Experimental and numerical analysis of the jet dispersion from a bent chimney around an obstacle - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Heat and Mass Transfer Année : 2011

Experimental and numerical analysis of the jet dispersion from a bent chimney around an obstacle

I. Bhouri Baouabe
  • Fonction : Auteur
N. Mahjoub Said
  • Fonction : Auteur
H. Mhiri
  • Fonction : Auteur
G. Le Palec
  • Fonction : Auteur

Résumé

An experimental study and a numerical modelling analysis were carried out simultaneously to study the flow field structure issuing from a chimney around an obstacle. The main purpose of this study is to evaluate the impact of the jet emitted from a chimney (bent or straight) on the dynamics and the turbulent features of the surrounding flow. The consideration of these features is particularly pertinent to the understanding of mixing between the interacting flows which may be very important in controlling pollutant dispersion in the atmosphere. The experimental data are depicted by means of a PIV technique; whereas the numerical three-dimensional model is simulated through the resolution of the different governing Navier-Stokes equations. The volume finite method, together with the second order turbulent closure model (RSM), was adopted. Variations in obstacle form (cylindrical or parallelepiped) and chimney configuration (bent or straight) were tested and features studied were: the global jet plume, the windward and leeward jet spread; the size, location and magnitude of the reverse flow region; the penetration and the deflection of the jet trajectory around the obstacle. All these considerations allowed us to characterize well the impact of the injection of the jet emitted from the chimney within the crossflow, and its spreading around the obstacle and within the whole domain. Such characterization is very important with regard to pollutant dispersion and consequently to the environmental impact. Indeed, the different species contained within the emitted fumes are mainly directed by the velocity components and their mixing and progression within the domain and around the obstacle are closely related.

Dates et versions

hal-01460090 , version 1 (07-02-2017)

Identifiants

Citer

I. Bhouri Baouabe, H. Bournot, N. Mahjoub Said, H. Mhiri, G. Le Palec. Experimental and numerical analysis of the jet dispersion from a bent chimney around an obstacle. Heat and Mass Transfer, 2011, 47 (3), pp.323-342. ⟨10.1007/s00231-010-0718-z⟩. ⟨hal-01460090⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More