W 2,2 INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC ANISOTROPIC SINGULAR PERTURBATIONS PROBLEMS.

Chokri Ogabi

- To cite this version:

Chokri Ogabi. W 2,2 INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC
ANISOTROPIC SINGULAR PERTURBATIONS PROBLEMS.. 2017. hal-01461172v2

HAL Id: hal-01461172
 https://hal.science/hal-01461172v2

Preprint submitted on 13 Feb 2017 (v2), last revised 27 Jun 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

$W^{2,2}$ INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC ANISOTRPIC SINGULAR PERTUBATIONS PROBLEMS

CHOKRI OGABI

Abstract

In this note we study the interior regularity of the asymptotic behavior of a linear elliptic anisotropic singular pertubations problem. We show the convergence of the seconde derivatives.

1. Introduction

In this note we study the regularity of the asymptotic behavior of the following elliptic problem

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(A_{\epsilon} \nabla u_{\epsilon}\right)=f \tag{1}\\
u_{\epsilon}=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where $0<\epsilon \leq 1, \Omega$ is bounded Lipschitz domain and $f \in L^{2}(\Omega)$. we denote by $x=\left(x_{1}, \ldots, x_{N}\right)=\left(X_{1}, X_{2}\right)$ the points in \mathbb{R}^{N} where

$$
X_{1}=\left(x_{1}, \ldots, x_{q}\right) \text { and } X_{1}=\left(x_{q+1}, \ldots, x_{N}\right)
$$

with this notation we set

$$
\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{N}}\right)^{T}=\binom{\nabla_{X_{1}}}{\nabla_{X_{2}}},
$$

where

$$
\nabla_{X_{1}}=\left(\partial_{x_{1}}, \ldots, \partial_{x_{q}}\right)^{T} \text { and } \nabla_{X_{2}}=\left(\partial_{x_{q+1}}, \ldots, \partial_{x_{N}}\right)^{T}
$$

The diffusion matrix A_{ϵ} is given by

$$
A_{\epsilon}=\left(a_{i j}^{\epsilon}\right)=\left(\begin{array}{cc}
\epsilon^{2} A_{11} & \epsilon A_{12} \\
\epsilon A_{21} & A_{22}
\end{array}\right) \text { with } A=\left(a_{i j}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are $q \times q$ and $(N-q) \times(N-q)$ matrices. The coefficients $a_{i j}^{\epsilon}$ are given by

$$
a_{i j}^{\epsilon}=\left\{\begin{array}{l}
\epsilon^{2} a_{i j} \text { for } i, j \in\{1, . ., q\} \\
a_{i j} \text { for } i, j \in\{q+1, . ., N\} \\
\quad \epsilon a_{i j} \text { for } i \in\{1, . ., q\}, j \in\{q+1, . ., N\} \\
\epsilon a_{i j}^{\epsilon} \text { for } i \in\{q+1, . ., N\}, j \in\{1, . ., q\}
\end{array}\right.
$$

We assume $A \in C^{1}(\Omega) \cap L^{\infty}(\Omega)$ and satisfies the ellipticity assumption

$$
\begin{equation*}
\exists \lambda>0, \forall x \in \Omega, \forall \zeta \in \mathbb{R}^{N}: A(x) \zeta \cdot \zeta \geq \lambda|\zeta|^{2} \tag{2}
\end{equation*}
$$

Date: 31 January 2017.
Key words and phrases. Regularity, anisotropic singular pertubation, asymptotic behavior.

Recall the first order pseudo Sobolev space introduced in [2]

$$
V^{1,2}=\left\{u \in L^{2}(\Omega) \mid \nabla_{X_{2}} u \in L^{2}(\Omega) \text { and } u\left(X_{1}, \cdot\right) \in W_{0}^{1,2}\left(\Omega_{X_{1}}\right) \text { a.e } X_{1} \in \Omega^{1}\right\}
$$

equipped with the norm

$$
\|u\|_{1,2}=\left(\|u\|_{L^{2}(\Omega)}^{2}+\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

Here $\Omega_{X_{1}}=\left\{X_{2} \in \mathbb{R}^{N-q}:\left(X_{1}, X_{2}\right) \in \Omega\right\}$ and $\Omega^{1}=P_{1}(\Omega)$ where P_{1} is the natural projector $\mathbb{R}^{N} \rightarrow \mathbb{R}^{q}$.

We introduce the second order local pseudo Sobolev space

$$
V_{l o c}^{2,2}=\left\{u \in V^{1,2} \mid \nabla_{X_{2}}^{2} u \in L_{l o c}^{2}(\Omega)\right\},
$$

equipped with the family of norms $\|\cdot\|_{2,2}^{\omega}$ given by

$$
\|u\|_{2,2}^{\omega}=\left(\|u\|_{L^{2}(\Omega)}^{2}+\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla_{X_{2}}^{2} u\right\|_{L^{2}(\omega)}^{2}\right)^{\frac{1}{2}}, \omega \subset \subset \Omega
$$

where $\nabla_{X_{2}}^{2} u$ is the Hessian matrix of u taken in the X_{2} direction, the term $\left\|\nabla_{X_{2}}^{2} u\right\|_{L^{2}(\omega)}^{2}$ is given by

$$
\left\|\nabla_{X_{2}}^{2} u\right\|_{L^{2}(\omega)}^{2}=\sum_{i, j=q+1}^{N}\left\|\partial_{i j}^{2} u\right\|_{L^{2}(\omega)}^{2} .
$$

We can show easily that $V_{\text {loc }}^{2,2}$ is a Fréchet space (locally convex, metrizable and complete). We also define the following

$$
\left\|\nabla_{X_{1}}^{2} u\right\|_{L^{2}(\omega)}^{2}=\sum_{i, j=1}^{q}\left\|\partial_{i j}^{2} u\right\|_{L^{2}(\omega)}^{2}
$$

and

$$
\left\|\nabla_{X_{1} X_{2}}^{2} u\right\|_{L^{2}(\omega)}^{2}=\sum_{i=1}^{q} \sum_{j=q+1}^{N}\left\|\partial_{i j}^{2} u\right\|_{L^{2}(\omega)}^{2}
$$

The formal passage to the limit gives the unperturbed problem

$$
\begin{cases}-\operatorname{div}\left(A_{22} \nabla u_{0}\left(X_{1}, \cdot\right)=f\left(X_{1}, \cdot\right)\right. & \tag{3}\\ u_{0}\left(X_{1}, \cdot\right)=0 & \text { on } \partial \Omega_{X_{1}}, \text { a.e } X_{1} \in \Omega^{1}\end{cases}
$$

Since $A \in C^{1}(\Omega)$ which satisfies (2) then it is well known by the elliptic regularity [5] that the unique $W_{0}^{1,2}(\Omega)$ weak solution of (1) belongs to $W_{l o c}^{2,2}(\Omega)$. Similarly the unique $W_{0}^{1,2}\left(\Omega_{X_{1}}\right)$ weak solution $u_{0}\left(X_{1}, \cdot\right)$ of (3) belongs to $W_{l o c}^{2,2}\left(\Omega_{X_{1}}\right)$.

In [1] the authors have proved the convergences $u_{\epsilon} \rightarrow u_{0}$ in $V^{1,2}$ and $\epsilon \nabla_{X_{1}} u_{\epsilon} \rightarrow 0$ in $L^{2}(\Omega)$ (see [4] for the L^{p} case). In this paper we deal with the convergences in the space $V_{l o c}^{2,2}$ introduced above. Let us give our main result.
Theorem 1. Assume that $A \in L^{\infty}(\Omega) \cap C^{1}(\Omega)$ which satisfies (2), suppose that $f \in L^{2}(\Omega)$ then $u_{0} \in V_{l o c}^{2,2}$ and $u_{\epsilon} \rightarrow u_{0}$ in $V_{l o c}^{2,2}$ where $u_{\epsilon} \in W_{0}^{1,2}(\Omega) \cap W_{l o c}^{2,2}(\Omega)$ and u_{0} are the unique weak solutions to (1) and (3) respectively, in addition the convergences $\epsilon^{2} \nabla_{X_{1}}^{2} u_{\epsilon} \rightarrow 0, \epsilon \nabla_{X_{1} X_{2}}^{2} u_{\epsilon} \rightarrow 0$ hold in $L_{l o c}^{2}(\Omega)$.

The arguments are based on the Riesz-Fréchet-Kolmogorov compacity theorem in L^{p} spaces. We begin by a basic case, the Laplace equation, and we give the proof in the general case using standard elliptic equations techniques.

2. The perturbed Laplace equation

Let us begin with some useful lemmas
Lemma 1. Let $f \in L^{2}\left(\mathbb{R}^{N}\right)$, for every $\epsilon \in(0,1]$ let $u_{\epsilon} \in W^{2,2}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
-\epsilon^{2} \Delta_{X_{1}} u_{\epsilon}(x)-\Delta_{X_{2}} u_{\epsilon}(x)=f(x) \text { a.e } x \in \mathbb{R}^{N} \tag{4}
\end{equation*}
$$

then for every $\epsilon \in(0,1]$ we have the bounds

$$
\begin{aligned}
\left\|\nabla_{X_{2}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)} \\
\epsilon^{2}\left\|\nabla_{X_{1}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)} \\
\sqrt{2} \epsilon\left\|\nabla_{X_{1} X_{2}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

Proof. Let \mathcal{F} be the Fourier transform on $L^{2}\left(\mathbb{R}^{N}\right)$ defined as the extension, by density, of the Fourier transform defined on the Schwartz space $\mathcal{S}\left(\mathbb{R}^{N}\right)$ by

$$
\mathcal{F}(u)(\xi)=(2 \pi)^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} u(x) e^{-i x \cdot \xi} d x, \quad u \in \mathcal{S}\left(\mathbb{R}^{N}\right)
$$

where \cdot is the standard scalare product of \mathbb{R}^{N}. Applying \mathcal{F} on (4) we obtain

$$
\left(\epsilon^{2} \sum_{i=1}^{q} \xi_{i}^{2}+\sum_{i=q+1}^{N} \xi_{i}^{2}\right) \mathcal{F}\left(u_{\epsilon}\right)(\xi)=\mathcal{F}(f)(\xi)
$$

then

$$
\begin{equation*}
\left(\epsilon^{4} \sum_{i, j=1}^{q} \xi_{i}^{2} \xi_{j}^{2}+\sum_{i, j=q+1}^{N} \xi_{i}^{2} \xi_{j}^{2}+2 \epsilon^{2} \sum_{j=q+1}^{N} \sum_{i=1}^{q} \xi_{i}^{2} \xi_{j}^{2}\right)\left|\mathcal{F}\left(u_{\epsilon}\right)(\xi)\right|^{2}=|\mathcal{F}(f)(\xi)|^{2}, \tag{5}
\end{equation*}
$$

thus

$$
\sum_{i, j=q+1}^{N} \xi_{i}^{2} \xi_{j}^{2}\left|\mathcal{F}\left(u_{\epsilon}\right)(\xi)\right|^{2} \leq|\mathcal{F}(f)(\xi)|^{2}
$$

hence

$$
\sum_{i, j=q+1}^{N}\left|\mathcal{F}\left(\partial_{i j}^{2} u_{\epsilon}\right)(\xi)\right|^{2} \leq|\mathcal{F}(f)(\xi)|^{2}
$$

then

$$
\sum_{i, j=q+1}^{N}\left\|\mathcal{F}\left(\partial_{i j}^{2} u_{\epsilon}\right)\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \leq\|\mathcal{F}(f)\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}
$$

and the Parseval identity gives

$$
\sum_{i, j=q+1}^{N}\left\|\partial_{i j}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}
$$

Hence

$$
\left\|\nabla_{X_{2}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}
$$

Similarly we obtain from (5) the bounds

$$
\begin{aligned}
& \epsilon^{2}\left\|\nabla_{X_{1}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}, \\
& \sqrt{2} \epsilon\left\|\nabla_{X_{1} X_{2}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

Notation 1. For any function $u \in L^{p}\left(\mathbb{R}^{N}\right)$ and $h \in \mathbb{R}^{N}$ we denote $\tau_{h} u(x)=$ $u(x+h), x \in \mathbb{R}^{N}$.
Lemma 2. Let Ω be an open bounded subset of \mathbb{R}^{N} and let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a converging sequence in $L^{p}(\Omega), 1 \leq p<\infty$ and let $\omega \subset \subset \Omega$ open, then for every $\sigma>0$ there exists $0<\delta<\operatorname{dist}(\partial \Omega, \omega)$ such that

$$
\forall h \in \mathbb{R}^{N},|h| \leq \delta, \forall k \in \mathbb{N}:\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)} \leq \sigma
$$

in other words we have $\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)}=0$.
Proof. Let $\omega \subset \subset \Omega$ open. For any function $v \in L^{p}(\Omega)$, extend v by 0 outside of Ω, since the translation $h \rightarrow \tau_{h} v$ is continuous from \mathbb{R}^{N} to $L^{p}\left(\mathbb{R}^{N}\right)$ (see for instance [6]) then for every $\sigma>0$ there exists $0<\delta<\operatorname{dist}(\partial \Omega, \omega)$ such that

$$
\begin{equation*}
\forall h \in \mathbb{R}^{N},|h| \leq \delta:\left\|\tau_{h} v-v\right\|_{L^{p}(\omega)} \leq \sigma \tag{6}
\end{equation*}
$$

We denote $\lim u_{k}=u \in L^{p}(\Omega)$, and let $\sigma>0$ then (6) shows that there exists $0<\delta<\operatorname{dist}(\partial \Omega, \omega)$ such that

$$
\forall h \in \mathbb{R}^{N},|h| \leq \delta:\left\|\tau_{h} u-u\right\|_{L^{p}(\omega)} \leq \frac{\sigma}{2}
$$

By the triangular inequality and the invariance of the Lebesgue measure under translations we have for every $k \in \mathbb{N}$ and $|h| \leq \delta$

$$
\begin{equation*}
\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)} \leq 2\left\|u_{k}-u\right\|_{L^{p}(\Omega)}+\left\|\tau_{h} u-u\right\|_{L^{p}(\omega)} \tag{7}
\end{equation*}
$$

Since $u_{k} \rightarrow u$ in $L^{p}(\Omega)$ then there exists $k_{0} \in \mathbb{N}$, such that

$$
\forall k \geq k_{0}:\left\|u_{k}-u\right\|_{L^{p}(\Omega)} \leq \frac{\sigma}{4}
$$

Then from (7) we obtain

$$
\begin{equation*}
\forall h \in \mathbb{R}^{N},|h| \leq \delta, \forall k \geq k_{0}:\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)} \leq \sigma \tag{8}
\end{equation*}
$$

Similarly (6) shows that for every $k \in\left\{0,1,2, \ldots, k_{0}-1\right\}$ there exists $0<\delta_{k}<$ $\operatorname{dist}(\partial \Omega, \omega)$ such that

$$
\begin{equation*}
\forall h \in \mathbb{R}^{N},|h| \leq \delta_{k}:\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)} \leq \sigma, k \in\left\{0,1,2, \ldots, k_{0}-1\right\} \tag{9}
\end{equation*}
$$

Taking $\delta^{\prime}=\min _{k \in\left\{0, . ., k_{0}-1\right\}}\left(\delta_{k}, \delta\right)$ and combining (8) and (9) we obtain

$$
\forall h \in \mathbb{R}^{N},|h| \leq \delta^{\prime}, \forall k \in \mathbb{N}:\left\|\tau_{h} u_{k}-u_{k}\right\|_{L^{p}(\omega)} \leq \sigma
$$

Now, suppose that $A=I d$ be the identity matrix then (1) becomes

$$
\left\{\begin{array}{cc}
-\epsilon^{2} \Delta_{X_{1}} u_{\epsilon}-\Delta_{X_{2}} u_{\epsilon}=f & \tag{10}\\
u_{\epsilon}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Let $\left(\epsilon_{k}\right)_{k \in \mathbb{N}}$ be sequence in $(0,1]$ with $\lim \epsilon_{k}=0$ and let $u_{k}=u_{\epsilon_{k}} \in W_{0}^{1,2}(\Omega) \cap$ $W_{\text {loc }}^{2,2}(\Omega)$ be the solution of (10) then we have the following
Proposition 1. 1) Let $\omega \subset \subset \Omega$ open then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} & =0 \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}^{2}\left(\tau_{h} \nabla_{X_{1}}^{2} u_{k}-\nabla_{X_{1}}^{2} u_{k}\right)\right\|_{L^{2}(\omega)} & =0 \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}\left(\tau_{h} \nabla_{X_{1} X_{2}}^{2} u_{k}-\nabla_{X_{1} X_{2}}^{2} u_{k}\right)\right\|_{L^{2}(\omega)} & =0
\end{aligned}
$$

2) The sequences $\left(\nabla_{X_{2}}^{2} u_{k}\right)$, $\left(\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right),\left(\epsilon_{k} \nabla_{X_{1} X_{2}}^{2} u_{k}\right)$ are bounded in $L_{l o c}^{2}(\Omega)$ i.e. for every $\omega \subset \subset \Omega$ there exists $M \geq 0$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}(\omega)}, \sup _{k \in \mathbb{N}}\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)}, \sup _{k \in \mathbb{N}}\left\|\epsilon_{k} \nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} \leq M
$$

Proof. 1) Let $\omega \subset \subset \Omega$ open, then one can choose ω^{\prime} open such that $\omega \subset \subset \omega^{\prime} \subset \subset$ Ω, let $\rho \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ with $\rho=1$ on $\omega, 0 \leq \rho \leq 1$ and $\operatorname{Supp}(\rho) \subset \omega^{\prime}$. Let $0<$ $h<\operatorname{dist}\left(\omega^{\prime}, \partial \Omega\right)$, to make the notations less heavy we set $U_{k}^{h}=\tau_{h} u_{k}-u_{k}$, then $U_{k}^{h} \in W^{2,2}\left(\omega^{\prime}\right)$. Notice that translation and derivation commute then we have

$$
-\epsilon_{k}^{2} \Delta_{X_{1}} U_{k}^{h}(x)-\Delta_{X_{2}} U_{k}^{h}(x)=F^{h}(x), \text { a.e } x \in \omega^{\prime}
$$

with $F^{h}=\tau_{h} f-f$. We set $\mathcal{W}_{k}^{h}=\rho U_{k}^{h}$ then we get for a.e $x \in \omega^{\prime}$

$$
\begin{aligned}
&-\epsilon_{k}^{2} \Delta_{X_{1}} \mathcal{W}_{k}^{h}(x)-\Delta_{X_{2}} \mathcal{W}_{k}^{h}(x)=\rho(x) F^{h}(x)-2 \epsilon_{k}^{2} \nabla_{X_{1}} \rho(x) \cdot \nabla_{X_{1}} U_{k}^{h}(x) \\
&-2 \nabla_{X_{2}} \rho(x) \cdot \nabla_{X_{2}} U_{k}^{h}(x)-U_{k}^{h}(x)\left(\epsilon_{k}^{2} \Delta_{X_{1}} \rho(x)-\Delta_{X_{2}} \rho(x)\right)
\end{aligned}
$$

Since $U_{k}^{h} \in W^{2,2}\left(\omega^{\prime}\right)$ then $\mathcal{W}_{k}^{h} \in W_{0}^{2,2}\left(\omega^{\prime}\right)$, so we can extend \mathcal{W}_{k}^{h} by 0 outside of ω^{\prime} then $\mathcal{W}_{k}^{h} \in W^{2}\left(\mathbb{R}^{N}\right)$. The right hand side of the above equality is extended by 0 outside of ω^{\prime}, hence the equation is satisfied in the whole space, so by Lemma 1 we get

$$
\begin{aligned}
& \left\|\nabla_{X_{2}}^{2} \mathcal{W}_{k}^{h}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq\left\|\rho F^{h}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}+2 \epsilon_{k}^{2}\left\|\nabla_{X_{1}} \rho \cdot \nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \\
& \quad+2\left\|\nabla_{X_{2}} \rho \cdot \nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}+\left\|U_{k}^{h}\left(\epsilon_{k}^{2} \Delta_{X_{1}} \rho-\Delta_{X_{2}} \rho\right)\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|\nabla_{X_{2}}^{2} U_{k}^{h}\right\|_{L^{2}(\omega)} \leq\left\|F^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}+2 \epsilon_{k}\left\|\nabla_{X_{1}} \rho\right\|_{\infty}\left\|\epsilon_{k} \nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)} \\
& \quad+2\left\|\nabla_{X_{2}} \rho\right\|_{\infty}\left\|\nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}+\left\|\left(\epsilon_{k}^{2} \Delta_{X_{1}} \rho-\Delta_{X_{2}} \rho\right)\right\|_{\infty}\left\|U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}
\end{aligned}
$$

Recall that $u_{k} \rightarrow u$ in $V^{1,2}$ and $\epsilon_{k} \nabla_{X_{1}} u_{k} \rightarrow 0$ in $L^{2}(\Omega)$, then by Lemma 2 we have

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k} \nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}=\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}\left(\tau_{h} \nabla_{X_{1}} u_{k}-\nabla_{X_{1}} u_{k}\right)\right\|_{L^{2}\left(\omega^{\prime}\right)}=0
$$

and similarly we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)} & =0, \lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|F^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}=0, \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)} & =0 .
\end{aligned}
$$

and hence

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)}=\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\nabla_{X_{2}}^{2} U_{k}^{h}\right\|_{L^{2}(\omega)}=0
$$

Similarly we obtain

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}^{2}\left(\tau_{h} \nabla_{X_{1}}^{2} u_{k}-\nabla_{X_{1}}^{2} u_{k}\right)\right\|_{L^{2}(\omega)}=0
$$

and

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}\left(\tau_{h} \nabla_{X_{1} X_{2}}^{2} u_{k}-\nabla_{X_{1} X_{2}}^{2} u_{k}\right)\right\|_{L^{2}(\omega)}=0
$$

2) Following the same arguments, we obtain

$$
\begin{aligned}
& \epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}(\omega)}+\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)}+\sqrt{2} \epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} \leq \\
& 3\|f\|_{L^{2}\left(\omega^{\prime}\right)}+6 \epsilon_{k}\left\|\nabla_{X_{1}} \rho\right\|_{\infty}\left\|\epsilon_{k} \nabla_{X_{1}} u_{k}\right\|_{L^{2}\left(\omega^{\prime}\right)} \\
& \quad+6\left\|\nabla_{X_{2}} \rho\right\|_{\infty}\left\|\nabla_{X_{2}} u_{k}\right\|_{L^{2}\left(\omega^{\prime}\right)}+3\left\|\left(\epsilon_{k}^{2} \Delta_{X_{1}} \rho-\Delta_{X_{2}} \rho\right)\right\|_{\infty}\left\|u_{k}\right\|_{L^{2}\left(\omega^{\prime}\right)} .
\end{aligned}
$$

The convergences $u_{k} \rightarrow u$ in $V^{1,2}, \epsilon_{k} \nabla_{X_{1}} u_{k} \rightarrow 0$ in $L^{2}(\Omega)$ and boundedness of ρ and its derivatives show that the right hand side of the above inequality is uniformly bounded in k, i.e for some $M>0$ independent of k

$$
\epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}(\omega)}+\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)}+\sqrt{2} \epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} \leq M
$$

Now, we are ready to prove the following
Theorem 2. Let $u_{\epsilon} \in W_{0}^{1,2}(\Omega) \cap W_{\text {loc }}^{2,2}(\Omega)$ be the solution of (10) then $u_{\epsilon} \rightarrow u_{0}$ strongly in $V_{\text {loc }}^{2,2}$ where $u_{0} \in V_{\text {loc }}^{2,2}$ is the solution of the limit problem. In addition, we have

$$
\epsilon^{2} \nabla_{X_{1}}^{2} u_{\epsilon} \rightarrow 0 \text { and } \epsilon \nabla_{X_{1} X_{2}}^{2} u_{\epsilon} \rightarrow 0, \text { strongly in } L_{l o c}^{2}(\Omega) .
$$

Proof. Let $u_{0} \in V^{1,2}$ be the solution of the limit problem and let $\left(u_{k}\right)_{k \in \mathbb{N}}, u_{k} \in$ $W_{0}^{1,2}(\Omega) \cap W_{l o c}^{2,2}(\Omega)$ be a subsequence of solutions to (10), then Proposition 1 shows by the Riesz-Fréchet-Kolmogorov theorem ([3]) that the subset $\left\{\nabla_{X_{2}}^{2} u_{k}\right\}_{k \in \mathbb{N}}$ is relatively compact in $L^{2}(\omega)$ for every $\omega \subset \subset \Omega$ open. Now, fix $\omega \subset \subset \Omega$ then there exists $u_{0}^{\omega} \in L^{2}(\omega)$ and a subsequence still labeled $\left(\nabla_{X_{2}}^{2} u_{k}\right)_{k \in \mathbb{N}}$ such that $\nabla_{X_{2}}^{2} u_{k} \rightarrow u_{0}^{\omega}$ in $L^{2}(\omega)$ strongly. Since $u_{k} \rightarrow u_{0}$ in $L^{2}(\omega)$ and the second order differential operators $\partial_{i j}^{2}$ are continuous on $\mathcal{D}^{\prime}(\omega)$ then $u_{0}^{\omega}=\nabla_{X_{2}} u_{0}$ on ω. Whence, since ω is arbitrary we get $\nabla_{X_{2}}^{2} u_{0} \in L_{l o c}^{2}(\Omega)$. Now, taking a countable covering $\left(\omega_{n}\right)$ of Ω with $\omega_{n} \subset \subset \Omega$ then by the diagonal process one can construct a subsequence still labeled $\left(u_{k}\right)$ such that $\nabla_{X_{2}}^{2} u_{k} \rightarrow \nabla_{X_{2}}^{2} u_{0}$ in $L_{l o c}^{2}(\Omega)$ strongly, combining this with $u_{k} \rightarrow u_{0}$ in $V^{1,2}$, we get $u_{k} \rightarrow u_{0}$ strongly in $V_{l o c}^{2,2}$.

To prove the convergence of the whole sequence $\left(u_{\epsilon}\right)_{0<\epsilon \leq 1}$ we can reasoning by contradiction, so suppose that there exists $\delta>0$ and a subsequence (u_{k}) such that $d_{V_{l o c}^{2,2}}\left(u_{k}, u_{0}\right)>\delta$, here $d_{V_{l o c}^{2,2}}$ is the distance of the Fréchet space $V_{l o c}^{2,2}$. It follows by
the first part of this proof that there exists a subsequence still labeled $\left(u_{k}\right)$ such that $d_{V_{l o c}^{2,2}}\left(u_{k}, u_{0}\right) \rightarrow 0$, and the proof of the theorem is finished. Similarly we show that $\epsilon^{2} \nabla_{X_{1}}^{2} u_{\epsilon} \rightarrow 0$ and $\epsilon \nabla_{X_{1} X_{2}}^{2} u_{\epsilon} \rightarrow 0$ strongly in $L_{l o c}^{2}(\Omega)$.

3. General elliptic problems

3.1. Proof of the main theorem. In this subsection we shall prove Theorem 1. Firstly, we suppose that the coefficients of A are constants then we have the following

Proposition 2. Suppose that the coefficients of A are constants and assume (2), let $\left(u_{\epsilon}\right)$ be a sequence of $W^{2,2}\left(\mathbb{R}^{N}\right)$ such that $-\sum_{i, j} a_{i j}^{\epsilon} \partial_{i j}^{2} u_{\epsilon}=f$, with $f \in L^{2}\left(\mathbb{R}^{N}\right)$ then we have the bounds

$$
\begin{aligned}
\lambda\left\|\nabla_{X_{2}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}, \\
\lambda \epsilon^{2}\left\|\nabla_{X_{1}}^{2} u_{\epsilon}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}, \\
\sqrt{2} \lambda \epsilon\left\|\nabla_{X_{1} X_{2}}^{2} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

Proof. As in the proof of Proposition 1 we use the Fourier transform and we obtain

$$
\left(\sum_{i, j} a_{i j}^{\epsilon} \xi_{i} \xi_{j}\right) \mathcal{F}\left(u_{\epsilon}\right)(\xi)=\mathcal{F}(f)(\xi)
$$

From the ellipticity assumption (2) we deduce

$$
\lambda^{2}\left(\epsilon^{2} \sum_{i=}^{q} \xi_{i}^{2}+\sum_{i=q+1}^{N} \xi_{i}^{2}\right)^{2}\left|\mathcal{F}\left(u_{\epsilon}\right)(\xi)\right|^{2} \leq|\mathcal{F}(f)(\xi)|^{2}
$$

Thus, as in proof of Proposition 1, we obtain the desired bounds.
Now, suppose that $A \in L^{\infty}(\Omega) \cap C^{1}(\Omega)$ and assume (2), We denote $u_{k}=u_{\epsilon_{k}} \in$ $W_{0}^{1,2}(\Omega) \cap W_{l o c}^{2,2}(\Omega)$ the solution to (1) with $\epsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$, then we have the following.

Proposition 3. Let $z_{0} \in \Omega$ fixed then there exists $\omega_{0} \subset \subset \Omega$ open with $z_{0} \in \omega_{0}$ such that the sequences $\left(\nabla_{X_{2}}^{2} u_{k}\right)$, $\left(\nabla_{X_{1}}^{2} u_{k}\right)$ and $\left(\nabla_{X_{1} X_{2}}^{2} u_{k}\right)$ are bounded in $L^{2}\left(\omega_{0}\right)$.
Proof. Since $u_{k} \in W_{0}^{1,2}(\Omega) \cap W_{l o c}^{2,2}(\Omega)$ and $A \in C^{1}(\Omega)$ then u_{k} satisfies for a.e $x \in \Omega$

$$
\begin{equation*}
-\sum_{i, j} a_{i j}^{k}(x) \partial_{i j}^{2} u_{k}(x)-\sum_{i, j} \partial_{i} a_{i j}^{k}(x) \partial_{j} u_{k}(x)=f(x) \tag{11}
\end{equation*}
$$

where $a_{i j}^{k}=a_{i j}^{\epsilon_{k}}$.
Let $z_{0} \in \Omega$ fixed, and let $\theta>0$ then using the continuity of the $a_{i j}$ one can choose $\omega_{1} \subset \subset \Omega, z_{0} \in \omega_{1}$ such that

$$
\begin{equation*}
\sup _{x \in \omega_{1}}\left|a_{i j}(x)-a_{i j}\left(z_{0}\right)\right| \leq \theta \text { for every } i, j \in\{1, \ldots, N\} \tag{12}
\end{equation*}
$$

Let $\omega_{0} \subset \subset \omega_{1}$ open with $z_{0} \in \omega_{0}$ and let $\rho \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ with $\rho=1$ on $\omega_{0}, 0 \leq \rho \leq 1$ and $\operatorname{Supp}(\rho) \subset \omega_{1}$. We set $U_{k}=\rho u_{k}$, and we extend it by 0 on the outside of ω_{1} then $U_{k} \in W^{2,2}\left(\mathbb{R}^{N}\right)$. therefore we obtain

$$
-\sum_{i, j} a_{i j}^{k}\left(z_{0}\right) \partial_{i j}^{2} U_{k}(x)=\sum_{i, j}\left(a_{i j}^{k}(x)-a_{i j}^{k}\left(z_{0}\right)\right) \partial_{i j}^{2} U_{k}(x)+g_{k}(x), \text { for a.e } x \in \mathbb{R}^{N},
$$

where g_{k} is given by

$$
\begin{align*}
g_{k}(x)= & \rho(x) f(x)+\rho(x) \sum_{i, j} \partial_{i} a_{i j}^{k}(x) \partial_{j} u_{k}(x) \tag{13}\\
& -u_{k}(x) \sum_{i, j} a_{i j}^{k}(x) \partial_{i j}^{2} \rho(x)-\sum_{i, j} a_{i j}^{k}(x) \partial_{i} \rho(x) \partial_{j} u_{k}(x)-\sum_{i, j} a_{i j}^{k}(x) \partial_{j} \rho(x) \partial_{i} u_{k}(x)
\end{align*}
$$

Now applying Proposition 2 to the above differential equality we get

$$
\begin{aligned}
& \lambda\left\|\nabla_{X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+ \lambda \epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\sqrt{2} \lambda \epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& \leq 3\left\|\sum_{i, j}\left(a_{i j}^{k}(x)-a_{i j}^{k}\left(z_{0}\right)\right) \partial_{i j}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+3\|g\|_{L^{2}\left(\omega_{1}\right)}
\end{aligned}
$$

Whence we use (12) we get

$$
\begin{aligned}
& \lambda\left\|\nabla_{X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\lambda \epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\sqrt{2} \lambda \epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& \leq 3 \theta \epsilon_{k}^{2} \sum_{i, j=1}^{q}\left\|\partial_{i j}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+3 \theta \sum_{i, j=q+1}^{N}\left\|\partial_{i j}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
&+6 \theta \epsilon_{k} \sum_{i=1}^{q} \sum_{j=q+1}^{N}\left\|\partial_{i j}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+3\|g\|_{L^{2}\left(\omega_{1}\right)},
\end{aligned}
$$

and thus we deduce by Cauchy-Schwarz

$$
\begin{aligned}
& \lambda\left\|\nabla_{X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\lambda \epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\sqrt{2} \lambda \epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& \leq 3 \theta(N-q)\left\|\nabla_{X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\epsilon_{k}^{2} 3 \theta q\left\|\nabla_{X_{1}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& \quad+\epsilon_{k} 6(N-q) q \theta\left\|\nabla_{X_{1} X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}^{2}+3\|g\|_{L^{2}\left(\omega_{1}\right)} \\
& {[\lambda-3 \theta(N-q)]\left\|\nabla_{X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\epsilon_{k}^{2}[\lambda-3 \theta q]\left\|\nabla_{X_{1}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+} \\
& \left.\quad \epsilon_{k}[\sqrt{2} \lambda-6(N-q) q \theta]\left\|\nabla_{X_{1} X_{2}}^{2} U_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \leq 3\left\|g_{k}\right\|_{L^{2}\left(\omega_{1}\right)}\right)
\end{aligned}
$$

we can choose a priori θ small enough such that

$$
\begin{equation*}
\min \{[\lambda-3 \theta(N-q)],[\lambda-3 \theta q],[\sqrt{2} \lambda-6(N-q) q \theta]\} \geq \frac{\lambda}{2} \tag{14}
\end{equation*}
$$

and then we deduce

$$
\begin{aligned}
\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)}+\epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)}+\epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)} & \\
& \leq \frac{6}{\lambda}\left\|g_{k}\right\|_{L^{2}\left(\omega_{1}\right)}
\end{aligned}
$$

To finish the proof it suffices to show that the sequence $\left(g_{k}\right)$ is bounded in $L^{2}\left(\omega_{1}\right)$. In fact ρ and its derivatives, $a_{i j}$ and their first derivatives are bounded on ω_{1},
moreover the sequences $\left(\epsilon_{k} \nabla_{X_{1}} u_{k}\right),\left(\nabla_{X_{2}} u_{k}\right)$ and $\left(u_{k}\right)$ are bounded in $L^{2}(\Omega)$, then from (13) the boundedness of $\left(g_{k}\right)$ in $L^{2}\left(\omega_{1}\right)$ follows.

Corollary 1. The sequences $\left(\nabla_{X_{2}}^{2} u_{k}\right),\left(\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right),\left(\epsilon_{k} \nabla_{X_{1} X_{2}}^{2} u_{k}\right)$ are bounded in $L_{l o c}^{2}(\Omega)$.

Proof. Let $\omega \subset \subset \Omega$ open, for every $z_{\mu} \in \bar{\omega}$ there exists $\omega_{\mu} \subset \subset \Omega, z_{\mu} \in \omega_{\mu}$ which satisfies the affirmations of Proposition $\mathbf{3}$ in $L^{2}\left(\omega_{\mu}\right)$. Since $\bar{\omega}$ is compact then one can extract a finit cover $\left(\omega_{\mu_{m}}\right)$, then $\left(\nabla_{X_{2}}^{2} u_{k}\right),\left(\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right),\left(\epsilon_{k} \nabla_{X_{1} X_{2}}^{2} u_{k}\right)$ are bounded in $L^{2}(\omega)$ and the corollary follows.

Proposition 4. Let $z_{0} \in \Omega$ then there exists $\omega_{0} \subset \subset \Omega, z_{0} \in \omega_{0}$ such that

$$
\begin{aligned}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{p}\left(\omega_{0}\right)} & =0 \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}^{2}\left(\tau_{h} \nabla_{X_{1}}^{2} u_{k}-\nabla_{X_{1}}^{2} u_{k}\right)\right\|_{L^{p}\left(\omega_{0}\right)} & =0 \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}\left(\tau_{h} \nabla_{X_{1} X_{2}}^{2} u_{k}-\nabla_{X_{1} X_{2}}^{2} u_{k}\right)\right\|_{L^{p}\left(\omega_{0}\right)} & =0
\end{aligned}
$$

Proof. Let $z_{0} \in \Omega$ fixed and let $\theta>0$ then using the continuity of the $a_{i j}$ one can choose $\omega_{1} \subset \subset \Omega, z_{0} \in \omega_{1}$ such that we have (12) with θ chosen such that (14). Let $\omega_{0} \subset \subset \omega_{1}$, with $z_{0} \in \omega_{0}$, and let $\rho \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ with $\rho=1$ on $\omega_{0}, 0 \leq \rho \leq 1$, and $\operatorname{Supp}(\rho) \subset \omega_{1}$. Let $0<h<\operatorname{dist}\left(\omega_{1}, \partial \Omega\right)$, we set $\mathcal{W}_{k}^{h}=\rho U_{h}^{k}$, with $U_{k}^{h}=\left(\tau_{h} u_{k}-u_{k}\right)$ and extend it by 0 on the outside of ω_{1} then $\mathcal{W}_{k}^{h} \in W^{2,2}\left(\mathbb{R}^{N}\right)$, therefore using (11) we have for a.e $x \in \mathbb{R}^{N}$:

$$
-\sum_{i, j} a_{i j}^{k}\left(z_{0}\right) \partial_{i j}^{2} \mathcal{W}_{k}^{h}(x)=\sum_{i, j}\left(a_{i j}^{k}(x)-a_{i j}^{k}\left(z_{0}\right)\right) \partial_{i j}^{2} \mathcal{W}_{k}^{h}(x)+G_{k}^{h}(x)
$$

where

$$
\begin{align*}
-G_{k}^{h}(x)= & U_{k}^{h} \sum_{i, j} a_{i j}^{k}(x) \partial_{i j}^{2} \rho+\sum_{i, j} a_{i j}^{k}(x) \partial_{i} \rho \partial_{j} U_{k}^{h}+\sum_{i, j} a_{i j}^{k}(x) \partial_{j} \rho \partial_{i} U_{k}^{h} \tag{15}\\
& +\rho \sum_{i, j}\left(a_{i j}^{k}(x)-\tau_{h} a_{i j}^{k}(x)\right) \tau_{h} \partial_{i j}^{2} u_{k}(x)+\rho(x)\left(f(x)-\tau_{h} f(x)\right) \\
& +\rho \sum_{i, j}\left[\partial_{i} a_{i j}^{k}(x) \partial_{j} u_{k}(x)-\partial_{i} \tau_{h} a_{i j}^{k}(x) \partial_{j} \tau_{h} u_{k}(x)\right]
\end{align*}
$$

Then, as in proof of Proposition 3, we obtain

$$
\begin{aligned}
& \left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)}+\epsilon_{k}^{2}\left\|\tau_{h} \nabla_{X_{1}}^{2} u_{k}-\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)} \\
& \quad+\epsilon_{k}\left\|\tau_{h} \nabla_{X_{1} X_{2}}^{2} u_{k}-\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{0}\right)} \leq \frac{6}{\lambda}\left\|G_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}
\end{aligned}
$$

Now, to finish the proof we have to show that $\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|G_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}=0$. Using the boundedness of the $a_{i j}$ and the boundedness of ρ and its derivatives on ω_{1} we
get from (15)

$$
\begin{align*}
\left\|G_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)} \leq & M\left\|U_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}+M \epsilon_{k}\left\|\nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)} \tag{16}\\
& +M\left\|\nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}+\left\|\tau_{h} f-f\right\|_{L^{2}\left(\omega_{1}\right)} \\
& +\sum_{i, j}\left\|\left(a_{i j}^{k}-\tau_{h} a_{i j}^{k}\right) \tau_{h} \partial_{i j}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& +\sum_{i, j}\left\|\partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\tau_{h} \partial_{i} a_{i j}^{k} \tau_{h} \partial_{j} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}
\end{align*}
$$

where $M>0$ independent of h and k. Now, estimating the fifth term of the right hand side of the above inequality

$$
\begin{aligned}
& \sum_{i, j}\left\|\left(a_{i j}^{k}-\tau_{h} a_{i j}^{k}\right) \tau_{h} \partial_{i j}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \leq C_{q, N} \sup _{x \in \omega_{1}}\left|a_{i j}(x)-\tau_{h} a_{i j}(x)\right| \times \\
& \quad\left(\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}+\epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}+\epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}\right),
\end{aligned}
$$

where $C_{q, N}>0$ is only depends in q and N.
For h small enough then it follows from Corollary 1 that the quantity

$$
\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}+\epsilon_{k}^{2}\left\|\nabla_{X_{1}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}+\epsilon_{k}\left\|\nabla_{X_{1} X_{2}}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}+h\right)}
$$

is uniformly bounded. Since the $a_{i j}$ are uniformly continuous on every $\omega \subset \subset \Omega$ then $\lim _{h \rightarrow 0} \sup _{x \in \omega_{1}}\left|a_{i j}(x)-\tau_{h} a_{i j}(x)\right|=0$ and hence

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}} \sum_{i, j}\left\|\left(a_{i j}^{k}-\tau_{h} a_{i j}^{k}\right) \tau_{h} \partial_{i j}^{2} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}=0 \tag{17}
\end{equation*}
$$

Now, estimating the last term of (16)

$$
\begin{gathered}
\sum_{i, j}\left\|\partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\tau_{h} \partial_{i} a_{i j}^{k} \tau_{h} \partial_{j} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \leq \sum_{i, j}\left\|\partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\tau_{h} \partial_{i} a_{i j}^{k} \partial_{j} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
+\sum_{i, j}\left\|\tau_{h} \partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\partial_{i} \tau_{h} a_{i j}^{k} \tau_{h} \partial_{j} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}
\end{gathered}
$$

and thus using boundedess of the first derivatives of the $a_{i j}$ on ω_{1} we get

$$
\begin{aligned}
& \sum_{i, j}\left\|\partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\partial_{i} \tau_{h} a_{i j}^{k} \partial_{j} \tau_{h} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)} \\
& \begin{aligned}
& \leq C_{q, N}^{\prime} \sup \left|\partial_{i} a_{i j}(x)-\partial_{i} \tau_{h} a_{i j}(x)\right|\left(\epsilon_{k}\left\|\nabla_{X_{1}} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}+\left\|\nabla_{X_{2}} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}\right) \\
&+M^{\prime}\left(\epsilon_{k}\left\|\nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}+\left\|\nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}\right),
\end{aligned}
\end{aligned}
$$

where $M^{\prime}>0$ is independent of h and k. Now, since the $\partial_{i} a_{i j}$ are uniformly continuous (recall that $A \in C^{1}(\Omega)$) on every $\omega \subset \subset \Omega$ then

$$
\lim _{h \rightarrow 0} \sup _{x \in \omega_{1}}\left|\partial_{i} a_{i j}(x)-\tau_{h} \partial_{i} a_{i j}(x)\right|=0
$$

and hence from the above inequality we get

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}} \sum_{i, j}\left\|\partial_{i} a_{i j}^{k} \partial_{j} u_{k}-\partial_{i} \tau_{h} a_{i j}^{k} \partial_{j} \tau_{h} u_{k}\right\|_{L^{2}\left(\omega_{1}\right)}=0 \tag{18}
\end{equation*}
$$

where we have used the convergence of $\left(\nabla_{X_{2}} u_{k}\right),\left(\epsilon_{k} \nabla_{X_{1}} u_{k}\right)$ and Lemma 2.

Passing to the limit in (16) by using (17), (18) and Lemma 2 we deduce

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|G_{k}^{h}\right\|_{L^{2}\left(\omega_{1}\right)}=0
$$

and the proposition follows.
Corollary 2. For every $\omega \subset \subset \Omega$ open we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{p}(\omega)} & =0, \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}^{2}\left(\tau_{h} \nabla_{X_{1}}^{2} u_{k}-\nabla_{X_{1}}^{2} u_{k}\right)\right\|_{L^{p}(\omega)} & =0, \\
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\epsilon_{k}\left(\tau_{h} \nabla_{X_{1} X_{2}}^{2} u_{k}-\nabla_{X_{1} X_{2}}^{2} u_{k}\right)\right\|_{L^{p}(\omega)} & =0 .
\end{aligned}
$$

Proof. Similar to proof of Corollary 1 where we use compacity of $\bar{\omega}$ and Proposition 4.

Now, we are able to give the proof of the main theorem. Indeed the proof is similar to proof of Theorem 2 where we use Corollary 1 and Corollary 2. Let us give the proof of the convergence $\epsilon^{2} \nabla_{X_{1}}^{2} u_{\epsilon} \rightarrow 0$ in $L_{l o c}^{2}(\Omega)$. Fix $\omega \subset \subset \Omega$ open, and let $u_{k} \in W_{0}^{1,2}(\Omega) \cap W_{l o c}^{2,2}(\Omega)$ be a sequence of solutions of (1) (ϵ replaced by $\epsilon_{k} \rightarrow 0$), then it follows from Corollary 1 and 2 that the subset $\left\{\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right\}_{k \in \mathbb{N}}$ is relatively compact in $L^{2}(\omega)$ then there exists $v^{\omega} \in L^{2}(\omega)$ and a subsequence still labeled $\left(\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right)$ such that $\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k} \rightarrow v^{\omega}$ in $L^{2}(\omega)$. Since $\epsilon_{k}^{2} u_{k} \rightarrow 0$ in $L^{2}(\omega)$ then $v^{\omega}=0$, since $\nabla_{X_{1}}^{2}$ is continuous on $\mathcal{D}^{\prime}(\omega)$. Hence by the diagonal process one can construct a sequence still labeled $\left(\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k}\right)$ such that $\epsilon_{k}^{2} \nabla_{X_{1}}^{2} u_{k} \rightarrow 0$ in $L_{l o c}^{2}(\Omega)$. To prove the convergence of the whole sequence we can reasoning by contradiction as in proof of Theorem 2 (recall that $L_{l o c}^{2}(\Omega)$ equipped with the family of semi norms $\|\cdot\|_{L^{2}(\omega)}$ is a Fréchet space), and the proof of the main theorem is finished.
3.2. $W_{l o c}^{2,2}$ regularity for some class of semilinear problem. In this section we deal with the following semilinear elliptic problem

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(A_{\epsilon} \nabla u_{\epsilon}\right)=a\left(u_{\epsilon}\right)+f \\
u_{\epsilon}=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where $a: \mathbb{R} \rightarrow \mathbb{R}$ a continuous nonincreasing real valued function which satisfies the growth condition

$$
\begin{equation*}
\forall x \in \mathbb{R}:|a(x)| \leq c(1+|x|) \tag{19}
\end{equation*}
$$

for some $c \geq 0$. This problem has been treated in [4] for $f \in L^{p}(\Omega), 1<p \leq 2$, and the author have proved the convergences

$$
\begin{equation*}
\epsilon \nabla_{X_{1}} u_{\epsilon} \rightarrow 0, u_{\epsilon} \rightarrow u_{0}, \nabla_{X_{2}} u_{\epsilon} \rightarrow \nabla_{X_{2}} u_{0} \text { in } L^{p}(\Omega), \tag{20}
\end{equation*}
$$

where u_{0} is the solution of the unperturbed problem.
Let $f \in L^{2}(\Omega)$ and assume A as in Theorem 1 then the unique $W_{0}^{1,2}(\Omega)$ weak solution u_{ϵ} belongs to $W_{l o c}^{2,2}(\Omega)$ by the elliptic regularity. Following the same arguments exposed in the above section one can prove the theorem
Theorem 3. Under the above assumptions we have $u_{\epsilon} \rightarrow u_{0}$ in $V_{l o c}^{2,2}, \epsilon^{2} \nabla_{X_{1}}^{2} u_{\epsilon} \rightarrow 0$ and $\epsilon \nabla_{X_{1} X_{2}}^{2} u_{\epsilon} \rightarrow 0$ strongly in $L_{l o c}^{2}(\Omega)$.

Proof. The arguments are similar, we only give the proof for the Laplacian case, so assume that $A=I d$. Let $\omega \subset \subset \Omega$ open, then one can choose ω^{\prime} open such that $\omega \subset \subset \omega^{\prime} \subset \subset \Omega$, let $\rho \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ with $\rho=1$ on $\omega, 0 \leq \rho \leq 1$ and $\operatorname{Supp}(\rho) \subset \omega^{\prime}$. Let $0<h<\operatorname{dist}\left(\partial \omega^{\prime}, \Omega\right)$, we use the same notations so we set $U_{k}^{h}=\tau_{h} u_{k}-u_{k}$, then $U_{k}^{h} \in W^{1,2}\left(\omega^{\prime}\right)$ and we have

$$
-\epsilon_{k}^{2} \Delta_{X_{1}} U_{k}^{h}(x)-\Delta_{X_{2}} U_{k}^{h}(x)=F^{h}(x)+\tau_{h} a(u)(x)-a(u)(x), \text { a.e } x \in \omega^{\prime},
$$

with $F^{h}=\tau_{h} f-f$. We set $\mathcal{W}_{k}^{h}=\rho U_{k}^{h}$ then we get as in Proposition 1

$$
\begin{aligned}
& \left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} \leq\left\|F^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}+M\left\|\epsilon_{k} \nabla_{X_{1}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)} \\
& +\left\|\tau_{h} a\left(u_{k}\right)-a\left(u_{k}\right)\right\|_{L^{2}\left(\omega^{\prime}\right)} \\
& \quad+M\left\|\nabla_{X_{2}} U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}+M\left\|U_{k}^{h}\right\|_{L^{2}\left(\omega^{\prime}\right)}
\end{aligned}
$$

We show easily using continuity of the function a and (19) that the Nemytskii operator a maps continuously L^{2} to L^{2}, therefore the convergence $u_{k} \rightarrow u_{0}$ in $L^{2}(\Omega)$ gives $a\left(u_{k}\right) \rightarrow a\left(u_{0}\right)$ in $L^{2}(\Omega)$, and hence

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} a\left(u_{k}\right)-a\left(u_{k}\right)\right\|_{L^{2}(\omega)}=0
$$

and finally the convergences (20) give

$$
\lim _{h \rightarrow 0} \sup _{k \in \mathbb{N}}\left\|\tau_{h} \nabla_{X_{2}}^{2} u_{k}-\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)}=0 .
$$

Similarly, using boundedess $\left(u_{k}\right),\left(\epsilon_{k} \nabla_{X_{1}} u_{k}\right),\left(\nabla_{X_{2}} u_{k}\right)$ and $a\left(u_{k}\right)$ in $L^{2}(\Omega)$, and boundedness of ρ and its derivatives we obtain

$$
\left\|\nabla_{X_{2}}^{2} u_{k}\right\|_{L^{2}(\omega)} \leq M^{\prime}
$$

and we conclude as in proof of Theorem 2.

References

[1] M. Chipot and S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems, Com. Pur. App. Ana, 8 (2009), 179-193
[2] M. Chipot and S. Guesmia, On a class of integro-differential problems, Commun. Pure Appl. Anal., 9 2010, 1249-1262.
[3] M. Chipot, Elliptic Equations, An Introductory Cours, Birkhauser, ISBN: 978-3764399818, 2009
[4] C. Ogabi, On the L^{p} theory of anisotropic singular perturbations elliptic problems. Com. Pur. App. Ana, Volume 15, 1157-1178, July 2016
[5] Trudinger \& Gilbarg, Elliptic Partial Differential Equations of Second Order..
[6] Vo khac Khoan, Distributions, analyse de Fourier, opérateurs aux dérivées partielles Tome 1.

