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W22 INTERIOR CONVERGENCE FOR SOME CLASS OF
ELLIPTIC ANISOTROPIC SINGULAR PERTUBATIONS
PROBLEMS

CHOKRI OGABI

ABSTRACT. In this paper, we deal with anisotropic singular perturbations of
some class of elliptic problem. We study the asymptotic behavior of the solu-
tion in certain second order pseudo Sobolev space.

1. DESCRIPTION OF THE PROBLEM

In this paper, we study diffusion problems when the diffusion coefficients in cer-
tain directions are going toward zero. More precisely we are interested in studying
the asymptotic behavior of the solution in certain second order pseudo Sobolev
space. We consider the following elliptic problem

—div(AcVu) = f
{ u. € Wy*(Q) (1)

where 0 < € < 1 and  is a bounded domain (i.e. open bounded connected subset)
of RV and f € L?(2). We denote by = = (z1,...,zn5) = (X1, X2) the points in R
where

X1 = (1,..,2¢) and X7 = (441, .-, TN),

with this notation we set
_ T _ le
V = (0pyyesOny)’ = ( Ve )

where
Vx, = (0pys . 02,)" and Vix, = (05yys oy Ouy )"
The diffusion matrix A, is given by

e 621411 eAqa . _ _ A A
Aﬁ‘%)‘( Ay Ay ) VA=) =Ly g, )
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2 CHOKRI OGABI

where Ay and Ags are ¢ X ¢ and (N — q) X (N — q) matrices. The coefficients as;
are given by

€%a;; fori,j € {1,..,q}
e ) ajfori,jef{qg+1,. N}
i ea;j forie{l,..,q},je{qg+1,..,N}

eaj; fori € {g+1,.,N},je{l, ., q}

We assume that A € L*°(Q) and for some A > 0 we have

A@)C-C> AP VCeRY, aex e (2)
Recall the Hilbert space introduced in [2]

V2 = {u € L2(Q) | Vx,u € L2(Q) and u(X1, ") € Wo2(Qy,) ae X; € O } ..

equipped with the norm

2 2 2
lull,z = (el a@) + IV x0l20))
Here Qx, = {Xg ERN1: (X1, X,) € Q} and Q! = P;(Q) where Pj is the natural
projector RV — RY,

We introduce the second order local pseudo Sobolev space

Vel ={ueV? | Viue LL (D)},

equipped with the family of norms (||||§J2),,J given by

1

w 2 2 2 2
[ull5,, = (||UHL2(Q) +IVx,ullf2) + HV?XQUHL?(UJ)) » w CC {2 open

. . . . . . 2
where Vg(zu is the Hessian matrix of u taken in the X5 direction, the term ’|V§(2u’|L2(w)

is given by
2 al 2
|‘V§(2UHL2(w) = Z Haizj“HLz(w)'
t,j=q+1

We can show that Vlif is a Fréchet space (i.e. locally convex, metrizable and
complete). We also define the following

q
2 2
HV?XIUHLQ(w) = Z Hal?]'uHLQ(w)’

ij=1
and
2 2 N 2
||V§(1X2“HL2(W) :Z Z Ha?j“”m(w)‘
=1 j=q+1

As € — 0, the Limit problem is given by
7diV(A22VUO(X1,') = f(Xl,) (3)
uo(X1,-) € Wy (Qx,) a.e X; € Q!

The existence and the uniqueness of the W, weak solutions to (1) and (3)
follow from the Lax-Milgram theorem. In [1] the authors studied the relationship



W22 INTERIOR CONVERGENCE FOR SOME CLASS OF ELLIPTIC ANISOTRPIC.... 3

between u. and ug and they proved that ug € V12 and the following convergences
(see Theorem 2.1 in the above reference)

ue — up in VH? and eV, u. — 0 in L*(9). (4)

For the LP case we refer the reader to [6], and [2],[4], [5] for other related problems.
In this paper, we deal with the asymptotic behavior of the second derivatives of
Ue, in other words we show the convergence of u. in the space Vlzf introduced
previously. The arguments are based on the Riesz-Fréchet-Kolmogorov compacity
theorem in LP spaces. Let us give the main result

Theorem 1. Assume that A € L>(Q) N CY(Q) with (2), suppose that f € L*(Q)
then ug € Vlif and ue — ug N Vlif, where u. € Wol’z(Q) N leof(ﬂ) and ug are
the unique weak solutions to (1) and (3) respectively. In addition, the convergences
2V, ue — 0, €V, x,ue — 0 hold in L? ().

loc

2. SOME USEFUL TOOLS

Proposition 1. The vector space V}f}’f equipped with the family of norms (||H;’2)w
is a Fréchet space.

Proof. Let (wy)nen be a countable open covering of 2 with w,, CC Q, w, C wWp41
for every n € N. The countable family (||H;’E)HGN define a base of norms for the
V22 topology. The general theory of locally convex topological vector spaces shows
that this topology is metrizable, explicitly a distance d which define this topology
is given by ( see for instance [8])

d(u,v) = i 2_"—”u _ v”g% u,v € V32 (5)
’ = It fu—ollyy foe”

Let (u,) be a Cauchy sequence in Vlif then (uy,) is a Cauchy sequence for each
norm [|-[5%, n € N. Whence, there exist u,v € L*(Q) such that

Up, — U, Vx,Um — v in L*(Q),
and for every n € N fixed there exists w,, € L?(w,,) such that
V?qum — w,, in LQ(wn).

The continuity of Vx, and V%, on D'() and D’(ws,) shows that v = Vx,u and
V%Qu = w, for every n € N. Hence u € Vlif and

Wn

272—>0asm—>oo.

Vn € N ||up, — ul

Finally the normal convergence of the series (5) implies
d(tm,u) — 0 as m — oo,

and therefore the completion of Vli’f follows. O

Remark 1. Notice that a sequence (u,,) in Vlif converges to u with respect to d
if and only if ||um — ull5 5 — 0 as m — oo, for every w CC Q open.

Now, let us give two useful lemmas
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Lemma 1. Let f € L2(RY), for every e € (0,1] let u, € W*2(RYN) such that
—Ax,uc(z) — Ax,uc(z) = f(z) a.e x € RY

then for every e € (0, 1] we have the bounds
HVg(z Ue

2 ||=2
€ HVXluE

||L2(]RN)

|2 ey
\/56 Hv§(1X2u5||L2(RN)

A

IN

<

11l 22y »
11 L2 @y
11 2y -

(6)

Proof. Let F be the Fourier transform defined on L?(R”Y) as the extension, by
density, of the Fourier transform defined on the Schwartz space S(RY) by

F(u)(€) = (27r)*% / u(z)e @ tde, ue S(RY)

RN

where - is the standard scalar product of RY. Applying F on (6) we obtain

q N
D+ D & Fud©) = F(NE),

1=q+1
then
q N N q
S e Y g2 Y Y e | 1Fw)©)f
4,j=1 i,j=q+1 j=q+1i=1
thus
N
Y EEIFIOF <IFNHE©),
1,j=q+1
hence
Al 2
Y F@Gu) @] < |IFNHE,
1,j=q+1
then
N

> F @l gy < IFOIZ2gen)

t,j=q+1
and the Parseval identity gives
N

2 2
Z Haz'QjUGHLz(RN) < ||f||L2(RN) .
1,j=q+1
Hence
2
||VX2UE||L2(RN) < Hf||L2(RN) .
Similarly we obtain from (7) the bounds

62 vaglueHLg(RN) < ||f||L2(RN) )

\/§€ HV%{IXQUEHLQ(RN) < ”fHL?(]RN) :
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O

Notation 1. For a functionu € LP(RY) and h € RN we denote Tpu(x) = u(z+h),
z € RN,

Lemma 2. Let Q be an open bounded subset of RV and let (ux)ren be a converging
sequence in LP(Q),1 < p < 0o and let w CC Q open, then for every o > 0 there
exists 0 < 0 < dist(O0,w) such that

Vh € RN, |h| < 6,Vk € N: || rpup — ukl o) < 0

in other words we have lim sup ||7pug — ukHLp(w) =0.
h—0 keN

Proof. Let w CC Q open. For a function v € LP(Q), extend v by 0 outside of €,
since the translation h — 7, is continuous from R to LP(R") (see for instance
[8]) then for every o > 0 there exists 0 < § < dist(9,w) such that

Yhe RN |n| <4 [7hv = vl o) < 0 (8)
We denote limu, = u € LP(Q), and let 0 > 0 then (8) shows that there exists
0 < § < dist(09,w) such that
Vh e RN |h| <6 : ||7hu — uHLp(w) < g.

By the triangular inequality and the invariance of the Lebesgue measure under
translations we have for every k € N and |h| < §

[Thuk — uk”Lp(w) < 2w — u”LP(Q) + IThu — U”Lp(w) (9)

Since uy, — w in LP(Q) then there exists ko € N, such that

o
Vk > ko [Jue — ullpoo) < 1

Then from (9) we obtain
Vh € RN, [h| < 8,Vk > ko : |[rnur — wkl o) < 0 (10)

Similarly (8) shows that for every k € {0,1,2,...,ko — 1} there exists 0 < d; <
dist(0€), w) such that
Vh € RN, |h] <6k : lTnun — urll oy < 0, k€ {0,1,2,..., ko — 1} (11)

Taking ¢’ = min  (dg, ) and combining (10) and (11) we obtain
ke{0,..,ko—1}

VYh e RN |n| < 8", Vk € N ||Thuy — uk||Lp(w) <o.

3. THE PERTURBED LAPLACE EQUATION

In this section we will prove Theorem 1 for the perturbed Laplace equation.
We suppose that A = Id, and let u, € W,"*(Q) be the unique solution to
—2Ax,ue — Ax,uc = f
ue € Wy(9).

Notice that the elliptic regularity [7] shows that u. € VVIQOC2 (). Now, let (ex)ren be
a sequence in (0,1] with lime; = 0, and let uy = u,, be the solution of (12) with e
replaced by €. then one can prove the following

(12)
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Proposition 2. 1) Let w CC ) open then

', e 170 Ve, = Vi uk| oy = 0,

. 2 2 2 _
lm sup |6 (7 Vi, e = Vi, )| ) = 0

. 2 2 _
1}?3022112] HEk(Thvxleuk - leXQU’k)HL?(w) =0.

2) The sequences (V?Xguk), (eiViluk), (ekV§(1X2uk) are bounded in L?

e(2) t.e.
for every w CC Q open there exists M > 0 such that

sup ([ ek Vi, el ) 9P [Vt 59 166V 3 sy < M-

Proof. 1) Let w CC  open, then one can choose w’ open such that w CC w’ CC
Q, let p € DIRY) with p = 1 on w, 0 < p < 1 and Supp(p) C w'. Let 0 <
h < dist(w',09Q), to make the notations less heavy we set U = 7,ux — uy, then
Ul € W22(w'). Notice that translation and derivation commute then we have

—e2Ax, Ul (z) — Ax, Ul (x) = F"(z), aexcd,
with Fh = 7, f — f.
We set W} = pU} then we get
- GiAXIW/?(.%‘) - A)(2)/\]121(‘]:) = p(x)Fh(.’L‘) - 2€zvX1p(m) ' le U;?(JJ)
9V p(a) - Y, UR(e) — UE () (@, p() — Dxyp(a)),
for a.e z € W'.
Since U} € W22(w') then W) € Wi *(w'), so we can extend WI by 0 outside
of w’ then W' € W2(RY). The right hand side of the above equality is extended

by 0 outside of w’, hence the equation is satisfied in the whole space, and thus by
Lemma 1 we get

||v§(2W’}CLHL2(RN) = HPF}LHH(RN) +26; | Vx,p- leUliLHL2(RN)
+2 Hszp ’ VX2U’?HL2(]RN) + HU/?(GzAXM - AX?p)HLQ(RN) :
Then
V3 Uk o) S IF 2y + 266 1V 300l 6V, Uk [ 2y
+2[IVaopll o [V UL

2 h
’L?(w) +[(RAx,p — AX?p)Hoo U HL?'(w’) :
Notice that by (4) we have ux — w in V12 and €V, ur — 0 in L*(Q), then by
Lemma 2 we deduce

. h .
i, sup lex V2, Uk 2y = m, sup e TV w = Vo ue) [ 2wy =0,

and similarly we obtain
lm sup ||V, Ul oy = 0. dim sup [[F*][ ) = 0.

lim sup ||U,? 0.

h—0 eN HLQ(w’)

and hence

lim sup |7 Vi, uk = Vie,ui| () = 1m sup [V, UR |l o) = 0.
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Similarly we obtain

lim sup ||6i(7‘hV§(luk — Vi, uk

h—0eN

M 2w
and

L 2 2 _
1,113021615 ek (7n V.0 = Vi, )| 2 = 0

2) Following the same arguments, we get the estimation

& V5l ooy + VR UE[] 2 ) + V260 [V a0 2 <
B3NN 2wy + 6er IV, plloo leeV xy w12 eory
F6Vxoplloo IVxatnll po e + 3 [ Ax 0 — Axap)|| o Nkl 2oy -

The convergences uj, — w in V12, erVx,ur — 0in LQ(Q) and boundedness of p
and its derivatives show that the right hand side of the above inequality is uniformly
bounded in k, i.e. for some M > 0 independent of k we have

6% HviflukHL?(w) + HszQUkHL2(UJ) + \/56’@ ||v§(1X2uk||L2(w) = M’ Vk € N’

and therefore, the sequences (V,ux), (2Vx, uk), (exVx, x,ur) are bounded in
L2 (Q). 0

loc

Now, we are ready to prove the following

Theorem 2. Let u, € Wy 2(Q) N W.22(Q) be the solution of (12) then u. — ug
strongly in Vlif where uy € Vlif is the solution of the limit problem. In addition,

we have
272 2 72
Vi, ue — 0 and eV, x,ue — 0, strongly in Li,.(S).

Proof. Let ug € V2 be the solution of the limit problem and let (uy)ren, up =
U, € Wy (Q)N Wif(Q) be a sequence of solutions to (12) with € replaced by €.
Then Proposition 2 shows that the hypothesis of the Riesz-Fréchet-Kolmogorov
theorem are fulfilled (For the statement of the theorem, see for instance [3]).
Whence, it follows that {Vg(guk}k . relatively compact in L?(w) for every
w CC Q open. Now, for w CC  fixed there exists u§ € L?*(w) and a subsequence
still labeled (V%,ur)ken such that Vi, u, — ug in L?(w) strongly. Since ux — ug
in L?(w) and the second order differential operators 97; are continuous on D'(w)
then uf = Vx,up on w. Whence, since w is arbitrary we get V%Q ug € L7 .(Q), i.e.
uo € Vgl

Now, Let (w,) be a countable covering of Q with w,, CC Q, w,, C wp11,Vn € N.
Then by the diagonal process one can construct a subsequence still labeled (uy)
such that

V§(2uk — V§(2uo in L7 .(Q) strongly.

Combining this with the convergence u, — ug of (4) we get

2,2
oc?

up — up strongly in V, ie. d(ug,ug) — 0 as k — oo,

where d is the distance of the Fréchet space Vlif.
To prove the convergence of the whole sequence (ue)o<e<1 We can reason by
contradiction. Suppose that there exists 6 > 0 and a subsequence (uy) such that
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d(ug,ug) > §. It follows by the first part of this proof that there exists a subsequence
still labeled (ug) such that d(ug,up) — 0, which is a contradiction..

By using the same arguments we can show easily ( see the end of subsection 4.1)
that

eQV?Xl ue — 0 and evgﬁxzug — 0 strongly in L7 ().

4. GENERAL ELLIPTIC PROBLEMS

4.1. Proof of the main theorem. In this subsection we shall prove Theorem
1. Firstly, we suppose that the coefficients of A are constants then we have the
following

Proposition 3. Suppose that the coefficients of A are constants and assume (2), let

(ue)o<e<1 be a sequence in W22 (RYN) such that — Z a$;07uc = f, with f € L*(RY)
i,

then we have for every e € (0,1] :

A|’V§(2Ue||L2(RN) = Hf||L2(RN)’
)\62 HV%GWHLQ(RN) S Hf||L2(RN) )
\/§>\6’|v§(1X2u|‘L2(RN) < Hf||L2(RN)'

Proof. As in proof of Lemma 1, we use the Fourier transform and we obtain

D_ai&&y | Flu©) = F(N(E), € RY.

From the ellipticity assumption (2) we deduce

2
¢ 25 + Z &) 1Fu)OF <IF@OF-
i=q+1
Thus, similarly we obtain the desired bounds. O

Now, suppose that A € L>(Q) N C1(N2) and assume (2), and let u, € W01’2(Q)
be the unique weak solution to (1), then it follows by the elliptic regularity that
. € W22(9). We denote uj, = e, the solution to (1) where (ez) is a sequence in

(0, 1] such that, ¢, — 0 as k — oo.
Under the above assumption we can prove the following

Proposition 4. Let zy € § fixed then there exists wy CC 2 open with zg € wo such
that the sequences (V§(2uk), (Viluk) and (Vﬁ(lXQuk) are bounded in L*(wo).

Proof. Since uy, € WOI’Q(Q) NW22(Q) and A € C*(Q) then uy satisfies

loc

—Zau )0y (@ Z@a” )0ju(x) = f(x), for a.e x € Q (13)

where we have set aij =ag}.
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Let zg € Q fixed, and let 8 > 0 such that

A
min {[)\ —30(N — q)], [\ — 30q], [V2\ — 6(N — q)qo} } > 2. (14)
By using the continuity of the a;; one can choose wy CC €, 2y € w;y such that
maxsup laij(x) — aij(z0)| < 0 (15)
) xe

Let wg CC wy open with zg € wg and let p € D(RN) such p=1onwy, 0 <p <1
and Supp(p) C wy. We set Uy = puy, and we extend it by 0 on the outside of w;
then U, € W22(RY). Therefore from (13) we obtain

— Za” (20)0? SUk(z) = Z(afj(x)—afj(zo))aijk(:c)—i-gk(:c), for a.e z € RY,

.7

where g, is given by

gk(x) = p( Zaa‘u a uk )

(16)

—ug(z Zaij (x ”,0 Za” x)0jup(x Za” x)O;ug(x),
(2%

and we have extended g; by 0 outside of w;.
Now, applying Proposition 3 to the above differential equality we get

A |‘v§(2Uk||L2(w1) + )‘ez Hv§(1UkHL2(w1) + \/iAek ||VA2}(1X2U]€HL2(UJ1)

<3 Z(GZ‘ - a?j(zo))azngk +3 ||g||L2(w1)
v L2(w1)

Whence, by using (15) we get

A |\V§(2Uk”Lz(m) + Aep HVgclUkHLz y V2Xey vaﬁXzUkHL?(w )

q
<30e; ||83jUk|\L2(wl) + 36 Z 102, Uk|\L2
3,j=1 i,j=q+1

q N
£600 5 S 020 s, + 39l oo
i=1 j=q+1
and thus by the discrete Cauchy-Schwarz inequality we deduce
MVl 22 195Ul + VA [Vl
<30(N = 9) || V3, Ukl| 2o, + 4300 [V, Ukl 2o,
+ e6(N = 0)00 ||V, %, Uk 3200 + 3190 1200
and thus

A =30(N = )] [|VE, Ukl 12w, + € N — 300] |V, Ui +

HLQ(wl)

ex [V2A = 6(N = 0)a8)] [V, x, Ul 2 ) < 3198 220 -
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Hence, by (14) we get

6
||V§(2“k"L2(wo) +ei ||v§(1“k||L2(w0) + €k HVgﬁXz“ka(wo) S b\ gkl L2 (er) -

To complete the proof, we will show the boundedness of (gy) in L?(w;). Indeed, p
and its derivatives, a;; and their first derivatives are bounded on wq, moreover (4)
shows that the sequences (€xVx, uy), (Vx,ux) and (uy) are bounded in L?(Q2), and
therefore from (16) the boundedness of (gx.) in L?(w;) follows. O

C20r(oll)ary 1. The sequences (VAZXQuk), (€iV§(1Uk); (ekV?Xleuk) are bounded in
Lloc Q

Proof. Let w CC 2 open, for every z € @ there exists w, CC 2, z € w, which
satisfies the affirmations of Proposition 4 in L?(w,). By using the compacity of @,
one can extract a finite cover (w,,), and hence the sequences (V?quk), (eiV%G uk),
(ekV§(1X2uk) are bounded in L?(w). O

Proposition 5. Let zg € € then there exists wg CC €2, zg € wg such that

lim Sup||Tth2uk V?XQU’]CHLP(LU()) =0,

h—0 keN
2
111112) ksup Hek TthllLk leuk)HLp(wO) =0,
2
ilzlin kseul\?‘kk ThVXlxzuk leX2uk)HLP(WO) -

Proof. Let zy € Q fixed and let > 0 then using the continuity of the a;; one can
choose w1 CC Q, zp € wy such that we have (15) with 6 is chosen as in (14). Let
wo CC wi, with 29 € wp, and let p € D(RY) with p = 1 on wp, 0 < p < 1, and
Supp(p) C wi. Let 0 < h < dist(ws,00N), we set Wi = pUF, with U = (7ur —ug)
and extend it by 0 on the outside of wq then W' € W2(RY), therefore using (13)
we have:

— E afj(zo)(i)?jw,?(x) = E (afj(x)—afj(zo))ﬁfjW,}é(:E)—i—GZ(x), aezeRY
s J 4,7
where

—Gp(z) = U;?Zaiz-( mz% J0:p0;UL + D ajy(2)0;p0:U3; - (17)

,J

+pz ag; () — Thafj(x)) Thdjuk(x) + p(x) (f(2) — 71 f(2))
+pz [0k (2)0;up(x) — OyThal () Thun ()]
and G is extended by 0 outside of w.
Then, as in proof of Proposition 4, we obtain
I Vs = Vi, unl| gy + €8 170 Vi e = Vi ] o
ek ||Thv§(1X2uk o vgﬁxzukHL?(wo) = A ||GZ||L2(W1) ’

To complete the proof, we have to show that lim sup ||GZ = 0.

h—0 keN

||L2(w1)
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Using the boundedness of the a;; and the boundedness of p and its derivatives
on wy we get from (17)

lc < MO ooy + Men ||V, U

lren < (18)

HLz(wl)
+M ||VX2U£HL2(W1) 7 f = fll2 ()

+ Z I (afj - Thafj) Thafj“k”m(m)
i

+ Z ||8iafj8juk — ThaiaijhajukHLz(wl) ,
2%
where M > 0 is independent of h and k. Now, estimating the fifth term of the right
hand side of the above inequality

Z || (afj — Thai-“j) ThafjukHLz(wl) < C’quIrZ;e}x Is;g:)l lai;(z) — Thaqj(x)] x
i.j ’

2 2 || o2 2

(||Vquk||L2(w1+h) + €k ||VX1“kHL2(w1+h) +€x Hlequka(lerh)) ’

where Cj; ;v > 0 is only depends in ¢ and V.
Let § > 0 small enough such that for every |h| < 6 we have wy +h CC Q. Then

it follows by Corollary 1, applied on w; + h, that the quantity

2 2 |2 2

HvxzukuLz(m+h) + € HvxlukHLz(wl+h) +€x HVX1X2ukHL2(w1+h)

is uniformly bounded in k and h (for || < §). Since the a;; are uniformly continuous

on every w CC €) open then

lim max sup \aij(fl?) — Thaij(x)‘ =0,
h—0 4.J zecw,

and hence

’yﬂ% ksel1§ ZXZ | (afj a Thafj) Thaizju’fHLz(m) =0. (19)

Now, estimating the last term of (18). By the triangular inequality we obtain
Z ||8iafj8juk — ThaiaijhajukHLQ(wl) S Z H(’?laf](?juk — Thaiafjajuknm(wl)
i,j ,J

+ D lndia;dyun — dirnalyTndjue] 1o, -
)
and thus, by using the boundedness of the first derivatives of the a;; on w; we get

S 0y — Omualoy a1
4,

< Cg,ymaxsup |0;a;;(z) — diTpai;(z)| (6k IVx,ull 2, + HVqukHLQ(wl))

L) xEw,
M (6 V5,0 |y + 195208 200n))
where M’ > 0 and C;N > 0 are independent of h and k. Now, since the J;a;; are
uniformly continuous (recall that A € C*(£)) on every w CC € then

lim max sup |8ia,-j($) — Thaiaij(l“)\ =0,
h—0 4.j zcw,
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and therefore, from the above inequality we get

i Ak 0:un — 01 a0, =
;lzli% kseu&]é])isz&am@juk aZThazgajTh“ka(wl) 0, (20)

where we have used (4) and Lemma 2.
Passing to the limit in (18) by using (19), (20) and (4) with Lemma 2 we deduce

A% 2 Ny =0

and the proposition follows. O

Corollary 2. For every w CC € open we have

. 2 2 _
A S

. 2 2

}IL% kseul\%) Hei(Tthluk - vXluk)HLP(W) =0,
by s e~ Tl =0

Proof. Similar to proof of Corollary 1,where we use the compacity of @ and
Proposition 5. ([l

Now, we are able to give the proof of the main theorem. Indeed it is similar to
proof of Theorem 2, where we will use Corollary 1 and Corollary 2. Let us
prove the convergence

62V§(1U€ — 0in L} .(Q).

loc

Fix w CC Q open, and let uy € Wg*(Q) N leof(Q) be a sequence of solutions

of (1), then it follows from Corollary 1 and 2 that the subset {eiVﬁluk}keN is

relatively compact in L?(w) then there exists v € L?(w) and a subsequence still
labeled (€iV§<1uk) such that

eivgﬁuk — v* in L*(w),

and since e2uy, — 0 in L?(w) then v* = 0 (we used the continuity of V?Xlon D' (w)).
Hence by the diagonal process one can construct a sequence still labeled (eiV§( LUk)
such that

Vi, ur — 0in L7 ().

To prove the convergence for the whole sequence (62V§<1u€)0<6§1, we can rea-
son by contradiction (recall that L? () equipped with the family of semi norms

(Il L2 (w))wcca is a Fréchet space), and the proof of the main theorem is finished.

4.2. A convergence result for some class of semilinear problem. In this
section we deal with the following semilinear elliptic problem

—div(AVue) = a(ue) + f
{ Ue € W01’2(Q) ’

where a : R — R a continuous nonincreasing real valued function which satisfies
the growth condition

Ve € R: Ja(@)] < o1+ Jz]), (22)

(21)



W22 INTERIOR CONVERGENCE FOR SOME CLASS OF ELLIPTIC ANISOTRPIC.... 13

for some ¢ > 0. This problem has been treated in [6] for f € LP(Q2), 1 < p <2, and
the author have proved the convergences

eleue - 07 Ue — UO, VXgue - nguo in LP(Q)7 (23)
where ug is the solution of the limit problem.
Let f € L?() and assume A as in Theorem 1 then the unique W, () weak
solution u, to (21) belongs to Wlif(Q) Following the same arguments exposed in
the above subsection one can prove the theorem

. 12,2
Theorem 3. Under the above assumptions we have u. — ug in V)~ ezvﬁ(l u. — 0

and eV?XlXQuE — 0 strongly in L2, ().

Proof. The arguments are similar, we only give the proof for the Laplacian case, so
assume that A = Id.

Let w CC € open, then one can choose w’ open such that w CC W’ CC Q, let
p € D(RY) with p=1o0n w, 0 < p <1 and Supp(p) C w'. Let 0 < h < dist(d,
), we use the same notations of the above subsection, we set U,? = TRUL — Uk,
then U € W12(w') and we have

—e2Ax, Ul (z) — Ax, Ul (x) = F"(z) + mha(u)(z) — a(u)(z), aex €W,
with F'* = 7, f — f. We set W,’g = pU,? then we get as in Proposition 2

||’7'th2)(2114]€ — V?X S ||Fh||L2(w/) + M ||6kleU£HL2(w’)

guka(w)
+ ||Tha’(uk) - a(uk)”LQ(w/)
+ M|V, Ul oy + M |[UR

HL2(UJ ||L2(w’)'

We can prove easily, by using the continuity of the function a and (22), that the Ne-
mytskii operator a maps continuously L?(Q2) to L?(Q2). Therefore, the convergence
u — ug in L2(Q) gives a(ux) — a(ug) in L*(2), and hence Lemma 2 gives

lim sup |[Tha(ur) — a(uk)ll 2, =0,
h—0keN

and finally the convergences (23) give

o 75— Wy =0

Similarly, using boundedness of the sequences (ug), (exVx, uk), (Vx,ug)and a(uy)
in L2(Q2), and boundedness of p and its derivatives we get

2 !
||VX2“1€HL2(W) <M,
and we conclude as in proof of Theorem 2. |
We complete this paper by giving an open question

Problem 1. Let f € LP(Q) with 1 < p < 2, and consider problem (1). In [6] the
author have proved the convergence u. — ug in the Banach space VP defined by

vip = {u € LP(Q) | Vx,u € LP(Q) and u(X1,-) € WiP(Qx,) a.e X, € Q! } :

equipped with the norm

=

el = (el 0 + 195002 0 )
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Similarly we introduce the Fréchet space

VZP ={ue Vi | ViueLP(Q)},

loc

equipped with family of norms

I}
Can one prove that ue — ug in V),

1
P

w p
HUHQ,p = (Hu||1£p(g) + Hv—xzu”][)m(ﬂ) + HV-2)(2UHLP(LU)) , w CC 2 open.

P9
o
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