Review of ammonia and greenhouse gases emission factors from poultry housings: Influence of practices and rearing conditions

Bertrand Méda, Mélynda Hassouna, Claude Aubert, Paul Robin, Jean-Yves Dourmad

To cite this version:

HAL Id: hal-01461071
https://hal.science/hal-01461071
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Review of NH₃ and greenhouse gas emission factors from poultry housing: Influence of practices and rearing conditions

Bertrand Meda¹,², Mélynda Hassouna¹,², Claude Aubert³, Paul Robin,¹,², Jean-Yves Dourmad⁴,⁵

¹ INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France
² Agrocampus Ouest, UMR1069, Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France
³ ITAVI, Institut Technique de l’Aviculture, F-22440 Ploufragan, France
⁴ INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
⁵ Agrocampus Ouest, UMR1079, Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France

Introduction

Poultry production ⇒ NH₃ and greenhouse gases (GHGs):
• diversity of systems ⇒ variability of emissions ?
• mitigation of gas emissions ⇒ best practices ?

Database description

124 EFs converted into the same unit: g gas bird⁻¹ day⁻¹

91% of EFs concern Europe or the USA
USA 37% Europe 54%
not specified 9%

87% of EFs concern layer or broiler housings

layers 48% broilers 39% ducks 7% turkeys 6%

NH₃ is the most studied gas

77% 12% 11%
NH₃ CH₄ N₂O of selected EFs

A high variability of emissions due to the diversity of production systems

Flock management

- lower animal density
- lower slaughtering age
- dietary manipulations:
 ⇒ reduction of N content in diets
 ⇒ use of acidifiers in diets

Manure management

- lower manure moisture:
 ⇒ nipples waterers and/or collecting bowls
 ⇒ manure drying systems (e.g. drying belts)
 ⇒ add of new litter during rearing
- manure removal ⇒ higher removal frequency
- lower manure pH ⇒ litter acidifiers

Indoor conditions

- temperature ⇒ limited air temperature
- relative humidity ⇒ limited air moisture to increase evaporation from litter
- control of ventilation:
 ⇒ increase ventilation to dry the litter during brooding
 ⇒ limit air flow speed above manure surface during finishing

Conclusions

- diversity of production systems ⇒ high variability of EFs
- manure management ⇒ most efficient practices for NH₃ mitigation
- research needs:
 ⇒ greenhouse gases (CH₄, N₂O) EFs
 ⇒ systems with access to an outdoor-run
- system approach ⇒ manure storage and spreading EFs ?
- pollution swapping prevention ⇒ simultaneous study of NH₃ and GHGs emissions

This work was carried out with the financial support of the Bretagne Region and the French National Institute for Agricultural Research (INRA)

XIII° European Poultry Conference – 23-27 August 2010 – Tours, France