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W22 INTERIOR REGULARITY FOR SOME CLASS OF ELLIPTIC
ANISOTRPIC SINGULAR PERTUBATIONS PROBLEMS

CHOKRI OGABI

ABSTRACT. In this note we study the interior regularity of the asymptotic
behavior of a linear elliptic anisotropic singular pertubations problem. We
show the convergence of the seconde derivatives.

1. INTRODUCTION

In this note we study the regularity of the asymptotic behavior of the following
elliptic problem

—div(AVue) = f
{ Ue = 0 on 89, (1)

where 0 < ¢ < 1, © is bounded Lipschitz domain and f € L?(f2). we denote by
= (1,...,2n5) = (X1, X2) the points in RY where

X1 = (z1,..,x¢) and X7 = (441, .-, TN),

with this notation we set
_ T _ VX]
V = (0pyyey Oy )’ = ( Ve )

where
Vx, = (0pys e 03,)" and Vix, = (0pyys ooy Ouy )"
The diffusion matrix A, is given by
2
acmt = (G ) v as = (02 )
where Aj; and Az are ¢ x ¢ and (N — q) x (N — g) matrices. The coefficients af;
are given by

€2a;; fori,j € {1,..,q}
e ) ajforije{g+1,. N}
i ea;j forie{l,..,q},je{qg+1,..,N}
eaj; fori € {g+1,.,N},je{l, ., q}

We assume A € C1(Q) N L>°(Q2) and satisfies the ellipticity assumption
IN>0,Vz e QVC e RN A(z)C- ¢ > A [C)°. (2)

Date: 31 January 2017.
Key words and phrases. Regularity, anisotropic singular pertubation, asymptotic behavior.
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2 CHOKRI OGABI

Recall the first order pseudo Sobolev space introduced in [2]
yL2 = {u € L2(Q) | Vxu € L2(Q) and u(X1,-) € W% (Qx,) ae X; € Q! } ..

equipped with the norm

1

2 2 2
lully 2 = (Nulaqoy + IV xule))

Here Qx, = {Xg eERN-7: (X1,X,) € Q} and Q! = P;(Q) where P; is the natural
projector RNV — RY.
We introduce the second order local pseudo Sobolev space

Vi ={ueV? | Viue L} ()},

loc
equipped with the family of norms||-||5 , given by

1

2 2
lullys = (o) + IV 5,0l 220 + IVl 22, ) w € 9

. . . . . . 2
where V?qu is the Hessian matrix of u taken in the X direction, the term ||V§(2UHL2(W)
is given by

N
2 2
||V§(2“||L2(w) = Z ||8722j“||L2(w)'

1,j=q+1

We can show easily thatVlif is a Fréchet space (locally convex, metrizable and
complete). We also define the following

q
2 2
||V§(1“||L2(w) = Z Haz?j“”m(w)’

ij=1

and

q N
2 2
||V§<1X2“HL2(W) :Z Z Hafju”L?(w)'

i=1 j=q+1

The formal passage to the limit gives the unperturbed problem

— diV(AQQVUO(Xl, ) = f(Xh ) (3)
up(X1,-) =0 on Qx,,a.e X; € Q!

Since A € C1(Q) which satisfies (2) then it is well known by the elliptic regularity
[5] that the unique W, *(Q) weak solution of (1) belongs to W,>>(2). Similarly the
unique Wy ?(Qx,) weak solution ug(Xy,-) of (3) belongs to W22 (Qx,).

In [1] the authors have proved the convergences u. — ug in V' 2and eV x, uc — 0
in L2(Q) (see [4] for the LP case). In this paper we deal with the convergences in

2,2 . . .
the space V)" introduced above. Let us give our main result.

Theorem 1. Assume that A € L>®(2) N C*(Q) which satisfies (2), suppose that
f € L3(Q) then ug € Vﬁ)’cz and u. — up in V}if where u. € W 2(Q) N Wlif(ﬂ)
and ug are the unique weak solutions to (1) and (8) respectively, in addition the

convergences eZV%(lue — 0, 6V§(1X2u€ — 0 hold in L} ().
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The arguments are based on the Riesz-Fréchet-Kolmogorov compacity theorem
in LP spaces. We begin by a basic case, the Laplace equation, and we give the proof
in the general case using standard elliptic equations techniques.

2. THE PERTURBED LAPLACE EQUATION

Let us begin with some useful lemmas

Lemma 1. Let f € L2(RY), for every e € (0,1] let uc € W*2(RN) such that
—EAx,uc(z) — Ax,ue(z) = f(z) a.ex € RN (4)
then for every € € (0, 1] we have the bounds

192wy < Il
€ ||V§(1ue||L2(RN) < Hf“L?(RN)’
\/§€’|V§(1X2ue||L2(RN) < Hf||L2(RN)'

Proof. Let F be the Fourier transform on L?(RY) defined as the extension, by
density, of the Fourier transform defined on the Schwartz space S(RY) by

Fu)(€) = (2m)" 7 / w(z)e ™ Edr, ue SRY)

RN
where - is the standard scalare product of RY. Applying F on (4) we obtain

q N
X+ Y &) Fug©) =Fh©),

i=q+1
then
q N N q
Y @2+ Y g2 3 Y 8 |Fw) @) = 1F)E),
i,j=1 i,j=q+1 j=q+1 i=1
(5)
thus
N
Y. GG IF)©F < IFNEI,
1,j=q+1
hence
ol 2
Y |F@Gu) @] < |IFHEP,
t,j=q+1
then
al 2
Z ||-7:(8¢2Ju6)||L2(RN) S H]:(f)”%ﬁ(]RN)y
1,j=q+1

and the Parseval identity gives
N

> 0%l ey < 1172 -
i,j=q+1
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Hence
||v§(2u€||L2(RN) < Hf”Lz(]RN) .
Similarly we obtain from (5) the bounds

62 HviﬁufHH(RN) < ||f||L2(RN) ’

\[26 ||V§(1XZUGHL2(RN) < ”fHL?(]RN) :
O

Notation 1. For any function u € LP(RY) and h € RN we denote thu(z) =
u(x +h), v € RV,

Lemma 2. Let Q be an open bounded subset of R and let (ux)ren be a converging
sequence in LP(Q),1 < p < oo and let w CC § open, then for every o > 0 there
exists 0 < § < dist(0Q,w) such that

Vh € RN, |h| < 6,Vk € N: || rhup — gl o) < 0

in other words we have lim sup [|7pup — wil 1 () = 0
h—0 LeN

Proof. Let w CC Q open. For any function v € LP(2), extend v by 0 outside of £,
since the translation h — 7,v is continuous from R to LP(R”) (see for instance
[6]) then for every o > 0 there exists 0 < ¢ < dist(9Q,w) such that

Vhe RN |n| <0 [7hv = vl o) < 0 (6)
We denote limuy, = u € LP(£2), and let o > 0 then (6) shows that there exists
0 < ¢ < dist(09,w) such that
o
5
By the triangular inequality and the invariance of the Lebesgue measure under
translations we have for every k € N and |h| < §

Vh e RN |h| <6 ||7hu — ull oy <

[Thuk — uk”Lp(w) < 2w — u”Lp(Q) + lThu — U”Lp(w) (7)

Since uy — w in LP(Q) then there exists ko € N, such that
o
Vk > kot |luk — u”LP(Q) < 1
Then from (7) we obtain
Vh € RN, [h| < 6,Vk > ko : |[rhuk — k|l o) < 0 (8)

Similarly (6) shows that for every k € {0,1,2,..., ko — 1} there exists 0 < dj <
dist(0€), w) such that

VYh e RN || < 6y ¢ ||Thus — Ul o) <0, £ €{0,1,2, . ko — 1} (9)

Taking 8 = min  (6x,6) and combining (8) and (9) we obtain
ke{0,..,ko—1}

Vh € RN, [h| < &', Vk € N: [|IThug — upl o < 0
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Now, suppose that A = Id be the identity matrix then (1) becomes

{ —e2Ax,ue — Ax,uc = f

ue =0 on 01, (10)

Let (er)ren be sequence in (0,1] with lime, = 0 and let up, = u,, € WOM(Q) N
W22(2) be the solution of (10) then we have the following

loc

Proposition 1. 1) Let w CC ) open then

. 2 2
S I7n Vi = Vigue] oy = 0
. 2 2 2 _
i, sup ek (Vi ue = Vi un)l| oy =0
. 2 2
lﬁgoigg H%(Thvxlxzuk - V><1X2“’€)HL2(w) =0

2) The sequences (V%Quk), (eiViluk), (ekV§(lx2uk) are bounded in L} () i.e.

l -
for every w CC §Q there exists M > 0 such that .
sup [V, k| ) S0P [ Vot o) 52 [le6 Vi ok 2y < M-

Proof. 1) Let w CC £ open, then one can choose w’ open such that w CC w’ CC
Q, let p € DRY) with p = 1 on w, 0 < p < 1 and Supp(p) C w'. Let 0 <
h < dist(w’,09Q), to make the notations less heavy we set U = 7jux — uy, then
Ul € W22(w'). Notice that translation and derivation commute then we have

—eAx, Ul (z) — Ax, Ul (z) = F"(z), aezcd,
with F" =7, f — f. We set W{j = pU,? then we get for a.e v € W'
_ 2A Wh —A h _ h 9,2 . h
e Ax, Wi () x: W (@) = p(z) F"* () — 26V x, p(2) - Vx,Up ()
—2Vx,p(x) - Vi, Ufl (x) = Ug () Ax, p(e) — Axyp())-

Since U} € W22(w') then W) € W% ('), so we can extend WI' by 0 outside of
w’ then W' € W2(RY). The right hand side of the above equality is extended by
0 outside of w’, hence the equation is satisfied in the whole space, so by Lemma 1
we get

|‘V§<2W£“L2(RN) S HthHLz(RN) +26; ||V, p- leU/?HLQ(RN)
+2 ||VX2p : VX2U]]J||L2(]RN) + ||UI?(€£AX1P - AXQp)HLQ(RN) .
Then

IV UR N 2oy < I 2y + 268 IV 50Pllo sV, UR | o)
+2 HVsz”oo ||VX2UI?

|2y + IR Ax 0 = Axcap) | N1UE N 2 ) -

Recall that u,, — u in V12 and €, Vx,ur, — 0 in L?(Q), then by Lemma 2 we
have

. h .
g e Uil e = g les (Ve = Vol = 0
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and similarly we have

s SuIN)HVXzUI?HL?(w/) = 0, lim sup |F"| 0,

h—0c h—0kcN
= 0.

W)~

lim sup || Uy

im s [V 2,

and hence
lim sup||T;V2 ug, — V4 ukH = lim sup”V2 UhH =0.
hmopen IThY X XahllL2(w) T RE IR Y X Vk ll 2 w)
Similarly we obtain

lim sup ||ei(ThV§(luk — Vﬁ(luk =0,

h—0LeN )HLz(W)

and
lim sup ler(Ta Vi, x,un = Vi, x,un)|| 12y = 0.

2) Following the same arguments, we obtain

&NV k| 2y + VUl L2y + V260 [ Vi 2 <
BN f 2y + 6€k [[Vxy pll oo lee Vo il 2oy
+6Vx,llo IVxatnll po e + 3[R Ax 0 — Axap)|| o ikl 2oy -

The convergences u, — w in V12, erVx,ur — 0in L2(Q) and boundedness of p
and its derivatives show that the right hand side of the above inequality is uniformly
bounded in k, i.e for some M > 0 independent of k

Ei Hv§(1uk||L2(w) + |’v§(2uk||L2(w) + \/iek ||v§(1X2uk||L2(w) <M.

Now, we are ready to prove the following

Theorem 2. Let u, € Wy 2(Q) N W.22(Q) be the solution of (10) then u. — ug
strongly in Vlif where uy € Vlif is the solution of the limit problem. In addition,

we have
eQV?Xl ue — 0 and eV:;(le ue — 0, strongly in L7 ().

Proof. Let ug € V12 be the solution of the limit problem and let (ug)ken, ur €
We2(Q) N leocz(ﬂ) be a subsequence of solutions to (10), then Proposition 1
shows by the Riesz-Fréchet-Kolmogorov theorem ([3]) that the subset { V3, uy } eN
is relatively compact in L?(w) for every w CC € open. Now, fix w CC Q then
there exists uf € L?(w) and a subsequence still labeled (V%,us)ken such that
V%Quk — u¥ in L?(w) strongly. Since up — ug in L?(w) and the second order
differential operators 97; are continuous on D'(w) then ug = Vx,uo on w. Whence,
since w is arbitrary we get V%Q ug € L7 .(9). Now, taking a countable covering (w,,)
of  with w, CC Q then by the diagonal process one can construct a subsequence
still labeled (ug) such that Vg(zuk — Vizuo in L? () strongly, combining this

with up — uo in V12, we get ui, — uo strongly in Vf}f.
To prove the convergence of the whole sequence (u.)p<e<1 We can reasoning by
contradiction, so suppose that there exists § > 0 and a subsequence (uy) such that

de2’2 (ug,ug) > 9, here dVlz,z is the distance of the Fréchet spaceVQ’Q. It follows by

loc
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the first part of this proof that there exists a subsequence still labeled (uy) such
that dvz 2(ug, uo) — 0, and the proof of the theorem is finished. Similarly we show

that eQVX ue — 0 and eVX x,Ue — 0 strongly in L7 (). O

3. GENERAL ELLIPTIC PROBLEMS

3.1. Proof of the main theorem. In this subsection we shall prove Theorem
1. Firstly, we suppose that the coefficients of A are constants then we have the
following

Proposition 2. Suppose that the coefficients of A are constants and assume (2),

let (uc) be a sequence of W22(RN) such that — Zawafjug f, with f € L*(RY)
i,j

then we have the bounds

AHV%{2U€||L2(RN) < Hf||L2(]RN)’
AGZ HV?}{IUGHLZ(RN) < Hf||L2(RN) ’
\/§A6’|v§(1quHL2(RN) < Hf||L2(RN)'

Proof. As in the proof of Proposition 1 we use the Fourier transform and we
obtain

Do afiid; | Fua)©) = F(NE©)

From the ellipticity assumption (2) we deduce

2
¢ Zf + Z &) 1Fu)OF <IF@©OF
1=q+1
Thus, as in proof of Proposition 1, we obtain the desired bounds. ([l

Now, suppose that A € L>°(2) N C*(Q2) and assume (2), We denote uy = u,, €
WOI’Q(Q) Wif(ﬂ) the solution to (1) with €, — 0 as kK — oo, then we have the
following.

Proposition 3. Let zy € Q) fixed then there exists wg CC £ open with zg € wg such
that the sequences (Vi(zuk), (V?Xluk) and (Vﬁﬁxzuk) are bounded in L?(wy).
Proof. Since uj, € Wy ?(Q)NW22(Q) and A € C1(Q) then uy, satisfies for a.e z € Q

loc
Za” 82 ug(z Zaa” )Ojuk(x) = f(x), (11)

where af; = aEJ’?

Let zp € Q fixed, and let § > 0 then using the continuity of the a;; one can
choose w1 CC €, 29 € wy such that

sup |a;;(z) — ai;(z0)| < 0 for every i,5 € {1,...,N} (12)

rewl
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Let wy CC wy open with zg € wy and let p € D(RY) with p=1onwg, 0<p <1
and Supp(p) C wy. We set Uy = pug, and we extend it by 0 on the outside of w;
then Uy, € W22(RY). therefore we obtain

— Za” (20) (“)2 U(z) = Z(afj(x)—afj(zo))aijk(ac)—i-gk(m), for a.e z € RY,
4,J
where g is given by

gk(‘r) = p( Za a‘zg a uk ) (13)
—ug(z Za” ij Za” x)0jug(x Za” x)Oug ()

Now applying Prop051t10n 2 to the above differential equality we get
MV3URl 2oy + A6 1V Ukl 20y + V2260 [V 20Ukl 2y

< 3| (af (@) — aly(20))0% Ui + 3119l L2 (1)
" L2(w1)
Whence we use (12) we get
M|V, Uk

2y + ek HVi‘éclUkHLz )+ V226 [V, Ukl o,

q
< 30 Z ||8i2jUkHL2(w1) +30 Z H82 UkHL2

1,j=1 1,j=q+1

q N
+69€kz Z Ha’?jUkHLQ(wl) +3Hg||L2(w1)’

=1 j=q+1
and thus we deduce by Cauchy-Schwarz
MV3URl ooy + A6k 1V Ukl 20y + V2260 [V 20Ukl 2

<30(N —q) ||V&, Uk + 230 ||V, Uk

2 ) 2y

2
+erb(N = 0)a0 |V, x,Ukl[ 2,y + 31190 L2

A =300 = |V Ukl oy + €k 2 = 300] [ V3, Usll oo+

o {\@A —6(N - q)qﬁ} V%, . Ukl 2y < 3119kl 2oy -

we can choose a priori # small enough such that

min { [\ — 30(N — q)] [\ - 30q] , [V2A — 6(N — g)f] } >

and then we deduce

a3 (14)

V3wl gy + €0 IV 30k )+ 0 V000

6
Y 19kl 2oy -

To finish the proof it suffices to show that the sequence (g) is bounded in L?(wy).
In fact p and its derivatives, a;; and their first derivatives are bounded on wy,
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moreover the sequences (e, V x,ux), (Vx,ur) and (ug) are bounded in L?(£2), then
from (13) the boundedness of (gi) in L?(wy) follows. O

Corollary 1. The sequences (ViQuk), (eﬁViluk), (€kV§(1X2Uk) are bounded in
L?OC(Q)

Proof. Let w CC  open, for every z, € @ there exists w, CC Q, z, € w, which
satisfies the affirmations of Proposition 3 in L?*(w,). Since & is compact then
one can extract a finit cover (w, ), then (VgQuk), (eiV;uk), (ekV§(1X2uk) are
bounded in L?(w) and the corollary follows. (]

Proposition 4. Let zg € € then there exists wg CC €2, zg € wg such that

}lLli% ksup ||Tth2uk Vg(zuk’HLr(wo) =0
}lllirb ksup Hek Thvxluk leu’f)HLp(wo) =0
lim sup Hek Tth1X2Uk leXQUk)HLP(wO) = 0

h—0 geN

Proof. Let zy € Q fixed and let ¢ > 0 then using the continuity of the a;; one can
choose wy CC Q, zp € wy such that we have (12) with 6 chosen such that (14). Let
wo CC wi, with zp € wg, and let p € D(RN) with p =1 on wp, 0 < p < 1, and
Supp(p) C wi. Let 0 < h < dist(w1,08), we set Wh = pUF, with Ul = (7pup, —uy)
and extend it by 0 on the outside of wq then W' € W2(RY), therefore using (11)
we have for a.e x € RV :

- Z afi(z0) 05 Wit () = ) (afi () — alf(20))05 Wi () + G (2),

2]

where
~Gi(z) = U,?Za” jp—l—ZaU )0ip0; U —l—ZaU 9;p0; UL (15)
+pz az;( Thafj(w)) TrOzur () + p(iﬂ) (f(@) = 7nf(x))

+pz 8am z)djur(z) — (’97’ha (2)0;Thun ()] -

Then, as in proof of Proposition 3, we obtain

I =l + 41T = ol

HG}L

+ €k ’|Thv§(1xzuk o v§(1qukHL2(u}0 ||L2(w1)

DY

Now, to finish the proof we have to show that hrrh sup HG HL2 = 0. Using
h— ke

the boundedness of the a;; and the boundedness of p and its derlvatlves on wi we
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get from (15)

[l < M|y

HLQ(M) - ||L2(w1) + Mey, HleUlgHL?(wl) (16)

M [V, Up || o,y + 170 = Fllpa

+ Z |(af; — Thaij) Tha?j“ka(wl)
%)

k k
+ Z Hazazzjajuk; - Thaia’ijThajukHLZ(wl) 3
0,J
where M > 0 independent of h and k. Now, estimating the fifth term of the right
hand side of the above inequality

> ll(aly = 7haly) ThaizjukHLQ(wl) < Cyn sup |ag;(x) — Thaij(z)] x
4.7 TreEwl
(9%l 2 gy + €8 9% 0 ey + €6 1V 2y )

where Cy ;v > 0 is only depends in ¢ and V.
For h small enough then it follows from Corollary 1 that the quantity

V3wl oy + € IV 0 2y + €0 11V o 0 oy

is uniformly bounded. Since the a;; are uniformly continuous on every w CC
then lim sup |a;;(z) — Tha;j(2)| = 0 and hence
hHOzEwl

. k k 2 _
;ILIL% kseul\g); H (aij — Thaij) Thaij“kHL2(wl) =0. (17)
Now, estimating the last term of (16)
Z ||8,-afj8juk - Thaiaij;L@jukHLZ(wl) < Z H(?iafj(‘?juk. — rhaiafjajuknm(m)
4,J 4,J
- Z |7 ndiai;O5ur — ‘9ﬂhafﬂhaj‘“k||m<m> ’
i,
and thus using boundedess of the first derivatives of the a;; on w; we get
Z ||8¢a,f]8Juk - 8iTha7l;CjajThuk||L2(wl)
4,J
< Cq n sup |0;a5(2) — 0;Tpai;(2)] (Gk IV X, ull 2, + ||VX2uk||L2(w1)>
! h h
M (e VU |y + 19508 )

where M’ > 0 is independent of h and k. Now, since the 0;a;; are uniformly
continuous ( recall that A € C'(Q)) on every w CC Q then

lim sup |0;ai;(x) — Tr0;a:(x)| =0,
h—0gzcw,

and hence from the above inequality we get

: k k
lim sup g H&-aijajuk — 0iTha;0;Th

18
h—0 LeN i ( )

ukHLz(wl) =0,

where we have used the convergence of (Vx,ur), (exVx, ux) and Lemma 2.
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Passing to the limit in (16) by using (17), (18) and Lemma 2 we deduce

lim sup HGZ" =0.

h—0 keN |L2(‘”1)

and the proposition follows. [

Corollary 2. For every w CC ) open we have

. 2 2 _
A 1P IV, un = Viuall oy =0,
. 2 2 2 _
T
. 2 2
flblg%) ksél]\? Hek(Tthleuk - VX1X2u”C)HL”(W) = 0

Proof. Similar to proof of Corollary 1 where we use compacity of @ and Propo-
sition 4. O

Now, we are able to give the proof of the main theorem. Indeed the proof is
similar to proof of Theorem 2 where we use Corollary 1 and Corollary 2. Let
us give the proof of the convergence EQV§(1U,€ — 0in L? (Q). Fix w CC € open,

and let uy € Wy *(Q) N W22 (Q) be a sequence of solutions of (1) (e replaced by
€ — 0), then it follows from Corollary 1 and 2 that the subset {eiViluk}keN
is relatively compact in L?(w) then there exists v* € L?(w) and a subsequence still
labeled (€2V%,ux) such that €2V, up — v in L?(w). Since e2uy — 0 in L?(w)
then v* = 0, since Vg(l is continuous on D’ (w). Hence by the diagonal process one
can construct a sequence still labeled (2 V%, ux) such that €2V, up, — 01in L2 ().
To prove the convergence of the whole sequence we can reasoning by contradiction
as in proof of Theorem 2 (recall that L? () equipped with the family of semi
norms ||-[| 72,y is a Fréchet space), and the proof of the main theorem is finished.

3.2. VVIQOCQ regularity for some class of semilinear problem. In this section
we deal with the following semilinear elliptic problem

—div(A.Vue) = alu.) + f
ue =0 on 0F), ’
where a : R — R a continuous nonincreasing real valued function which satisfies
the growth condition

Ve eR:ja(x)] <c(1+]z|), (19)
for some ¢ > 0. This problem has been treated in [4] for f € LP(Q), 1 < p < 2, and
the author have proved the convergences

eleus - 07 Ue — UO, szue - Vquo in LP(Q)7 (20)

where ug is the solution of the unperturbed problem.

Let f € L2(€) and assume A as in Theorem 1 then the unique W, () weak
solution u, belongs to Wfof (©2) by the elliptic regularity. Following the same argu-
ments exposed in the above section one can prove the theorem

. 12,2
Theorem 3. Under the above assumptions we have u. — ug in V)7, 62v§(1 ue — 0

and eV?Xleue — 0 strongly in L?, ().
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Proof. The arguments are similar, we only give the proof for the Laplacian case,
so assume that A = Id. Let w CC Q open, then one can choose w’ open such that
wCCw CcCQ let pe DRY) with p=1onw,0<p<1and Supp(p) C . Let
0 < h < dist(Ow’, ), we use the same notations so we set U,? = TpUr — Uj, then
Ul € Wh2(w') and we have

—e2Ax, Ul (z) — Ax, Ul (x) = F"(z) + mha(u)(z) — a(u)(z), aex €W,
with F* = 7, f — f. We set W,’g = pU,? then we get as in Proposition 1
2 2 h h
(AR VXQU’kHL?(w) <|F ||L2(w’) + M ||V, Uy HL2(w’)
+ [Imnaur) — a(ue)|| 22

h h
+ M|V, Ug || 2y + MUR] 2 -
We show easily using continuity of the function a and (19) that the Nemytskii
operator a maps continuously L? to L2, therefore the convergence u, — wug in

L?(Q) gives a(ug) — a(ug) in L*(£2), and hence
I - -
i, sup [Tha(ur) — aluk)ll g2, = 0,

and finally the convergences (20) give

. 2 2
P AR AP
Similarly, using boundedess (ux), (exVx,uk), (Vx,ur)and a(ug) in L*(Q), and
boundedness of p and its derivatives we obtain

HV?Xz“kHLz(w) <M,
and we conclude as in proof of Theorem 2. O
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