and �r2X1X2

u� ! 0; strongly in L2loc(
):

Proof. Let u0 2 V 1;2 be the solution of the limit problem and let (uk)k2N; uk 2
W 1;2
0 (
) \ W 2;2

loc (
) be a subsequence of solutions to (10), then Proposition 1
shows by the Riesz-Fréchet-Kolmogorov theorem ([3]) that the subset

�
r2X2

uk
	
k2N

is relatively compact in L2(!) for every ! �� 
 open. Now, �x ! �� 
 then
there exists u!0 2 L2(!) and a subsequence still labeled (r2X2

uk)k2N such that
r2X2

uk ! u!0 in L
2(!) strongly. Since uk ! u0 in L2(!) and the second order

di¤erential operators @2ij are continuous on D0(!) then u!0 = rX2u0 on !:Whence,
since ! is arbitrary we get r2X2

u0 2 L2loc(
). Now, taking a countable covering (!n)
of 
 with !n �� 
 then by the diagonal process one can construct a subsequence
still labeled (uk) such that r2X2

uk ! r2X2
u0 in L2loc(
) strongly, combining this

with uk ! u0 in V 1;2; we get uk ! u0 strongly in V
2;2
loc .

To prove the convergence of the whole sequence (u�)0<��1 we can reasoning by
contradiction, so suppose that there exists � > 0 and a subsequence (uk) such that
dV 2;2

loc
(uk; u0) > �, here dV 2;2

loc
is the distance of the Fréchet spaceV 2;2loc . It follows by
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the �rst part of this proof that there exists a subsequence still labeled (uk) such
that dV 2;2

loc
(uk; u0)! 0, and the proof of the theorem is �nished. Similarly we show

that �2r2X1
u� ! 0 and �r2X1X2

u� ! 0 strongly in L2loc(
): �

3. General elliptic problems

3.1. Proof of the main theorem. In this subsection we shall prove Theorem
1. Firstly, we suppose that the coe¢ cients of A are constants then we have the
following

Proposition 2. Suppose that the coe¢ cients of A are constants and assume (2);
let (u�) be a sequence of W 2;2(RN ) such that �

X
i;j

a�ij@
2
iju� = f , with f 2 L2(RN )

then we have the bounds

�


r2X2

u�



L2(RN ) � kfkL2(RN ) ;

��2


r2X1

u�



L2(RN ) � kfkL2(RN ) ;

p
2��



r2X1X2
u



L2(RN ) � kfkL2(RN ) :

Proof. As in the proof of Proposition 1 we use the Fourier transform and we
obtain 0@X

i;j

a�ij�i�j

1AF(u�)(�) = F(f)(�)
From the ellipticity assumption (2) we deduce

�2

0@�2 qX
i=

�2i +
NX

i=q+1

�2i

1A2

jF(u�)(�)j2 � jF(f)(�)j2

Thus, as in proof of Proposition 1, we obtain the desired bounds. �

Now, suppose that A 2 L1(
) \ C1(
) and assume (2), We denote uk = u�k 2
W 1;2
0 (
) \W 2;2

loc (
) the solution to (1) with �k ! 0 as k ! 1; then we have the
following.

Proposition 3. Let z0 2 
 �xed then there exists !0 �� 
 open with z0 2 !0 such
that the sequences

�
r2X2

uk
�
,
�
r2X1

uk
�
and

�
r2X1X2

uk
�
are bounded in L2(!0):

Proof. Since uk 2W 1;2
0 (
)\W 2;2

loc (
) and A 2 C1(
) then uk satis�es for a.e x 2 


�
X
i;j

akij(x)@
2
ijuk(x)�

X
i;j

@ia
k
ij(x)@juk(x) = f(x); (11)

where akij = a
�k
ij .

Let z0 2 
 �xed, and let � > 0 then using the continuity of the aij one can
choose !1 �� 
, z0 2 !1 such that

sup
x2!1

jaij(x)� aij(z0)j � � for every i; j 2 f1; :::; Ng (12)
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Let !0 �� !1 open with z0 2 !0 and let � 2 D(RN ) with � = 1 on !0, 0 � � � 1
and Supp(�) � !1. We set Uk = �uk, and we extend it by 0 on the outside of !1
then Uk 2W 2;2(RN ). therefore we obtain

�
X
i;j

akij(z0)@
2
ijUk(x) =

X
i;j

(akij(x)�akij(z0))@2ijUk(x)+gk(x), for a.e x 2 RN ;

where gk is given by

gk(x) = �(x)f(x) + �(x)
X
i;j

@ia
k
ij(x)@juk(x) (13)

�uk(x)
X
i;j

akij(x)@
2
ij�(x)�

X
i;j

akij(x)@i�(x)@juk(x)�
X
i;j

akij(x)@j�(x)@iuk(x)

Now applying Proposition 2 to the above di¤erential equality we get

�


r2X2

Uk



L2(!1)

+ ��2k


r2X1

Uk



L2(!1)

+
p
2��k



r2X1X2
Uk



L2(!1)

� 3








X
i;j

(akij(x)� akij(z0))@2ijUk








L2(!1)

+ 3 kgkL2(!1)

Whence we use (12) we get

�


r2X2

Uk



L2(!1)

+ ��2k


r2X1

Uk



L2(!1)

+
p
2��k



r2X1X2
Uk



L2(!1)

� 3��2k
qX

i;j=1



@2ijUk

L2(!1) + 3� NX
i;j=q+1



@2ijUk

L2(!1)
+ 6��k

qX
i=1

NX
j=q+1



@2ijUk

L2(!1) + 3 kgkL2(!1) ;
and thus we deduce by Cauchy-Schwarz

�


r2X2

Uk



L2(!1)

+ ��2k


r2X1

Uk



L2(!1)

+
p
2��k



r2X1X2
Uk



L2(!1)

� 3�(N � q)


r2X2

Uk



L2(!1)

+ �2k3�q


r2X1

Uk



L2(!1)

+ �k6(N � q)q�


r2X1X2

Uk


2
L2(!1)

+ 3 kgkL2(!1)

[�� 3�(N � q)]


r2X2

Uk



L2(!1)

+ �2k [�� 3�q]


r2X1

Uk



L2(!1)

+

�k

hp
2�� 6(N � q)q�

i 

r2X1X2
Uk



L2(!1)

� 3 kgkkL2(!1) ;

we can choose a priori � small enough such that

min
n
[�� 3�(N � q)] ; [�� 3�q] ;

hp
2�� 6(N � q)q�

io
� �

2
, (14)

and then we deduce

r2X2
uk



L2(!0)

+ �2k


r2X1

uk



L2(!0)

+ �k


r2X1X2

uk



L2(!0)

� 6

�
kgkkL2(!1) :

To �nish the proof it su¢ ces to show that the sequence (gk) is bounded in L2(!1).
In fact � and its derivatives, aij and their �rst derivatives are bounded on !1,
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moreover the sequences (�krX1
uk), (rX2

uk) and (uk) are bounded in L2(
); then
from (13) the boundedness of (gk) in L2(!1) follows. �

Corollary 1. The sequences
�
r2X2

uk
�
,
�
�2kr

2
X1
uk
�
,
�
�kr2X1X2

uk
�
are bounded in

L2loc(
):

Proof. Let ! �� 
 open, for every z� 2 �! there exists !� �� 
, z� 2 !� which
satis�es the a¢ rmations of Proposition 3 in L2(!�). Since �! is compact then
one can extract a �nit cover (!�m), then

�
r2X2

uk
�
,
�
�2kr

2
X1
uk
�
,
�
�kr2X1X2

uk
�
are

bounded in L2(!) and the corollary follows. �

Proposition 4. Let z0 2 
 then there exists !0 �� 
, z0 2 !0 such that

lim
h!0

sup
k2N



�hr2X2
uk �r2X2

uk



Lp(!0)

= 0,

lim
h!0

sup
k2N



�2k(�hr2X1
uk �r2X1

uk)



Lp(!0)

= 0,

lim
h!0

sup
k2N



�k(�hr2X1X2
uk �r2X1X2

uk)



Lp(!0)

= 0.

Proof. Let z0 2 
 �xed and let � > 0 then using the continuity of the aij one can
choose !1 �� 
, z0 2 !1 such that we have (12) with � chosen such that (14). Let
!0 �� !1; with z0 2 !0; and let � 2 D(RN ) with � = 1 on !0, 0 � � � 1; and
Supp(�) � !1. Let 0 < h < dist(!1; @
); we setWh

k = �U
k
h , with U

h
k = (�huk�uk)

and extend it by 0 on the outside of !1 then Wh
k 2W 2;2(RN ), therefore using (11)

we have for a.e x 2 RN :

�
X
i;j

akij(z0)@
2
ijWh

k (x) =
X
i;j

(akij(x)� akij(z0))@2ijWh
k (x) +G

h
k(x);

where

�Ghk(x) = Uhk
X
i;j

akij(x)@
2
ij�+

X
i;j

akij(x)@i�@jU
h
k +

X
i;j

akij(x)@j�@iU
h
k (15)

+�
X
i;j

�
akij(x)� �hakij(x)

�
�h@

2
ijuk(x) + �(x) (f(x)� �hf(x))

+�
X
i;j

�
@ia

k
ij(x)@juk(x)� @i�hakij(x)@j�huk(x)

�
:

Then, as in proof of Proposition 3, we obtain

�hr2X2
uk �r2X2

uk



L2(!0)

+ �2k


�hr2X1

uk �r2X1
uk



L2(!0)

+ �k


�hr2X1X2

uk �r2X1X2
uk



L2(!0)

� 6

�



Ghk

L2(!1) :
Now, to �nish the proof we have to show that lim

h!0
sup
k2N



Ghk

L2(!1) = 0. Using
the boundedness of the aij and the boundedness of � and its derivatives on !1 we
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get from (15)

Ghk

L2(!1) � M


Uhk 

L2(!1) +M�k 

rX1

Uhk



L2(!1)

(16)

+M


rX2

Uhk



L2(!1)

+ k�hf � fkL2(!1)
+
X
i;j



�akij � �hakij� �h@2ijuk

L2(!1)
+
X
i;j



@iakij@juk � �h@iakij�h@juk

L2(!1) ;
where M > 0 independent of h and k: Now, estimating the �fth term of the right
hand side of the above inequalityX

i;j



�akij � �hakij� �h@2ijuk

L2(!1) � Cq;N sup
x2!1

jaij(x)� �haij(x)j ��

r2X2
uk



L2(!1+h)

+ �2k


r2X1

uk



L2(!1+h)

+ �k


r2X1X2

uk



L2(!1+h)

�
;

where Cq;N > 0 is only depends in q and N .
For h small enough then it follows from Corollary 1 that the quantity

r2X2

uk



L2(!1+h)

+ �2k


r2X1

uk



L2(!1+h)

+ �k


r2X1X2

uk



L2(!1+h)

;

is uniformly bounded. Since the aij are uniformly continuous on every ! �� 

then lim

h!0
sup
x2!1

jaij(x)� �haij(x)j = 0 and hence

lim
h!0

sup
k2N

X
i;j



�akij � �hakij� �h@2ijuk

L2(!1) = 0: (17)

Now, estimating the last term of (16)X
i;j



@iakij@juk � �h@iakij�h@juk

L2(!1) �X
i;j



@iakij@juk � �h@iakij@juk

L2(!1)
+
X
i;j



�h@iakij@juk � @i�hakij�h@juk

L2(!1) ;
and thus using boundedess of the �rst derivatives of the aij on !1 we getX

i;j



@iakij@juk � @i�hakij@j�huk

L2(!1)
� C 0q;N sup j@iaij(x)� @i�haij(x)j

�
�k krX1

ukkL2(!1) + krX2
ukkL2(!1)

�
+M 0

�
�k


rX1

Uhk



L2(!1)

+


rX2

Uhk



L2(!1)

�
;

where M 0 > 0 is independent of h and k. Now, since the @iaij are uniformly
continuous ( recall that A 2 C1(
)) on every ! �� 
 then

lim
h!0

sup
x2!1

j@iaij(x)� �h@iaij(x)j = 0;

and hence from the above inequality we get

lim
h!0

sup
k2N

X
i;j



@iakij@juk � @i�hakij@j�huk

L2(!1) = 0; (18)

where we have used the convergence of (rX2
uk), (�krX1

uk) and Lemma 2.



W 2;2 INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC ANISOTRPIC.... 11

Passing to the limit in (16) by using (17), (18) and Lemma 2 we deduce

lim
h!0

sup
k2N



Ghk

L2(!1) = 0:
and the proposition follows. �

Corollary 2. For every ! �� 
 open we have

lim
h!0

sup
k2N



�hr2X2
uk �r2X2

uk



Lp(!)

= 0;

lim
h!0

sup
k2N



�2k(�hr2X1
uk �r2X1

uk)



Lp(!)

= 0;

lim
h!0

sup
k2N



�k(�hr2X1X2
uk �r2X1X2

uk)



Lp(!)

= 0.

Proof. Similar to proof of Corollary 1 where we use compacity of �! and Propo-
sition 4. �

Now, we are able to give the proof of the main theorem. Indeed the proof is
similar to proof of Theorem 2 where we use Corollary 1 and Corollary 2. Let
us give the proof of the convergence �2r2X1

u� ! 0 in L2loc(
). Fix ! �� 
 open,
and let uk 2 W 1;2

0 (
) \W 2;2
loc (
) be a sequence of solutions of (1) ( � replaced by

�k ! 0), then it follows from Corollary 1 and 2 that the subset
�
�2kr

2
X1
uk
	
k2N

is relatively compact in L2(!) then there exists v! 2 L2(!) and a subsequence still
labeled (�2kr

2
X1
uk) such that �2kr

2
X1
uk ! v! in L2(!). Since �2kuk ! 0 in L2(!)

then v! = 0, since r2X1
is continuous on D0

(!): Hence by the diagonal process one
can construct a sequence still labeled (�2kr

2
X1
uk) such that �2kr

2
X1
uk ! 0 in L2loc(
):

To prove the convergence of the whole sequence we can reasoning by contradiction
as in proof of Theorem 2 (recall that L2loc(
) equipped with the family of semi
norms k�kL2(!) is a Fréchet space), and the proof of the main theorem is �nished.

3.2. W 2;2
loc regularity for some class of semilinear problem. In this section

we deal with the following semilinear elliptic problem�
�div(A�ru�) = a(u�) + f

u� = 0 on @
;
;

where a : R ! R a continuous nonincreasing real valued function which satis�es
the growth condition

8x 2 R : ja(x)j � c (1 + jxj) ; (19)

for some c � 0: This problem has been treated in [4] for f 2 Lp(
), 1 < p � 2, and
the author have proved the convergences

�rX1
u� ! 0, u� ! u0, rX2

u� ! rX2
u0 in Lp(
); (20)

where u0 is the solution of the unperturbed problem.
Let f 2 L2(
) and assume A as in Theorem 1 then the unique W 1;2

0 (
) weak
solution u� belongs to W

2;2
loc (
) by the elliptic regularity. Following the same argu-

ments exposed in the above section one can prove the theorem

Theorem 3. Under the above assumptions we have u� ! u0 in V
2;2
loc , �

2r2X1
u� ! 0

and �r2X1X2
u� ! 0 strongly in L2loc(
):
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Proof. The arguments are similar, we only give the proof for the Laplacian case,
so assume that A = Id. Let ! �� 
 open; then one can choose !0 open such that
! �� !0 �� 
; let � 2 D(RN ) with � = 1 on !, 0 � � � 1 and Supp(�) � !0. Let
0 < h < dist(@!0; 
); we use the same notations so we set Uhk = �huk � uk, then
Uhk 2W 1;2(!0) and we have

��2k�X1U
h
k (x)��X2U

h
k (x) = F

h(x) + �ha(u)(x)� a(u)(x), a.e x 2 !0;
with Fh = �hf � f . We set Wh

k = �U
h
k then we get as in Proposition 1

�hr2X2

uk �r2X2
uk



L2(!)

�


Fh



L2(!0)
+M



�krX1
Uhk



L2(!0)

+ k�ha(uk)� a(uk)kL2(!0)
+M



rX2U
h
k




L2(!0)

+M


Uhk 

L2(!0) :

We show easily using continuity of the function a and (19) that the Nemytskii
operator a maps continuously L2 to L2, therefore the convergence uk ! u0 in
L2(
) gives a(uk)! a(u0) in L2(
), and hence

lim
h!0

sup
k2N

k�ha(uk)� a(uk)kL2(!) = 0;

and �nally the convergences (20) give

lim
h!0

sup
k2N



�hr2X2
uk �r2X2

uk



L2(!)

= 0:

Similarly, using boundedess (uk), (�krX1uk), (rX2uk)and a(uk) in L
2(
); and

boundedness of � and its derivatives we obtain

r2X2
uk



L2(!)

�M 0;

and we conclude as in proof of Theorem 2. �
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