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Abstract: Turbulent flows are known to enhance turbulent transport. It has then even been1

suggested that turbulence is a state of maximum energy dissipation. In this paper, we re-examine2

critically this suggestion at the light of several recent works around the Maximum Entropy3

Production principle (MEP) that has been used in several out-of-equilibrium systems. We provide4

a set of 4 different optimization principles, based on maximization of energy dissipation, entropy5

production, Kolmogorov-Sinai entropy and minimization of mixing time, and study the connection6

between these principles using simple out-of-equilibrium models describing mixing of a scalar7

quantity. We find that there is a chained-relationship between most probable stationary states of8

the system, and their ability to obey one of the 4 principle. This provides an empirical justification9

of the Maximum Entropy Production principle in this class of systems, including some turbulent10

flows, for special boundary conditions. Otherwise, we claim that the minimization of the mixing11

time would be a more appropriate principle. We stress that this principle might actually be limited12

to flows where symmetry or dynamics impose pure mixing of a quantity (like angular momentum,13

momentum or temperature). The claim that turbulence is a state of maximum energy dissipation,14

a quantity intimately related to entropy production, is therefore limited to special situations that15

nevertheless include classical systems such as Shear flows, Rayleigh Benard convection and von16

Karman flows, forced with constant velocity or temperature conditions.17

Keywords: Maximum Entropy Production; Turbulence; Kolmogorov-Sinai entropy18

1. Introduction: Turbulence as a maximum Energy Dissipation State?19

A well-known feature of any turbulent flow is the Kolmogorov-Richardson cascade by which energy20

is transferred from scale to scale until scales at which it can be dissipated. This cascade is a non-linear,21

non-equilibrium process. It is believed to be the origin of the significant enhancement of dissipation22

observed in turbulent flow, often characterized via the introduction of a turbulent viscosity.23

It has then sometimes been suggested that turbulence is a state of maximum energy dissipation. This24

principle inspired early works by Malkus [1,2] or Spiegel [3] to compute analytically the heat or25

momentum profiles in thermal boundary layers or linear shear flows. While there were many26
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criticisms about this principle, there are a few experimental situation where this principle seems to27

work. A good example is provided by the von Karman flow. This flow is generated by two-counter28

rotating impellers inside a cylindrical vessel filled e.g. with water (see Figure 1). The impellers29

produce a source of angular momentum at the top and bottom of the vessel, angular momentum30

that is then transferred and mixed within the flow throughout the turbulent motions [4], in analogy31

with heat transferred through a Rayleigh-Benard cell. For most impellers, the resulting mean large32

scale stationary motion is the superposition of a two-cell azimuthal motion, and a two cell poloidal33

motion bringing the flow from the top and bottom end of the experiment towards its center plane34

z = 0 (see Figure 1). This mean flow is thus symmetrical with respect to the plane z = 0. For some35

types of impellers, however, this symmetrical state is unstable, and bifurcates after a certain time36

towards another state that breaks the system symmetry [5,6]-see Figure 2. This state corresponds to37

a global rotation in the direction of either the top or the bottom impeller. The energy dissipation38

corresponding to either one of these 3 states can be measured through monitoring of the torque39

applied to the impellers by the flow. When monitored during a bifurcation (see Figure3), this energy40

dissipation displays a jump (by a factor 4) at the moment of the bifurcation from the symmetrical state41

towards either one of the non-symmetrical states. Once the system is in the bifurcated state, it never42

bifurcates back towards the symmetrical state, indicating that the most stable state is the state with43

larger dissipation.44

This observation is in agreement with a general principle inspired from Malkus principle, that could45

be formulated as follow:46

Principle A: In certain non-equilibrium systems with coexistence of several stationary state, the most47

stable one is that of Maximum Energy Dissipation.48

49

This principle is of course very appealing. There are however no derivation of it from any first50

principles, and we are not aware of any theories that could lead to its proof (while there are probably51

many immediate counter-example that can be provided). If it is true or approximately true for52

some types of flows (like the von Karman flow, or the Rayleigh-Benard flow or the plane Couette53

flow), it may then lead to interesting applications allowing the computation of mean velocity or54

temperature profile without the need to integrate the whole Navier-Stokes equations. A way to55

proceed with its justification is to transform it into an equivalent principle, that uses notions more56

rooted in non-equilibrium physics. Indeed, energy dissipation is not a handful quantity to work with57

in general, because of its dependence on the small scale processes that produce it. In general, energy58

dissipation is a signature of entropy production. The connection between energy dissipation and59

entropy production was heuristically made by Lorenz [7] and theoretically discussed in nonlinear60

chemical thermodynamics by Dewar [8] and Moroz [9,10]. This last notion seems more appealing to61

work with and a first natural step is to modify slightly the principle A into a more appealing version62

as:63

Principle B: In certain non-equilibrium systems with coexistence of several stationary state, the most64

stable one is that of Maximum Entropy Production (MEP).65

66

From the point of view of non-equilibrium physics, this principle appears as a counterpart of the well67

known principle of Maximum Entropy that governs stability of equilibria in statistical physics, the68

analog of equilibria here being the stationary states. This principle was discovered by Ziegler [11,12]69

and it is sometimes referred to as the Ziegler’s principle. It has found several applications in climate70

dynamics: first it was used by Paltridge [13] to derive a good approximation of the mean temperature71

distribution in the mean atmosphere of the Earth. This approach has been extend to more exhaustive72

climate models by Herbert [14]. Kleidon et al. [15] used an atmospheric general circulation model to73

show that MEP states can be used as a criterion to determine the boundary layer friction coefficients.74
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Figure 1. Von Karman experiment. The flow is generated inside a cylindrical vessel through
counter-rotation of two impellers. The impellers inject angular-momentum at the top and the bottom,
inducing a large scale circulation inside the flow. At low Reynolds numbers, the circulation is
symmetrical with respect to a π-rotation around a horizontal axis through the origin (blue arrow).
One can impose the torque Ci or the rotation frequency fi to the flow, generating different turbulent
regimes. The right picture shows a representation of the mean velocity fields in a plane passing for the
axis of the cylinder (arrows) and orthogonal to this plane (colorscale in m/s), obtained by averaging
several thousands instantaneous fields. (Pictures courtesy Brice Saint-Michel).
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Figure 2. The 3 stationary states of the von Karman flow: left: The symmetric state. Middle and right:
the two bifurcated states, that are symmetric to each other with respect to a π-rotation along an axis
going through the rotation axis [5,6]. Color coding as in Figure 1.
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Figure 3. Spontaneous bifurcation in the von Karman flow: the flow, initially started in a symmetrical
state, bifurcates after a certain time toward a bifurcated state, that produces a 4 times larger dissipation
[5]. The dissipation is measured through monitoring of the torque, applied on each propeller, by the
turbulent flow. This flow being turbulent, the resulting torque is widely fluctuating around a mean
value, characterizing the dissipation. Color coding of the flow as in Figure 1. Colour coding of the
dissipation is blue for the dissipation measured on the lower propeller, and red for the dissipation
measured on the upper-propeller. The total dissipation is the some of the two contributions.
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MEP seems also a valuable principle to describe planetary atmospheres, as those of Mars and Titan75

where it has been used to determine latitudinal temperature gradients [16]. MEP have been also76

applied to several geophysical problems: to describe thermally driven winds [17] and convection[18],77

and to oceanic circulation [19]. A detailed overview on the usefulness of MEP in climate science can78

be found in [20,21] and references therein. It is therefore interesting to evaluate the soundness of this79

principle and understand its limitation and its possible improvements, to extend as possible the scope80

of its applications. The usual path to prove the validity of a principle is to provide some rigorous81

demonstration of the principle itself. This task has been attempted without convincing results in82

the past years [8,22,23]. In the absence of any theory of out-of-equilibrium systems, we may turn to83

equilibrium theory as a guide to find a path for justification of the selection of stationary states. In84

equilibrium systems or conceptual models, this selection can be studied using the dynamical systems85

theory, where other quantities than thermodynamics entropy are relevant. One of this quantity is the86

Kolmogorov Sinai Entropy (KSE) [24], which is indeed different from the thermodynamic one. The87

KSE appears a good candidate for the selection of preferred metastable states because it is related to88

the concept of mixing time [25]. The goal of this paper is therefore to show that MEP principle could89

find a justification in a linked relationship which involves studying the connections among MEP, KSE90

and mixing times. The paper follow this structure: after discussing the relation between MEP and91

the Prigogine minimization principle (section II), we connect MEP and maximum KSE in conceptual92

models of turbulence (section III). In section IV we establish the link between maximum KSE and93

mixing times for Markov chains. Then, we summarize the results and discuss the implications of our94

findings.95

2. Maximization or Minimization of Entropy production?96

At first sight, Principle B appears in conflict with an established result of Prigogine, according to97

which the stationary states of a system close to equilibrium are states with minimum entropy98

production. In fact, both principles can be reconciled if Principle B is viewed as a MaxMin, principle:99

Martyushev et al. [26] and Kleidon [21] suggest that Prigogine’s principle select the steady state100

of minimum entropy production compared to transient states. For a steady-state condition, the101

minimum entropy production principle does not give any further information if many steady state102

conditions are possible given the imposed boundary conditions. To provide a simple example, let us103

consider a system characterized by two parameters, T and U, where T controls the departure from104

equilibrium and U labels an additional constraint of the system, allowing the existence of several105

stationary states at a given T (see Figure 4). In our von Karman system, T could for example label106

the velocity fluctuations, and U the angular momentum transport. In the T direction, application107

of the Prigogine principle selects the value of T corresponding to the stationary state. When there108

are several possible stationary state, the Principle B then selects the most stable state as the one with109

the largest entropy production, thereby fixing the corresponding value of U. This was precisely the110

procedure followed by Paltridge.111

On the other hand, it appears that the stability of the stationary state may depend on boundary112

conditions. For example, Niven [27] or Kawazura and Yoshida [28] provide explicit examples of113

out-of-equilibrium systems, in which the entropy production is sl maximized for fixed temperature114

boundary conditions, while it is minimized for fixed heat flux boundary conditions. In the115

experimental von Karman system discussed in Section 1, we observe a similar phenomenon: for fixed116

propeller velocities, the selected stationary state is the one of maximum dissipation. However, when117

one changes the boundary conditions into fixed applied torque at each propeller, the stationary state118

regime disappears and is replaced by a dynamical regime, in which the system switches between119

different meta-stable states of low and high energy dissipation [6]. This case is discussed in more120

detail in Section 6. It shows however that we cannot trust the Maximum Entropy Production principle121

blindly, and must find ways to understand why and when it works, using tools borrowed from122
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Figure 4. Illustration of the relation between maximization of entropy production EP and Prigogine
principle: the system is set out of equilibrium by the parameters T and U. T controls the departure
from equilibrium and U labels an additional constraint of the system. In the T direction, application of
the Prigogine principle selects the value of T corresponding to the stationary state, where MEP selects
the one with largest EP in the U direction.
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Figure 5. The dynamical rules of the toy model of scalar transport: the particle can jump to the left
or to the right with probabilities denied by p. At both end, two reservoirs sets the flux of incoming
or outgoing particles. The particle can be a boson (several particles per box are allowed), in which
case the process is called zero-range process (ZRP). When the particle is a fermion, jump towards a
box that is already occupied are forbidden. The corresponding process is called asymmetric exclusion
process (ASEP).

non-equilibrium theories. A justification has been attempted [8], and dismissed [22,23], following the123

ideas of Jaynes that non-equilibrium systems should be characterized by a probability distribution124

on the trajectories in phase space, instead of just the points in phase space at equilibrium. A more125

pragmatic way to evaluate the validity of Principle B is to consider its application to toy models of126

non-equilibrium statistics, that mimics the main processes at work in the von Karman flow, and that127

can guide us on a way to a justification (or dismissal). This is the topic of the next section.128

3. From Maximum entropy production to Maximum Kolmogorov-Sinai entropy in toy models of129

turbulence130

3.1. From passive scalar equation to Markovian box models131

In the von Karman flow, angular momentum is transported from the vessel ends towards the center.
In Rayleigh-Benard, the temperature is transported from the bottom to the top plates. In shear flows,
the linear momentum is transported from one side to the other. On Earth, the heat is transported from
the equator towards the pole. All this system in which Principle B seems to provide a non-trivial
answer have then in common that they deal with the transport of a scalar quantity T by a given
velocity field u(x, t), and that may be sketched as:

∂tT + u∇T = κ(∇)2T, (1)
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with appropriate boundary conditions. Here κ is the diffusivity. To transform this process into a132

tractable toy model, we stick to a one dimensional case and divide the accessible space ` into L133

boxes. We impose the boundary conditions through two reservoirs located at each end of the chain134

(mimicking e.g. the top and bottom propeller or solar heat flux at pole and equator). The boxes135

contains bosonic or fermionic particles that can jump in between two adjacent boxes via decorrelated136

jumps (to the right or to the left) following a 1D Markov dynamics governed by a coupling with137

the two reservoirs imposing a difference of chemical potential at the ends. The different jumps are138

described as follow. At each time step a particle can jump right with probability pwn or jump left with139

probability (1− p)wn. wn is a parameter depending on the number of particles inside the box and140

on the nature of particles. Choices of different wn give radically different behaviors. For fermionic141

particles, it prevents a jump on to a site, if this site is already occupied by a particle. The corresponding142

process is called Asymmetric Exclusion Process (ASEP). For boson, wn = 1 and the process is called143

Zero Range Process (ZRP). At the edges of the lattice the probability rules are different: at the left144

edge a particle can enter with probability α and exit with probability γwn whereas at the right edge a145

particle can exit with probability βwn and enter with probability δ.146

Without loss of generality, we may consider only p ≥ 1/2 which corresponds to a particle flow147

from the left to the right and note U = 2p − 1. After a sufficiently long time the system reaches a148

non-equilibrium steady state, with a well defined density profile (or fugacity profile) across the boxes149

ranging between ρa, the density of the left reservoir and ρb, the density of the right reservoir, given by150

ρa = α(γ + εα) and ρb = δ(β + εδ), where ε = 1 for ASEP (fermion) and ε = −1 for ZRP (boson). In151

the sequel, we fix γ + α = 1 and β + δ = 1, and denote ∆T = ρa − ρb the parameter that measures the152

balance between the input rate of the left reservoir (the equivalent of the heat or momentum injection),153

and the removal rate of the right reservoir (the equivalent of the heat or momentum dissipation). Once154

β (say), ∆T are fixed, we can compute all the other parameter α, γ and δ of the model. In the sequel,155

we fix β = 0.75, and vary ∆T and/or U.156

Taking the continuous limit of this process, it may be checked that the fugacity Z = ρ/(1 + ρ)

of stationary solutions of a system consisting of boxes of size 1
L follow the continuous equation

[29]:

U
∂Z
∂x
− 1

2L
∂2Z
∂x2 = 0, (2)

corresponding to stationary solution of a passive scalar equation with velocity U and diffusivity 1
2L .

Therefore, the fugacity Z is a passive scalar obeying a convective-diffusion equation. We thus see
that U = 0 corresponds to a purely conductive regime whereas the larger U the more convective the
regime. This toy model therefore mimics in the continuous limit the behavior of scalar transport in the
von Karman, Rayleigh-Bénard, Couette or Earth system we are trying to understand. The toy model
is a discrete Markov process with 2L states. It is characterized by its transition matrix P = (pij) which
is irreducible. Thus, the probability measure on the states converges to the stationary probability
measure µ = (µ1stat , ..., µ2L

stat
) which satisfies:

µistat =
2L

∑
j=1

µjstat .pji ∀i ∈ [[1, 2L]]. (3)

This Markov property makes our model simple enough so that exact computations are analytically157

tractable and numerical simulations are possible up to L = 10 (ASEP model) to L = 1000 (ZRP158

model) on a laptop computer. The idea now is to apply the Principle B in these toy models, and see159

what useful information we can derive from it.160

161
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3.2. Maximum Entropy production in Zero Range and ASymmetric Exclusion Process162

We turn to the definition of entropy production in our toy model system. For a macroscopic system163

subject to thermodynamic forces Xi and fluxes Ji, the thermodynamic entropy production is given by:164

[30,31]:165

σthermo = ∑
i

JiXi (4)

The fluxes to consider for a diffusive particles model are fluxes of particles and the thermodynamic166

forces can be written X = ∆(− ν
T ) where T is the temperature and ν the chemical potential167

proportional to log(ρ) for an ideal gas [30]. So, as the temperature is here fixed, the thermodynamic168

Entropy production of a given stationary state takes the form:169

σthermo ∝
L

∑
i=1

Ji.(log(ρi)− log(ρi+1)) = J.(log(ρ1)− log(ρL)) (5)

where ρ is the stationary density distribution and J = Ji the particle fluxes in the stationary state,
where all fluxes become equal and independent on the site. ρ and J are both (nonlinear) function of
U. It is easy to show [32] that this definition is just the continuous limit of the classical thermodynamic
entropy production in an ideal gas, that reads:

σthermo = −
∫ B−

A+

J(x, t)
∂ log(ρ(x, t))

∂x
dx (6)

In the case of bosonic particles (ZRP model), this entropy production takes an compact analytical
shape in the (thermodynamic) limit L→ 0 [33]:

σ(U) =
αU

U + γ
(log(

α

U + γ− α
)− log(

(α + δ)U + γδ

U(β− α− δ) + βγ− γδ
)) (7)

Because U = 2p− 1 ≥ 0 the entropy production is positive if and only if ρa ≤ ρb. This means that170

fluxes are in the opposite direction of the gradient. We remark than if U = 0 then σ(U) = 0. Indeed171

J is proportional to U in this model. Moreover, σ(U) is zero also when ρ1 = ρL. This happens when172

U increases, ρa(U) decreases and ρb(U) increases till they take the same value. Thus it exists U, large173

enough, for which σ(U) = 0. Between these two values of U the entropy production has at least one174

maximum. By computing numerically the entropy production, we observe in fact that it is also true175

for the fermionic particles, even though we cannot prove it analytically. This is illustrated in Figure 6176

for L = 100 (ZRP) and L = 10 (ASEP).177

The value of UmaxEP(T) at which this maximum occurs depends on the distance to equilibrium of the
system, characterized by the parameter ∆T = α− δ. In the case of the ZRP model, it can be computed
as [33]:

UmaxEP,ZRP =
∆T

4Mα
+ 3

∆T2(α + 1)
8M2α2(α− 1)

+ o((∆T)2), (8)

where M = (1 + 2ρa)(1 + 2ρb). This means that at equilibrium (∆T = 0, ρa = ρb), the maximum178

is attained for U = 0, i.e. the symmetric case. Numerical simulations of the ASEP system suggest179

that this behavior is qualitatively valid also for fermionic particles: the entropy production displays180

a maximum, that varies linearly in ∆T . Such behavior therefore appears quite generic of this class of181

toy model. When the system is close to equilibrium (∆T � 1), the maximum is very near zero, and,182

the density profile is linear, corresponding to a conductive case. When the system is out-of-equilibrium183

(∆T ≥ 0) the maximum is shifted towards larger values of U > 0, corresponding to a convective state,184

with flattened profile. An example is provided in Figure 7 for the ZRP and ASEP model.185
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Figure 6. Entropy productions as a function of U for β = 0.75 and ∆T = 0.25 for two toys models. Red
stars: Thermodynamic entropy production σ(U); blue squares: Kolmogorov-Sinai entropy hKS(U).
The location of the maxima are denoted by vertical dashed line (red for σ(U); and blue for hKS(U)).
a) Case L=10 ASEP (fermion) ; b) Case L=100 ZRP (boson) . The dot-dashed line is the asymptotic law
for σ(U) given by Eq. (7).
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Figure 7. Profiles of density profiles (blue line) corresponding to models with U = UmaxEP for β = 0.75
and ∆T = 0.25 for two toys models. The red dashed line is the density profile obtained at U = 0, i.e.
in the conductive case. a) Case L=10 ASEP (fermion) ; b) Case L=100 ZRP (boson)
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Figure 8. Profiles of angular momentum RVφ as a function of the height from the central plane η in the
von Karman laboratory experiment. Blue symbols with line: in the bifurcated state with higher energy
dissipation. Red line with symbols: in the symmetric state.

Our toy models are examples of systems with deviation from equilibrium (labelled by ∆T), admitting186

several stationary states (labelled by U). So if we were to apply our MinMax/Principle B to these187

toy models, we would select the model corresponding to UmaxEP as the most stable one, i.e. the188

conductive state with linear profile at equilibrium, and the convective state with flattened profile at189

non-equilibrium. Interestingly enough, this selection corresponds qualitatively to the type of profiles190

that are selected by the non-linear dynamics in the von Karman, Rayleigh-Benard or Couette system,191

as illustrated in Figure 8 for the VK flow: for low levels of fluctuations (low Reynolds or impeller192

with moderately bent blades) corresponding to close to equilibrium state, the most stable state is the193

symmetric state, with linear angular momentum profile. At larger fluctuation rates, the most stable194

state is the bifurcated state, with flat angular momentum at the center.195

The ability of Principle B, based only on entropy i.e. equilibrium notions, to predict at least196

qualitatively the correct behavior of scalar transport in several non-equilibrium turbulent system197

is puzzling. It would be more satisfying to connect this Principle to other notions that seem more198

appropriate in the case of non-equilibrium system. This is the topic of the next section.199

3.3. From Maximum Entropy Production to Kolmogorov-Sinai Entropy200

The physical meaning of the thermodynamic entropy production is the measure of irreversibility: the
larger σ the more irreversible the system [34] . It is however only a static quantity, being unconnected
to the behavior of trajectories in the phase space. In that respect, it is not in agreement with the ideas
of Jaynes that non-equilibrium systems should be characterized by a probability distribution on the
trajectories in phase space, instead of just the points in phase space at equilibrium. In the context of
Markov chains, Jaynes’ idea provides a natural generalization of equilibrium statistical mechanics
[35], by considering the Kolmogorov-Sinai entropy (KSE). There are many ways to estimate the
Kolmogorov-Sinai entropy associated with a Markov chain [35,36].The most useful one in our context
is the one defined as the time derivative of the Jaynes entropy. To characterize the dynamics of the
system during the time interval [0, t], one considers the possible dynamical trajectories Γ[0,t] and the
associated probabilities pΓ[0,t]

. The dynamical trajectories entropy- the Jaynes entropy- reads:

SJaynes(t) = − ∑
Γ[0,t]

pΓ[0,t]
. log(pΓ[0,t]

) (9)
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Figure 9. Location of the maximum of thermodynamic entropy production UmaxEP (red stars) and
maxim of Kolmogorov-Sinai entropy (blue stars) as a function of ∆T. a) Case L=10 ASEP (fermion).
b) Case L=100 ZRP (boson). The red dashed line is the second order approximation given by Eq. (8).
The blue-dashed line is the first order approximation to the location of the maxima ( Eq. (12)).

For a Markov chain we find that:

SJaynes(t)− SJaynes(t− 1) = −∑
(i,j)

µistat pij log(pij) (10)

Thus, the Kolmogorov-Sinai Entropy for the Markov chain is:

hKS = −∑
(i,j)

µistat pij log(pij), (11)

where µi is the stationary measure and pij the transition matrix.201

In the case of bosonic particles (ZRP model), the KSE can be computed analytically and it admits
a maximum as a function of U [33]. The value of U corresponding to this maximum can also be
computed analytically, and leads to:

UmaxKS =
∆T

4Mα
+ o(∆T), (12)

Such first order approximation appear to be valid even far from equilibrium (see Figure 9).202

Comparing with the value for the maximum of entropy production, we see that the two maxima203

coincide, to first order in ∆T and 1/L: in the continuous limit, Principle B provides the same kind of204

information than a third principle that we may state as:205

Principle C: In certain non-equilibrium systems with coexistence of several stationary state, the most206

stable one is that of Maximum Kolmogorov-Sinai Entropy.207

Is this third principle any better that the principle B? In our toy models, it seems to give the same208

information than the Principle B: for ZRP, we have shown analytically that the maxima of each209

principle coincide to first order in ∆T and 1/L. Numerical simulation of the ASEP system suggests210

that it is also true for fermionic particles: for a given value of ∆T the difference between the two211

maxima ∆Umax = UmaxEP − UmaxKS decreases with increasing L [32]. For a fixed L, the difference212
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between the two maxima increases with ∆T, but never exceeds a few percent at L = 10 [32], see213

Figure 9).214

In turbulent system, the test of this principle is more elaborate, because the computation of hKS is not215

straightforward. It would however be interesting to test it in numerical simulations.216

4. From Maximum Kolmogorov-Sinai entropy to Minimum Mixing Time in Markov217

Chains218

Principle C is appealing because it involves a quantity clearly connected with dynamics in the phase219

space, but it is still unclear why the maximization of the entropy associated with paths in the phase220

space should select the most stable stationary state, if any. To make such a link, we need to somehow221

connect to the relaxation towards a stationary state, i.e. the time a system takes to reach its stationary222

state. In Markov chains, such a time is well defined, and is called the mixing time. Intuitively, one223

may think that the smaller the mixing time, the most probable it is to observe a given stationary state.224

So there should be a link between the maximum of Kolmogorov-Sinai entropy, and the Minimum225

mixing time. This link has been derived in [25], for general Markov chains defined by their adjacency226

matrix A and transition matrix P, defined as follows: A(i, j) = 1 if and only if there is a link between227

the nodes i and j and 0 otherwise. P = (pij) where pij is the probability for a particle in i to hop on228

the j node. Specifically, it has been shown that Kolmogorov-Sinai entropy increases with decreasing229

mixing time (see Figure 1 in [25]). More generally, for a given degree of sparseness of the matrix230

A (number of 0), the Markov process maximizing the Kolmogorov-Sinai entropy is close (using an231

appropriate distance) to the Markov process minimizing the mixing time. The degree of closeness232

depends on the sparseness, and becomes very large with decreasing sparseness, i.e. for unconstrained233

dynamics (Figure 3 in [25]).234

This result provides us with a fourth principle in Markov chains:235

Principle D: In certain non-equilibrium systems with coexistence of several stationary states, the236

most stable one is that of Minimum Mixing Time.237

238

Given what we have seen before, there are 4 general principle that select the same stationary state,239

in the limit of large size and small deviations from out-of-equilibrium (see Figure 10). Among all 4,240

the Principle that provides the better understanding of its application is the Principle D, because the241

smaller the mixing time, the less time it is required to reach a given state and so the most probable the242

corresponding state. This phenomenological understanding can actually be given a deeper meaning243

when switching from Markov chains to Langevin systems.244

5. From Minimum Mixing Time in Markov Chains to Mean Escape rate in Langevin245

systems246

The notions we have derived in Markov chains have actually a natural counter-part in general
Langevin systems. Consider indeed the general Langevin model:

ẋ = f (x) + ξ, (13)

where f (x) is the force and ξ is a delta-correlated Gaussian noise:

< ξ >= 0, < ξ(t)ξ(t′) >= 2Dδ(t− t′). (14)
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Figure 10. Conceptual path to demonstrate the validity of the Maximum Entropy Principle followed
in this paper.

The probability distribution of x, P(x, t) then obeys a Fokker-Planck equation:247

∂tP(x, t) = −∂x( f (x)P(x, t)) + D∂x∂xP(x, t),

= ∂x(J(x, t)P(x, t)), (15)

where J = f (x)P(x, t)−D∂xP(x, t) is the current. It is well known (see e.g. [37]) that the discretization
of the Langevin model on a lattice of grid spacing a (so that x = na) is a Markov chain, governed by
the master equation:

∂tPn = w+
n−1Pn−1 − w+

n Pn + w−n+1 − w−n Pn, (16)

where Pn is the probability of having the particle at node n and w±n are the probability of forward and248

backward jump at node n, given by:249

w+
n =

D
a2 ,

w−n =
D
a2 −

fn

a
. (17)

From this, we can compute the Kolomogorov-Sinai entropy as [38]

hKSL =< w+
n ln

w+
n

w−n+1
+ w−n ln

w−n
w+

n−1
>, (18)

which in the continuous limit a→ 0 becomes:

hKSLc =<
1
D
| f (x)|2 + f ′(x) >, (19)

which is the well know entropy production.250

On the other hand, the dissipated power in the Langevin process can easily be computed as :

P =< f ẋ >=
∫

J(x, t) f (x, t)dx =< | f |2 + D f ′(x) >= DhKSLc. (20)
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The Kolmogorov-Sinai entropy and the dissipated power are thus proportional to each other. In such251

example, it is thus clear that maxima of hKS and maxima of entropy production coincide.252

On the other hand, when f derives from a potential, f = −∂x(U), there may be several meta-stable253

positions at U local minima. In such a case, it is known from diffusion maps theory and spectral254

clustering [39] that the exit times from the meta-stable states are connected to the smallest eigenvalues255

of the operator H, such that HP = D∆P−∇P∇U, which is the equivalent of the Liouville operator256

in Markov chain. More specifically, if U has N local minima, then the spectra of H has a cluster257

of N eigenvalues µ1 < µ2 < .. < µN located near 0, each of which being associated with the exit258

time it takes to get out from the local minima Si to the state corresponding to the deepest minimum259

(the equilibrium state). For example, µ1 = 1
τ1

, where τ1 is the mean exit time to jump the highest260

barrier of energy onto the deepest well. We see from that that the smaller the eigenvalue (equivalent261

to the mixing time), the longer time it takes to jump from this metastable state, and so the more262

stable is this state. This provides a quantitative justification of the notion that the most stable stationary263

states are the one with the minimum mixing time. It is worth mentioning that Langevin systems264

are now incorporated in numerical weather prediction to provide some flexibility to the sub-grid265

scales parameterizations [40]. Models based on these so-called stochastic parameterizations have266

usually better prediction skills than models based on deterministic parameterizations. Stochastic267

parameterization is therefore increasingly used in different aspects of weather and climate modeling268

[41]. We might speculate that, in these large simulations, the stochasticity helps models to reach more269

realistic results by favoring jumps to more stable states as outlined above. Another way to select these270

more realistic states could possibly be to search for the ones that maximize dissipation or entropy271

production, as was done empirically in a simple way in Paltridge’s model [13,14].272

6. Summary: Turbulence as a minimum Mixing Time State?273

Considering a mixing time to characterize turbulence is natural, given the well known enhancement274

of mixing properties observed in turbulent flows. The mixing time defined for Markov chains is275

also comparable to the mixing time one would naturally define for turbulence, namely the smallest276

time after which a given partition of a scale quantity is uniformly spread over the volume. This time277

corresponds to the one defined by Arnold for dynamical systems [42] when introducing the concept278

of strong mixing. Here, it is the time associated with eigenvalues of the Liouville operator of the279

processes describing the turbulence action. In the specific example we consider here, namely von280

Karman flow, the turbulence is characterized by a symmetry along the rotation axis, which favors281

stationary states in which angular momentum is mixed along meridional planes [43,44].In this case,282

there is a clear connection between the equation obeying the angular momentum and the classical283

Fokker-Planck equation Eq. (15). One can thus hope in such a case to find a Langevin process284

describing the angular momentum mixing. This was actually done in [43] and shown to reproduce285

very well the power statistics in both regimes of constant torque and constant speed forcing, in case286

where there is only one stationary state. For multiple stationary states, obtained in the regime with287

fixed applied torque, the corresponding Langevin process has been derived in [45] and it turns out288

to be a non-linear stochastic oscillator, featuring multiple metastable states and limit cycles. Such289

oscillator is found to describe the dynamics of the reduced frequency θ = ( f1 − f2)/( f1 + f2) which290

is a global observable respecting the symmetries of the flow. The challenge is then to compute the291

mixing times of the different metastable states arising in the non-linear stochastic oscillator.292

In [46–48] we have shown that the mixing time τ of turbulent flows can be easily obtained by fitting293

the Langevin process (or aut-regressive process) xt = φxt−1 + ξ(t) to data. Here x(t) is a global294

quantity tracing the symmetry of the flows, ξ(t) is a random variable normally distributed and −1 <295

φ < 1 is the so called auto-regressive coefficient. The link with the mixing time is made through296

the parameter |φ| which is indeed proportional to τ: the larger this quantity, the slower the mixing297
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in the system, because the dynamics weight more the present observation xt when updating xt+1.298

In [46], only flow configurations with a single stationary state have been analysed and φ computed299

using the complete time series. To extend the results to the flow regimes featuring multistability, we300

use the strategy outlined in [49]. First of all, we reconstruct the dynamics by using the embedding301

methodology on the series of partial maxima of θ, denoted as θi. A 2D section of the attractor is302

shown in the upper panel of Figure 11 and it is obtained by plotting θi as a function of the subsequent303

maxima θi+1. The histogram of θi is reported in the lower panel and show the correspondence to three304

metastable states s1, s2, s3. Since we are not dealing with a stationary process, we cannot compute a305

single φ for the full time series of θ. The method introduced in [49] consists in computing a value of306

φi for each θi, taking the 50 previous observations of the complete time series. The distribution of |φ|307

is shown in colorscale in Figure 11. It is evident that the most represented states (s1 and s2) are those308

with the minimum mixing time whereas the most unstable one (s3) is the one with the largest mixing309

time. This example shows that the results outlined in Section 5 can be extended to higher dimensions310

and that there is a simple strategy to compute the mixing times in complex systems.311

It is quite plausible that such study can be generalized to turbulent systems with other symmetry,312

such as symmetry by translation along an axis. The turbulent shear flow enter in that category.313

Finally, we note that in Rayleigh-Bénard systems or in stratified turbulence, the temperature is also a314

quantity that is mixed within the flow, and that should also be liable to a Langevin description. It is315

therefore not a coincidence that shear flow, Rayleigh-Bénard convection and von Karman flows are316

so far the only systems in which the principle of Maximum Energy dissipation has been applied with317

some success. They are systems where a Langevin description is possible, and where the Maximum318

Energy dissipation principle in fact coincides with the Minimum Mixing time principle, connected319

to the longest exit time from meta-stable states. As observed by [50], these flows tends to be in320

a steady state with a distribution of eddies that produce the maximum rate of entropy increase in321

the nonequilibrium surroundings. In more general turbulence, it is not clear that such a Langevin322

description is possible, so that the statement of Turbulence as a minimum Mixing Time State might323

actually be limited to quite special situations, where symmetry or dynamics impose pure mixing324

of a quantity (like angular momentum, momentum or temperature). Shear flow, Rayleigh Benard325

convection and von Karman flows belong to this category.326

Other conceptual pathways allow to link MEP to the underlying dynamics of the system: Moroz327

[51] suggests that the dissipation time minimization is linked to the least action principle, used328

in chemistry, biology and physics to derive the equations of motion. Although this theoretical329

formulation goes in the same direction of the results provided in this paper, our approach provides a330

rather practical way to connect dynamics and thermodynamics through statistical quantities directly331

computable from experimental time series.332
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