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Abstract: It has sometimes been suggested that turbulence is a state of "maximal dissipation"
or "maximal transport". In this paper, we connect this principle to the Maximum Entropy
Production principle (MEP) and observe that it seems to be valid in a turbulent bifurcation in a
von Karman flow. The goal of this paper is to show that MEP principle could find a justification
in a chained-relationship which involves studying the connections among MEP, Kolmogorov Sinai
Entropy and mixing times. We stress that this principle might actually be limited to quite
special situations, where symmetry or dynamics impose pure mixing of a quantity (like angular
momentum, momentum or temperature). Shear flow, Rayleigh Benard convection and von Karman
flows belong to this category.

Keywords: Maximum Entropy Production; Turbulence; Kolmogorov-Sinai entropy

1. Introduction: Turbulence as a maximum Dissipation State?

A well-known feature of any turbulent flow is the Kolmogorov-Richardson cascade by which energy
is transferred from scale to scale until scales at which it can be dissipated. This cascade is a non-linear,
non-equilibrium process. It is believed to be the origin of the significant enhancement of dissipation
observed in turbulent flow, often characterized via the introduction of a turbulent viscosity. It has
then sometimes been suggested that turbulence is a state of maximal dissipation or maximal transport.
This principle inspired early works by Malkus [1,2] or Spiegel [3] to compute analytically the heat
or momentum profiles in thermal boundary layers or linear shear flows. While there were many
criticisms about this principle, there are a few experimental situation where this principle seems to
work. A good example is provided by the von Karman flow. This flow is generated by two-counter
rotating impellers inside a cylindrical vessel filled e.g. with water (see Fig. 1). The impellers
produce a source of angular momentum at the top and bottom of the vessel, angular momentum
that is then transferred and mixed within the flow throughout the turbulent motions [4], in analogy
with heat transferred through a Rayleigh-Benard cell. For most impellers, the resulting mean large
scale stationary motion is the superposition of a two-cell azimuthal motion, and a two cell poloidal
motion bringing the flow from the top and bottom end of the experiment towards its center plane
z = 0 (see Fig. 1). This mean flow is thus symmetrical with respect to the plane z = 0. For some
types of impellers, however, this symmetrical state is unstable, and bifurcates after a certain time
towards another state that breaks the system symmetry [5,6]-see Fig. 2. This state corresponds to
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Figure 1. Von Karman experiment. The flow is generated inside a cylindrical vessel through
counter-rotation of two impellers. The impellers inject angular-momentum at the top and the bottom,
inducing a large scale circulation inside the flow. At low Reynolds numbers, the circulation is
symmetrical with respect to a π-rotation along an axis of symmetry going through the axes (blue
arrow). One can impose the torque Ci or the rotation frequency fi to the flow, generating different
turbulent regimes (Pictures courtesy Brice Saint-Michel).

a global rotation in the direction of either the top or the bottom impeller. The energy dissipation
corresponding to either one of these 3 states can be measured through monitoring of the torque
applied to the impellers by the flow. When monitored during a bifurcation (see Fig.3), this energy
dissipation displays a jump (by a factor 4) at the moment of the bifurcation from the symmetrical
state towards either one of the non-symmetrical states. Once the system is in the bifurcated state, it
never bifurcates back towards the symmetrical state, indicating that the most stable state is the state
with larger dissipation.

This observation is in agreement with a general principle inspired from Malkus principle, that could
be formulated as follow:

Principle A: In certain non-equilibrium systems with coexistence of several stationary state, the most
stable one is that of Maximum Dissipation.

This principle is of course very appealing. There are however no derivation of it from any first
principles, and we are not aware of any theories that could lead to its proof (while there are probably
many immediate counter-example that can be provided). If it is true or approximately true for
some types of flows (like the von Karman flow, or the Rayleigh-Benard flow or the plane Couette
flow), it may then lead to interesting applications allowing the computation of mean velocity or
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Figure 2. The 3 stationary states of the von Karman flow: left: The symmetric state. Middle and right:
the two bifurcated states, that are symmetric to each other with respect to a π-rotation along an axis
going through the rotation axis [5,6].

Figure 3. Spontaneous bifurcation in the von Karman flow: the flow, initially started in a symmetrical
state, bifurcates after a certain time toward a bifurcated state, that produces a 4 times larger dissipation
[5].
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temperature profile without the need to integrate the whole Navier-Stokes equations. A way to
proceed with its justification is to transform it into an equivalent principle, that uses notions more
rooted in non-equilibrium physics. Indeed, energy dissipation is not a handful quantity to work with
in general, because of its dependence on the small scale processes that produce it. In general, energy
dissipation is a signature of entropy production. This last notion seems more appealing to work with
and a first natural step is to modify slightly our original principle A into a more appealing version
as:

Principle B: In certain non-equilibrium systems with coexistence of several stationary state, the most
stable one is that of Maximum Entropy Production (MEP).

From the point of view of non-equilibrium physics, this principle appears as a counterpart of the well
known principle of Maximum Entropy that governs stability of equilibria in statistical physics, the
analog of equilibria here being the stationary states. It was discovered by Paltridge [7,8] to derive
a good approximation of the mean temperature distribution in the mean atmosphere of the Earth.
It is therefore interesting to evaluate the soundness of this principle and understand its limitation
and its possible improvements, to extend as possible the scope of its applications. The usual path
to prove the validity of a principle is to provide some rigorous demonstration of the principle itself.
This task has been attempted without convincing results in the past years [9–11]. In the absence
of any theory of out-of-equilibrium systems, we may turn to equilibrium theory as a guide to find
a path for justification of the selection of stationary states. In equilibrium systems or conceptual
models, this selection can be studied using the dynamical systems theory, where other quantities than
thermodynamics entropy are relevant. One of this quantity is the Kolmogorov Sinai Entropy (KSE)
[12], which is indeed different from the thermodynamic one. The KSE appears a good candidate for
the selection of preferred metastable states because it is related to the concept of mixing time [13].
The goal of this paper is therefore to show that MEP principle could find a justification in a linked
relationship which involves studying the connections among MEP, KSE and mixing times. The paper
follow this structure: after discussing the relation between MEP and the Prigogine minimization
principle (section II), we connect MEP and maximum KSE in conceptual models of turbulence (section
III). In section IV we establish the link between maximum KSE and mixing times for Markov chains.
Then, we summarize the results and discuss the implications of our findings.

2. Maximization or Minimization of Entropy production?

At first sight, Principle B appears in conflict with an established result of Prigogine, according to
which the stationary states of a system close to equilibrium are states with minimum entropy
production. In fact, both principles can be reconciled if Principle B is viewed as a MaxMin, principle:
consider a system characterized by two parameters, T and U, where T controls the departure from
equilibrium and U labels an additional constraint of the system, allowing the existence of several
stationary states at a given T (see Figure 4). In our von Karman system, T could for example label
the velocity fluctuations, and U the angular momentum transport. In the T direction, application
of the Prigogine principle selects the value of T corresponding to the stationary state. When there
are several possible stationary state, the Principle B then selects the most stable state as the one with
the largest entropy production, thereby fixing the corresponding value of U. This was precisely the
procedure followed by Paltridge.

Since we cannot dismiss the MEP principle easily, we may then try to prove it, using tools borrowed
from non-equilibrium theories. A justification has been attempted [9], and dismissed [10,11],
following the ideas of Jaynes that non-equilibrium systems should be characterized by a probability
distribution on the trajectories in phase space, instead of just the points in phase space at equilibrium.
A more pragmatic way to evaluate the interest of Principle B is to consider its application to toy
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Figure 4. Illustration of the relation between maximization of entropy production EP and Prigogine
principle: the system is set out of equilibrium by the parameters T and U. T controls the departure
from equilibrium and U labels an additional constraint of the system. In the T direction, application of
the Prigogine principle selects the value of T corresponding to the stationary state, where MEP selects
the one with largest EP in the U direction.
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Figure 5. The dynamical rules of the toy model of scalar transport: the particle can jump to the left
or to the right with probabilities denied by p. At both end, two reservoirs sets the flux of incoming
or outgoing particles. The particle can be a boson (several particles per box are allowed), in which
case the process is called zero-range process (ZRP). When the particle is a fermion, jump towards a
box that is already occupied are forbidden. The corresponding process is called asymmetric exclusion
process (ASEP).

models of non-equilibrium statistics, that mimics the main processes at work in the von Karman
flow, and that can guide us on a way to a justification (or dismissal). This is the topic of the next
section.

3. From Maximum entropy production to Maximum Kolmogorov-Sinai entropy in toy models of
turbulence

3.1. From passive scalar equation to Markovian box models

In the von Karman flow, angular momentum is transported from the vessel ends towards the center.
In Rayleigh-Benard, the temperature is transported from the bottom to the top plates. In shear flows,
the linear momentum is transported from one side to the other. On Earth, the heat is transported from
the equator towards the pole. All this system in which Principle B seems to provide a non-trivial
answer have then in common that they deal with the transport of a scalar quantity T by a given
velocity field u(x, t), and that may be sketched as:

∂tT + u∇T = κ∆T, (1)

with appropriate boundary conditions. Here κ is the diffusivity. To transform this process into a
tractable toy model, we stick to a one dimensional case and divide the accessible space ` into L
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boxes. We impose the boundary conditions through two reservoirs located at each end of the chain
(mimicking e.g. the top and bottom propeller or solar heat flux at pole and equator). The boxes
contains bosonic or fermionic particles that can jump in between two adjacent boxes via decorrelated
jumps (to the right or to the left) following a 1D Markov dynamics governed by a coupling with
the two reservoirs imposing a difference of chemical potential at the ends. The different jumps are
described as follow. At each time step a particle can jump right with probability pwn or jump left with
probability (1− p)wn. wn is a parameter depending on the number of particles inside the box and
on the nature of particles. Choices of different wn give radically different behaviors. For fermionic
particles, it prevents a jump on to a site, if this site is already occupied by a particle. The corresponding
process is called Asymmetric Exclusion Process (ASEP). For boson, wn = 1 and the process is called
Zero Range Process (ZRP). At the edges of the lattice the probability rules are different: at the left
edge a particle can enter with probability α and exit with probability γwn whereas at the right edge a
particle can exit with probability βwn and enter with probability δ.

Without loss of generality, we may consider only p ≥ 1/2 which corresponds to a particle flow
from the left to the right and note U = 2p − 1. After a sufficiently long time the system reaches a
non-equilibrium steady state, with a well defined density profile (or fugacity profile) across the boxes
ranging between ρa, the density of the left reservoir and ρb, the density of the right reservoir, given by
ρa = α(γ + εα) and ρb = δ(β + εδ), where ε = 1 for ASEP (fermion) and ε = −1 for ZRP (boson). In
the sequel, we fix γ + α = 1 and β + δ = 1, and denote ∆T = ρa − ρb the parameter that measures the
balance between the input rate of the left reservoir (the equivalent of the heat or momentum injection),
and the removal rate of the right reservoir (the equivalent of the heat or momentum dissipation). Once
β (say), ∆T are fixed, we can compute all the other parameter α, γ and δ of the model. In the sequel,
we fix β = 0.75, and vary ∆T and/or U.

Taking the continuous limit of this process, it may be checked that the fugacity Z = ρ/(1 + ρ) of
stationary solutions of a system consisting of boxes of size 1

L follow the continuous equation [14]
:

U
∂z
∂x
− 1

2L
∂2Z
∂x2 = 0, (2)

corresponding to stationary solution of a passive scalar equation with velocity U and diffusivity 1
2L .

Therefore, the fugacity is a passive scalar obeying a convective-diffusion equation. We thus see that
U = 0 corresponds to a purely conductive regime whereas the larger U the more convective the
regime. This toy model therefore mimics in the continuous limit the behavior of scalar transport
in the von Karman, Rayleigh-Bénard, Couette or Earth system we are trying to understand. The
toy model is a discrete Markov process with 2L states. It is characterized by its transition matrix
P = (pij) which is irreducible. Thus, the probability measure on the states converges to the stationary
probability measure µ = (µ1stat , ..., µ2L

stat
) which satisfies:

µistat =
2L

∑
j=1

µjstat .pji ∀i ∈ [[1, 2L]]. (3)

This Markov property makes our model simple enough so that exact computations are analytically
tractable and numerical simulations are possible up to L = 10 (ASEP model) to L = 1000 (ZRP
model) on a laptop computer. The idea now is to apply the Principle B in these toy models, and see
what useful information we can derive from it.
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3.2. Maximum Entropy production in Zero Range and ASymmetric Exclusion Process

We turn to the definition of entropy production in our toy model system. For a macroscopic system
subject to thermodynamic forces Xi and fluxes Ji, the thermodynamic entropy production is given by:
[15,16]:

σthermo = ∑
i

JiXi (4)

The fluxes to consider for a diffusive particules model are fluxes of particules and the thermodynamic
forces can be written X = ∆(− ν

T ) where T is the temperature and ν the chemical potential
proportional to log(ρ) for an ideal gas [15]. So, as the temperature is here fixed, the thermodynamic
Entropy production of a given stationary state takes the form:

σthermo ∝
L

∑
i=1

J.(log(ρi)− log(ρi+1)) = J.(log(ρ1)− log(ρL)) (5)

where ρ is the stationary density distribution and J the particle fluxes, that are both (nonlinear)
function of f . It is easy to show [17] that this definition is just the continuous limit of the classical
thermodynamic entropy production in an ideal gas, that reads:

σthermo = −
∫ B−

A+

J(x, t)
∂ log(ρ(x, t))

∂x
dx (6)

In the case of bosonic particles (ZRP model), this entropy production takes an compact analytical
shape in the (thermodynamic) limit Ł→ 0 [18]:

σ(U) =
αU

U + γ
(log(

α

U + γ− α
)− log(

(α + δ)U + γδ

U(β− α− δ) + βγ− γδ
)) (7)

Because U = 2p− 1 ≥ 0 the entropy production is positive if and only if ρa ≤ ρb. This means that
fluxes are in the opposite direction of the gradient. We remark than if U = 0 then σ(U) = 0. Moreover,
when U increases ρa(U) decreases and ρb(U) increases till they take the same value. Thus it exists U,
large enough, for which σ(U) = 0. Between these two values of U the entropy production has at least
one maximum. By computing numerically the entropy production, we observe in fact that it is also
true for the fermionic particles, even though we cannot prove it analytically. This is illustrated in Fig.
6 for L = 100 (ZRP) and L = 10 (ASEP).

The value of UmaxEP(T) at which this maximum occurs depends on the distance to equilibrium of the
system, characterized by the parameter ∆T = α− δ. In the case of the ZRP model, it can be computed
as [18]:

UmaxEP,ZRP =
∆T

4Mα
+ 3

∆T2(α + 1)
8M2α2(α− 1)

+ o((∆T)2), (8)

where M = (1 + 2ρa)(1 + 2ρb). This means that at equilibrium (∆T = 0, ρa = ρb), the maximum
is attained for U = 0, i.e. the symmetric case. Numerical simulations of the ASEP system suggest
that this behavior is qualitatively valid also for fermionic particles: the entropy production displays
a maximum, that varies linearly in ∆T . Such behavior therefore appears quite generic of this class of
toy model. When the system is close to equilibrium (∆T � 1), the maximum is very near zero, and,
the density profile is linear, corresponding to a conductive case. When the system is out-of-equilibrium
(∆T ≥ 0) the maximum is shifted towards larger values of U > 0, corresponding to a convective state,
with flattened profile. An example is provided in Fig. 8 for the ZRP and ASEP model.
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Figure 6. Entropy productions as a function of U for β = 0.75 and ∆T = 0.25 for two toys models. Red
stars: Thermodynamic entropy production σ(U); blue squares: Kolmogorov-Sinai entropy hKS(U).
The location of the maxima are denoted by vertical dashed line (red for σ(U); and blue for hKS(U)).
a) Case L=10 ASEP (fermion) ; b) Case L=100 ZRP (boson) . The dot-dashed line is the asymptotic law
for σ(U) given by Eq. (7).

0 0.1 0.2 0.3 0.4 0.5 0.6

 T

0

0.1

0.2

0.3

0.4

0.5

0.6

U
m

a
x

a)

0 0.05 0.1 0.15 0.2 0.25 0.3

 T

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

U
m

a
x

b)

Figure 7. Location of the maximum of Thermodynamic entropy production UmaxEP (red stars) and
maxim of Kolmogorov-Sinai entropy (blue stars) as a function of ∆T. a) Case L=10 ASEP (fermion).
b) Case L=100 ZRP (boson). The red dashed line is the second order approximation given by Eq. (8).
The blue-dashed line is the first order approximation to the location of the maxima ( Eq. (12)).
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Figure 8. Profiles of density profiles (blue line) corresponding to models with U = UmaxEP for β = 0.75
and ∆T = 0.25 for two toys models. The red dashed line is the density profile obtained at U = 0, i.e.
in the conductive case. a) Case L=10 ASEP (fermion) ; b) Case L=100 ZRP (boson)

Our toy models are examples of systems with deviation from equilibrium (labelled by ∆T), admitting
several stationary states (labelled by U). So if we were to apply our MinMax/Principle B to these
toy models, we would select the model corresponding to UmaxEP as the most stable one, i.e. the
conductive state with linear profile at equilibrium, and the convective state with flattened profile at
non-equilibrium. Interestingly enough, this selection corresponds qualitatively to the type of profiles
that are selected by the non-linear dynamics in the von Karman, Rayleigh-Benard or Couette system,
as illustrated in Fig. 9 for the VK flow: for low levels of fluctuations (low Reynolds or impeller
with moderately bent blades) corresponding to close to equilibrium state, the most stable state is the
symmetric state, with linear angular momentum profile. At larger fluctuation rates, the most stable
state is the bifurcated state, with flat angular momentum at the center.

The ability of Principle B, based only on entropic i.e. equilibrium notions, to predict at least
qualitatively the correct behavior of scalar transport in several non-equilibrium turbulent system
is puzzling. It would be more satisfying to connect this Principle to other notions that seem more
appropriate in the case of non-equilibrium system. This is the topic of the next section.

3.3. From Maximum Entropy Production to Kolmogorov-Sinai Entropy

The physical meaning of the thermodynamic entropy production is the measure of irreversibility: the
larger σ the more irreversible the system [19] . It is however only a static quantity, being unconnected
to the behavior of trajectories in the phase space. In that respect, it is not in agreement with the ideas
of Jaynes that non-equilibrium systems should be characterized by a probability distribution on the
trajectories in phase space, instead of just the points in phase space at equilibrium. In the context of
Markov chains, Jaynes’ idea provides a natural generalization of equilibrium statistical mechanics
[20], by considering the Kolmogorov-Sinai entropy (KSE). There are many ways to estimate the
Kolmogorov-Sinai entropy associated with a Markov chain [20,21].The most useful one in our context
is the one defined as the time derivative of the Jaynes entropy. To characterize the dynamics of the
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Figure 9. Profiles of angular momentum RVφ as a function of Z in the von Karman laboratory
experiment. Blue symbols with line: in the bifurcated state with higher dissipation. Red line with
symbols: in the symmetric state.
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system during the time interval [0, t], one considers the possible dynamical trajectories Γ[0,t] and the
associated probabilities pΓ[0,t]

. The dynamical trajectories entropy- the Jaynes entropy- reads:

SJaynes(t) = − ∑
Γ[0,t]

pΓ[0,t]
. log(pΓ[0,t]

) (9)

For a Markov chain we find that:

SJaynes(t)− SJaynes(t− 1) = −∑
(i,j)

µistat pij log(pij) (10)

Thus, the Kolmogorov-Sinai Entropy for the Markov chain is:

hKS = −∑
(i,j)

µistat pij log(pij), (11)

where µi is the stationary measure and pij the transition matrix.

In the case of bosonic particles (ZRP model), the KSE can be computed analytically and it admits
a maximum as a function of U [18]. The value of U corresponding to this maximum can also be
computed analytically, and leads to:

UmaxKS =
∆T

4Mα
+ o(∆T), (12)

Such first order approximation appear to be valid even far from equilibrium (see Fig. 7). Comparing
with the value for the maximum of entropy production, we see that the two maxima coincide, to first
order in ∆T and 1/L: in the continuous limit, Principle B provides the same kind of information than
a third principle that we may state as:

Principle C: In certain non-equilibrium systems with coexistence of several stationary state, the most
stable one is that of Maximum Kolmogorov-Sinai Entropy.

Is this third principle any better that the principle B? In our toy models, it seems to give the same
information than the Principle B: for ZRP, we have shown analytically that the maxima of each
principle coincide to first order in ∆T and 1/L. Numerical simulation of the ASEP system suggests
that it is also true for fermionic particles: for a given value of ∆T the difference between the two
maxima ∆Umax = UmaxEP − UmaxKS decreases with increasing L [17]. For a fixed L, the difference
between the two maxima increases with ∆T, but never exceeds a few percent at L = 10 [17], see Fig.
7).

In turbulent system, the test of this principle is more elaborate, because the computation of hKS is not
straightforward. It would however be interesting to test it in numerical simulations.

4. From Maximum Kolmogorov-Sinai entropy to Minimum Mixing Time in Markov
Chains

Principle C is appealing because it involves a quantity clearly connected with dynamics in the phase
space, but it is still unclear why the maximization of the entropy associated with paths in the phase
space should select the most stable stationary state, if any. To make such a link, we need to somehow
connect to the relaxation towards a stationary state, i.e. the time a system takes to reach its stationary
state. In Markov chains, such a time is well defined, and is called the mixing time. Intuitively, one
may think that the smaller the mixing time, the most probable it is to observe a given stationary state.
So there should be a link between the maximum of Kolmogorov-Sinai entropy, and the Minimum
mixing time. This link has been derived in [13], for general Markov chains defined by their adjacency
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Figure 10. Conceptual path to demonstrate the validity of the Maximum Entropy Principle followed
in this paper.

matrix A and transition matrix P, defined as follows: A(i, j) = 1 if and only if there is a link between
the nodes i and j and 0 otherwise. P = (pij) where pij is the probability for a particle in i to hop on
the j node. Specifically, it has been shown that Kolmogorov-Sinai entropy increases with decreasing
mixing time (see Fig. 1 in [13]). More generally, for a given degree of sparseness of the matrix A
(number of 0), the Markov process maximizing the Kolmogorov-Sinai entropy is close (using an
appropriate distance) to the Markov process minimizing the mixing time. The degree of closeness
depends on the sparseness, and becomes very large with decreasing sparseness, i.e. for unconstrained
dynamics (Fig. 3 in [13]).

This result provides us with a fourth principle in Markov chains:

Principle D: In certain non-equilibrium systems with coexistence of several stationary states, the
most stable one is that of Minimum Mixing Time.

Given what we have seen before, there are 4 general principle that select the same stationary state,
in the limit of large size and small deviations from out-of-equilibrium (see Figure 10). Among all 4,
the Principle that provides the better understanding of its application is the Principle D, because the
smaller the mixing time, the less time it is required to reach a given state and so the most probable the
corresponding state. This phenomenological understanding can actually be given a deeper meaning
when switching from Markov chains to Langevin systems.

5. From Minimum Mixing Time in Markov Chains to Mean Escape rate in Langevin
systems

The notions we have derived in Markov chains have actually a natural counter-part in general
Langevin systems. Consider indeed the general Langevin model:

ẋ = f (x) + ξ, (13)
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where f (x) is the force and ξ is a delta-correlated Gaussian noise:

< ξ >= 0, < ξ(t)ξ(t′) >= 2Dδ(t− t′). (14)

The probability distribution of x, P(x, t) then obeys a Fokker-Planck equation:

∂tP(x, t) = −∂x( f (x)P(x, t)) + D∂x∂xP(x, t),

= ∂x(J(x, t)P(x, t)), (15)

where J = f (x)P(x, t)−D∂xP(x, t) is the current. It is well known (see e.g. [22]) that the discretization
of the Langevin model on a lattice of grid spacing a (so that x = na) is a Markov chain, governed by
the master equation:

∂tPn = w+
n−1Pn−1 − w+

n Pn + w−n+1 − w−n Pn, (16)

where Pn is the probability of having the particule at node n and w±n are the probability of forward
and backward jump at node n, given by:

w+
n =

D
a2 ,

w−n =
D
a2 −

fn

a
. (17)

From this, we can compute the Kolomogorov-Sinai entropy as [23]

hKSL =< w+
n ln

w+
n

w−n+1
+ w−n ln

w−n
w+

n−1
>, (18)

which in the continuous limit a→ 0 becomes:

hKSLc =<
1
D
| f (x)|2 + f ′(x) >, (19)

which is the well know entropy production.

On the other hand, the dissipated power in the Langevin process can easily be computed as :

P =< f ẋ >=
∫

J(x, t) f (x, t)dx =< | f |2 + D f ′(x) >= DhKSLc. (20)

The Kolmogorov-Sinai entropy and the dissipated power are thus proportional to each other. In such
example, it is thus clear that maxima of hKS and maxima of entropy production coincide.

On the other hand, when f derives from a potential, f = −∂x(U), there may be several meta-stable
positions at U local minima. In such a case, it is known from diffusion maps theory and spectral
clustering [24] that the exit times from the meta-stable states are connected to the smallest eigenvalues
of the operator H, such that HP = D∆P−∇P∇U, which is the equivalent of the Liouville operator
in Markov chain. More specifically, if U has N local minima, then the spectra of H has a cluster
of N eigenvalues µ1 < µ2 < .. < µN located near 0, each of which being associated with the exit
time it takes to get out from the local minima Si to the state corresponding to the deepest minimum
(the equilibrium state). For example, µ1 = 1

τ1
, where τ1 is the mean exit time to jump the highest

barrier of energy onto the deepest well. We see from that that the smaller the eigenvalue (equivalent
to the mixing time), the longer time it takes to jump from this metastable state, and so the more
stable is this state. This provides a quantitative justification of the notion that the most stable stationary
states are the one with the minimum mixing time. It is worth mentioning that Langevin systems
are now incorporated in numerical weather prediction to provide some flexibility to the sub-grid
scales parameterizations [25]. Models based on these so-called stochastic parameterizations have
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usually better prediction skills than models based on deterministic parameterizations. Stochastic
parameterization is therefore increasingly used in different aspects of weather and climate modeling
[26]. We might speculate that, in these large simulations, the stochasticity helps models to reach more
realistic results by favoring jumps to more stable states as outlined above. Another way to select these
more realistic states could possibly be to search for the ones that maximize dissipation or entropy
production, as was done empirically in a simple way in Paltridge’s model [7,8].

6. Summary: Turbulence as a minimum Mixing Time State?

Considering a mixing time to characterize turbulence is natural, given the well known enhancement
of mixing properties observed in turbulent flows. The mixing time defined for Markov chains is
also comparable to the mixing time one would naturally define for turbulence, namely the smallest
time after which a given partition of a scale quantity is uniformly spread over the volume. This time
corresponds to the one defined by Arnold for dynamical systems [27] when introducing the concept
of strong mixing. Here, it is the time associated with eigenvalues of the Liouville operator of the
processes describing the turbulence action. In the specific example we consider here, namely von
Karman flow, the turbulence is characterized by a symmetry along the rotation axis, which favors
stationary states in which angular momentum is mixed along meridional planes [28,29].In this case,
there is a clear connection between the equation obeying the angular momentum and the classical
Fokker-Planck equation Eq. (15). One can thus hope in such a case to find a Langevin process
describing the angular momentum mixing. This was actually done in [28] and shown to reproduce
very well the power statistics in both regimes of constant torque and constant speed forcing, in case
where there is only one stationary state. For multiple stationary states, the corresponding Langevin
process has been derived in [30] and it turns out to be a non-linear stochastic oscillator, featuring
multiple metastable states and limit cycles. Such oscillator is found to describe the dynamics of the
reduced frequency θ = ( f1 − f2)/( f1 + f2) which is a global observable respecting the symmmetries
of the flow. The challenge is then to compute the mixing times of the different metastable states
arising in the non-linear stochastic oscillator.

In [31–33] we have shown that the mixing time τ of turbulent flows can be easily obtained by fitting
the Langevin process (or aut-regressive process) xt = φxt−1 + ξ(t) to data. Here x(t) is a global
quantity tracing the symmetry of the flows, ξ(t) is a random variable normally distributed and −1 <

φ < 1 is the so called auto-regressive coefficient. The link with the mixing time is made trhough
the parameter |φ| which is indeed proportional to τ: the larger this quantity, the slower the mixing
in the system, because the dynamics weight more the present observation xt when updating xt+1.
In [31], only flow configurations with a single stationary state have been analysed and φ computed
using the complete time series. To extend the results to the flow regimes featuring multistability, we
use the strategy outlined in [34]. First of all, we reconstruct the dynamics by using the embedding
methodology on the series of partial maxima of θ, denoted as θi. A 2D section of the attractor is
shown in the upper panel of Figure 11 and it is obtained by plotting θi as a function of the subsequent
maxima θi+1. The histogram of θi is reported in the lower panel and show the correspondence to three
metastable states s1, s2, s3. Since we are not dealing with a stationary process, we cannot compute a
single φ for the full time series of θ. The method introduced in [34] consists in computing a value of
φi for each θi, taking the 50 previous observations of the complete time series. The distribution of |φ|
is shown in colorscale in Figure 11. It is evident that the most represented states (s1 and s2) are those
with the minimum mixing time whereas the most unstable one (s3) is the one with the largest mixing
time. This example shows that the results outlined in Section 5 can be extended to higher dimensions
and that there is a simple strategy to compute the mixing times in complex systems.

It is quite plausible that such study can be generalized to turbulent systems with other symmetry,
such as symmetry by translation along an axis. The turbulent shear flow enter in that category.
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Figure 11. Upper panel: 2D Poincaré section of the Von Karman attractor obtained embedding the
partial maxima of the reduced frequency θi. The colors represent |φ|, the autoregressive coefficient
computed for each of the θi, using the 50 previous observations of the full time series of θ. Lower
panel: histogram of the partial maxima θi. The metastable state s3 is visited less than s1 and s2 and
corresponds to higher mixing time (values of |φ| close to 1)

Finally, we note that in Rayleigh-Bénard systems or in stratified turbulence, the temperature is also a
quantity that is mixed within the flow, and that should also be liable to a Langevin description. It is
therefore not a coincidence that shear flow, Rayleigh-Bénard convection and von Karman flows are
so far the only systems in which the principle of Maximum Energy dissipation has been applied with
some success. They are systems where a Langevin description is possible, and where the Maximum
Energy dissipation principle in fact coincides with the Minimum Mixing time principle, connected to
the longest exit time from meta-stable states. In more general turbulence, it is not clear that such
a Langevin description is possible, so that the statement of Turbulence as a minimum Mixing Time
State might actually be limited to quite special situations, where symmetry or dynamics impose pure
mixing of a quantity (like angular momentum, momentum or temperature). Shear flow, Rayleigh
Benard convection and von Karman flows belong to this category.
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