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Abstract – We present a theoretical study of low temperature nonequilibrium transport through
an interacting quantum dot in the presence of Zeeman magnetic field and current injection into one
of its leads. By using a self-consistent renormalized equation of motion approach, we show that the
injection of a spin-polarized current leads to a modulation of the Zeeman splitting of the Kondo
peak in the differential conductance. We find that an appropriate amount of spin accumulation
in the lead can restore the Kondo peak by compensating the splitting due to magnetic field.
By contrast when the injected current is spin-unpolarized, we establish that both Zeeman-split
Kondo peaks are equally shifted and the splitting remains unchanged. Our results quantitatively
explain the experimental findings reported in KOBAYASHI T. et al., Phys. Rev. Lett. 104,
036804 (2010). These features could be nicely exploited for the control and manipulation of spin
in nanoelectronic and spintronic devices.

Introduction. – Progress in nano-fabrication opened
the emergence of a new class of objects, semi-conductors
quantum dots -QDs- in which a few electrons localized in
a small spatial region are connected to leads through tun-
neling barriers. QDs are very attractive for electronic and
spintronic applications due to the possibility they offer to
control and manipulate the spin. They give the unique op-
portunity to observe a tunable Kondo effect at low temper-
ature when the dot possesses an odd number of electrons
and acquires a net spin S=1/2. The theoretical predic-
tions of a Kondo effect in such nanostructures were made
in the late 80s [1,2]. The Kondo effect is a many-body phe-
nomenon which takes place when a localized impurity with
an unpaired spin is embedded in a metallic host. It arises
from resonant hopping processes of the conduction elec-
trons of the host in and out of a localized impurity. This
resonant process leads to the screening of the spin of the
localized electrons with the formation of a Kondo singlet
state. The binding energy of this singlet state defines the
Kondo temperature TK . It was predicted that the Kondo
effect leads to an increase of the linear conductance of the
QD when temperature is lowered below TK . This feature

is the exact analog of the rise of resistivity brought by for
the Kondo effect in bulk metals [3] when temperature is
lowered below TK . Experimentally the first observation
of the Kondo effect in QDs was made in GaAs-based two-
dimensional structures in the late 90s [4, 5].

For any usefulness of nanoelectronic and spintronic de-
vices, it is necessary to be able to control and manipulate
the spin in these systems. In this perspective QDs are ex-
cellent candidates since their properties can be tuned in a
controlled way by varying voltages. They can be placed in
an out-of-equilibrium situation by applying a finite source-
drain voltage VD between the two leads (by convention
source voltage VS is considered as the ground potential).
In the case of a single-level QD connected to normal metal
leads, the differential conductance gD = dID/dVD vs VD

exhibits a zero-bias anomaly [6]. In the presence of a Zee-
man magnetic field ∆, the Kondo peak in the differential
conductance is split with a value of the splitting of the or-
der of 2∆/e as discussed in [5, 7–9]. The transport prop-
erties of the QD can also be changed by modifying the
environment of the dot. A case of special interest in con-
nection to the study presented in this Letter corresponds
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Fig. 1: Schematic representation of the experimental setup con-
stituted by a QD connected to the two electrodes, source S and
drain D, and a QPC responsible for the generation of the cur-
rent IE injected from the emitter E into S. An external mag-
netic field is applied to the system with the plane of the device
tilted by a small angle to the axis of the magnetic field.

to QDs with ferromagnetic leads [10–13]. It was shown
that spin-polarization in the leads results in an effective
static magnetic field which splits the Kondo peak in gD as
observed experimentally. The Kondo peak may then be
restored by compensating this effective magnetic field by
a Zeeman magnetic field.

More recently there has been a considerable effort in
developing new techniques to modify the environment to
achieve efficient control of the spin in QDs. The injec-
tion of a current in one of the leads of a QD has emerged
as a very powerful way to attain this goal with the pos-
sibility to produce a spin accumulation in the lead when
the current is spin-polarized [14–18]. We especially re-
fer to experimental work by Kobayashi et al. [18] whose
experimental setup is schematized in fig. 1. The genera-
tion of the current is achieved with the aid of a quantum
point contact -QPC- which is spin-polarized by applying a
high parallel Zeeman magnetic field. The differential con-
ductance of the QPC, gE = dIE/dVE vs gate voltage VR

is quantized [19] at multiples of e2/h determined by the
number of occupied subbands in the QPC. The current
IE induced by the application of a bias voltage VE to the
emitter E, is then magnetically focused [20] into S along
the cyclotron trajectory by applying a low perpendicular
magnetic field. In practice in order to apply a high paral-
lel magnetic field for Zeeman splitting in both QPC and
QD, and a low perpendicular magnetic field for magnetic
focusing, the 2DEG plane is tilted by a small angle to the
axis of the applied magnetic field.

The experimentalists have shown that the low temper-
ature transport through a Kondo QD is considerably in-
fluenced by the injection of a current into one of its leads.
The observations [18] show spectacular effects on the evo-
lution of the differential conductance with VD depending
on the number of open transmission channels in the QPC
which can be controlled by VR. The profile of the Zeeman-
split Kondo peaks versus VE are found to have a very
characteristic dependence on the nature of injected cur-
rent. While a spin-polarized current affects the separation
between the two peaks in the differential conductance, a
spin-unpolarized current equally shifts both peaks. The

former case thus offers the possibility of recovering the
Kondo peak by accumulating an appropriate amount of
spin in one lead to compensate the Zeeman magnetic field
effect.

On the theoretical side, the pioneering works go back
to [17] and [21]. Qi et al. [17] examined the fate of the
Kondo resonance peak in the density of states in the pres-
ence of a spin accumulation for systems with a local impu-
rity embedded in a metal. By using an equation of motion
(EOM) approach on the single impurity Anderson model
-SIAM, they found that the Kondo resonance is split into
two peaks pinned to the spin-dependent chemical poten-
tials. They then showed that the Kondo resonance may
be restored by applying an external magnetic field. Since
they are bulk, these systems do not offer the possibility of
applying a finite bias voltage across the impurity. Lim et
al. [21] further considered the situation of quantum dots in
the presence of static spin polarization of the contact and
spin accumulation in the electrode as resulting from the in-
jection of a spin-polarized current. By also using an equa-
tion of motion approach on the SIAM, they showed that
spin polarization and spin accumulation have antagonist
effects on the Kondo peak for both the spectral density and
differential conductance. Whereas the spin-polarization of
the contact is shown to introduce a splitting of the Kondo
resonance, they demonstrated that the spin accumulation
may compensate the latter splitting and restore the Kondo
resonance. These two theoretical works have the merit of
having highlighted the role that a spin accumulation can
have on the Kondo effect. However we emphasize that
their results have been obtained in the infinite U limit of
the model. Moreover in [21], the truncated scheme con-
sidered within the EOM approach assumes 〈f †

σckασ〉 = 0
following Meir et al. [22,23]. This assumption is known to
be valid in the high temperature regime when T ≥ TK . By
contrast it is important to have in mind that the whole set
of results obtained by Kobayashi et al. has been obtained
in the low temperature regime when T ≤ TK in systems
where the Coulomb interaction is estimated to 1.5meV far
from the infinite U limit. The results obtained therefore
in the two theoretical works do not apply to the situation
in which the experiments are performed.

The purpose of this Letter is precisely to fill this dis-
crepancy and to study how the spin accumulation in one
of the leads of a QD affects the transport properties of
an interacting quantum dot in the low temperature and
finite U regime. To do this we choose to carry out our the-
oretical study in conditions as close as possible to those
in which the experiments were carried out. Our calcu-
lations based on the single impurity Anderson model at
finite U are performed by using the self-consistent renor-
malized equation of motion approach following the scheme
developed in [24,25] in nonequilibrium situation. The de-
coupling scheme used to truncate the set of EOM consid-
ers the mixed decoupling parameter 〈f †

σckασ〉 in addition

to the usual decoupling parameters 〈c†k′ασ̄ckασ̄〉 and 〈nσ̄〉.
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This additional decoupling parameter plays a key role in
the description of the strong coupling regime reached at
low temperature. It can be viewed as a pseudo-order pa-
rameter which gets finite in the strong coupling regime,
reminding of the slave-boson introduced in auxiliary-field
approaches. Moreover the scheme includes two major im-
provements related to the renormalization of intermediate
state inverse lifetimes and the renormalization of dot en-
ergy level, defining the self-consistent renormalized EOM
approach. The renormalization of the intermediate state
inverse lifetimes allows to cure the long-standing problem
about the presence of a spurious peak in the density of
states. This unphysical peak just compensates the ac-
tual Kondo resonance peak at the particle-hole symmetric
point εσ = −U/2, therefore prohibiting one from study-
ing the Kondo physics at this point. This serious draw-
back of the standard EOM approach is avoided in the
self-consistent renormalized approach used in this work.
Let us note that the particle-hole symmetric limit corre-
sponds precisely to the situation in which the experimen-
talists have conducted their experiments where the system
is placed at the middle of the Kondo conductance valley.
Our calculations show that the splitting of the Kondo peak
in the differential conductance is modulated by the shift
of the chemical potentials introduced by spin injection.
The results for the differential conductance vs VD and VE

are found to be in quantitative agreement with the exper-
imental results. We analyze them in detail by extracting
the Kondo peak parameters and comparing them with the
parameters extracted from experiments.

Model. – The QD is modeled by the single impurity
Anderson model

H =
∑

k,α∈(S,D),σ

εkασc
†
kασckασ +

∑

σ

εσf
†
σfσ + Un↑n↓

+
∑

k,α∈(S,D),σ

(tασc
†
kασfσ + h.c.) , (1)

where c†kασ (ckασ) creates (annihilates) an electron with
momentum k, spin σ (σ = ±1) and energy εkασ in the α
lead. f †

σ (fσ) creates (annihilates) an electron with spin σ
and energy εσ = ε0−σ∆/2 in the dot where ∆ = |g∗µBB|
is the absolute value of the Zeeman splitting with g∗ the
g-factor in GaAs [26] and µB the Bohr magneton. U is the
on-site Coulomb interaction in the dot. nσ = f †

σfσ and tασ
is the transfer matrix element between states, assumed to
be k-independent.
In the steady state the current through the dot for spin

σ is given by [27],

IDσ =
2e

h̄

∫ +W

−W

dωΓ̃σ(ω)

× [nF (ω − µLσ)− nF (ω − µRσ)]Aσ(ω), (2)

where Γ̃σ(ω) = ΓLσ(ω)ΓRσ(ω)
ΓLσ(ω)+ΓRσ(ω) with the tunnel coupling

constants given by Γασ(ω) = π|tασ|
2ρ0ασ(ω). ρ0ασ(ω) is

the density of states in the α lead for spin σ and W is
the half-bandwidth. Aσ(ω) = − 1

π ImGr
σ(ω) and Gr

σ(ω)
are respectively the spectral density and retarded Green
function in the dot. nF (ω−µασ) = [exp[(ω−µασ)/kBT )]+
1]−1 is the Fermi-Dirac distribution function in the α lead
with chemical potential µασ. µDσ = µ0 − eVD for both
spin σ where µ0 is the chemical potential at equilibrium.
When the lead S is exposed to a current injection, the
chemical potentials in S are selectively shifted depending
on the value of gE . When the QPC is tuned in the middle
of the 0th plateau, gE = 0, no current goes through the
QPC and µS↑ = µS↓ = µ0. When the QPC is tuned in
the middle of the 1st plateau, gE = e2/h, a spin-polarized
current with only spin-up electrons is injected into S and
µS↑ = µ0 − eVE whereas µS↓ = µ0. When the QPC is
tuned in the middle of the 2nd plateau, gE = 2e2/h, the
current is spin-unpolarized and µS↑ = µS↓ = µ0 − eVE .

Equation of motion approach. – The spectral den-
sity, Aσ(ω), appearing in eq. (2) can be derived from
Gr

σ(ω) which we evaluate using the EOM approach. Ex-
tensively used in the past to study bulk metals [28, 29]
and quantum impurities in equilibrium [22], the EOM ap-
proach has been more recently extended to nonequilib-
rium [21, 23, 24, 30–35]. We use here the self-consistent
renormalized EOM approach as developed in [24, 25]. In
this approach the set of equations of motion of Green
functions are truncated at the third level of the hierarchy
by performing a decoupling in terms of all possible two-
operator correlation functions with equal-spin, 〈f †

σ̄ckασ̄〉,

〈c†k′ασ̄ckασ̄〉 and 〈nσ̄〉 where σ̄ = −σ. We point out the
importance of considering the mixed decoupling param-
eter 〈f †

σ̄ckασ̄〉 -undeservedly neglected most often in the
literature- to properly describe the strong coupling regime
at low temperature. This leads to the following result [24]

Gr
σ(ω) =

1− 〈nσ̄〉

ω − εσ − Σ0
σ(ω)−Π

(1)
σ (ω)

+
〈nσ̄〉

ω − εσ − U − Σ0
σ(ω)−Π

(2)
σ (ω)

, (3)

where Σ0
σ(ω) = −iσ(ω) and Γσ(ω) =

∑
α=S,D Γασ(ω). In

the wide band limit, Σ0
σ(ω) is independent of ω taking the

value −iΓσ. Π
(1)
σ (ω) and Π

(2)
σ (ω) are defined as

Π
(1)
σ (ω) = −U

Σ
(1)
σ (ω)− (ω − εσ)Σ

(4)
σ (ω)

ω − εσ − U − Σ
(3)
σ (ω) + UΣ

(4)
σ (ω)

,(4)

Π
(2)
σ (ω) = U

Σ
(2)
σ (ω) + (ω − εσ − U)Σ

(4)
σ (ω)

ω − εσ − Σ
(3)
σ (ω) + UΣ

(4)
σ (ω)

, (5)

where

Σ(i)
σ (ω) =

∑

k,α

|tασ̄|
2
[ A

(i)
kασ

ω + ε̃σ̄ − ε̃σ − εkασ̄ + iγ̃σ

+
A

′(i)
kασ

ω + ε̃kασ̄ − ε̃σ − ε̃σ̄ − U + iγ̃D

]
, (6)
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with A
(1)
kασ =

∑
k′〈c

†
k′ασ̄ckασ̄〉, A

(2)
kασ = 1 −∑

k′α〈c
†
k′ασ̄ckασ̄〉, A

(3)
kασ = 1, and A

(4)
kασ = 〈f †

σ̄ckασ̄〉/tασ̄.

A
′(i)
kασ = (A

(i)
kασ)

∗ for i = 1, 2, 3 and A
′(4)
kασ = −(A

(4)
kασ)

∗.

Expression (3) for Gr
σ(ω) is exact both in the non-

interacting limit (U = 0) and in the isolated-site limit
(tασ = 0). The expression exhibits two poles at εσ and
(εσ+U) corresponding to the isolated-site limit, weighted
by the factors (1 − 〈nσ̄〉) and 〈nσ̄〉 respectively. Σ0

σ(ω)
is the ordinary self-energy due to electron tunneling be-

tween the dot and the leads, whereas Π
(1)
σ (ω) and Π

(2)
σ (ω)

are the self-energy contributions due to interactions. Ex-
pression (3) constitutes an extension of Lacroix’ [29] and
Meir et al.’s [22] results. At equilibrium and in the infi-
nite U limit, the expression gives back the results of [29].

When 〈f †
σ̄ckασ̄〉 = 0 (and hence Σ

(4)
σ (ω) = 0), the results of

[22] are recovered, corresponding to the high temperature

limit. The consideration of this extra-parameter 〈f †
σ̄ckασ̄〉

is crucial to describe the low-temperature limit. It ensures
the unitary condition for Gr

σ(ω) at the Fermi level to be
fulfilled at zero temperature [24, 25, 29]. The decoupling

parameters 〈f †
σ̄ckασ̄〉, 〈c

†
k′ασ̄ckασ̄〉, and 〈nσ̄〉 are then de-

termined by the self-consistent equations established both
at and out-of-equilibrium [24] provided that the system is

in a steady state. As a result the self- energies Σ
(i)
σ (ω) are

expressed in terms of Gr
σ(ω). The Green function Gr

σ(ω)
can then be self-consistently calculated from eq. (3).

We consider two important improvements related to the
renormalization of both intermediate state inverse life-
times and dot energy level. These two improvements de-
fine the self-consistent renormalized EOM approach where
propagators and vertices of the corresponding skeleton
Feynman diagrams are dressed by self-energy and vertex
corrections respectively. In the standard EOM approach,
ε̃σ is the bare energy level εσ in the dot, and γ̃σ and γ̃D
are both an infinitesimal positive (γσ = γD = +iδ). They
are renormalized in the self-consistent renormalized EOM
approach. On the one hand, ε̃σ is renormalized by self-

energy corrections according to: ε̃σ = εσ+ℜΣ
(1)
σ (ω = ε̃σ).

At the particle-hole symmetric point the renormalization
effect on ε̃σ is zero and ε̃σ = εσ. On the other hand γ̃σ
and γ̃D are replaced by the inverse lifetimes of intermedi-
ate states. They are determined by using the generalized
Fermi golden rules up to the forth order in tασ following
[24, 25], extending to finite U the argument used in [23]
for the infinite-U limit. The renormalization of γ̃D proves
to be extremely important to cure the long-standing prob-
lem about the presence of a spurious peak in the density
of states. This unphysical peak, which compensates the
actual Kondo resonance peak, is the reason behind the
failure of the standard EOM approaches. This drawback
is avoided in the self-consistent renormalized EOM ap-
proach used in this work. By using Eqs. (2-6), we have
all the ingredients to derive the total current ID and the
differential conductance gD = dID/dVD.

Choice of parameters and Kondo temperature. –

Except for U , the values of all the parameters inserted in
our model are adopted from the estimations made in [18].
Hence the electronic temperature is taken as T = 100
mK, ∆ = 130 µeV and Γασ = 0.25 meV. As far as U is
concerned, we choose to take a slightly larger value U = 3
meV instead of U = 1.5 meV considered in [18] to ensure
that the system is in the Kondo regime on the following
criterion: 2Γασ ≪ U/2. Besides we consider the system
at the particle-hole symmetric point with ε0 = −U/2 in
agreement with the experimental situation.

The Kondo temperature, TK , of the QD is estimated
from the linear conductance vs temperature plotted at
equilibrium (for B = VE = 0). TK is the temperature at
which the linear conductance falls down to half of its maxi-
mum value. We get: TK = 0.5 K. Upper bounds to TK can
be found in various nonequilibrium situations. For exam-
ple, an upper bound to TK is estimated from the value of
the FWHM of the Kondo peak in gD vs VD plot. We per-
form calculations at T = 100 mK (for B = VE = 0), and
get TK < 0.7 K. Finally the value of TK estimated from
Haldane’s formula [36] is 0.9 K. These values are consistent
with the upper bound 0.7 K estimated in experiment [18]
even though we have taken a slightly different value of U .
Let us also mention that all our numerical calculations are
performed at 100 mK, well below the estimated TK .

Results and discussion. – Our numerical results for
the differential conductance gD are represented in both
gray-scale representation in the plane (VD,VE) in figs. 2(c)-
2(d), and in gD vs VD plots in figs. 2(e)-2(f) at gE = e2/h
and gE = 2e2/h respectively. We do not show the result
for gE = 0 since gD vs VD plot is simply the one obtained
for gE 6= 0 at VE = 0. As can be seen from figs. 2(e)-
2(f), generally gD vs. VD has two peaks. The variations
of the positions of the peaks with VE depend on the spin-
polarization state of the injected current. At VE = 0 the
Kondo peaks occur at VD = ±∆/e as expected. When
the injected current is spin-polarized (by tuning the QPC
at gE = e2/h), the position of the upper-VD peak does
not vary with VE whereas that of the lower-VD peak is
linearly shifted by VE . The separation between the two
peaks decreases with increasing positive VE until vanishing
at a critical value of VE . When the injected current is
spin-unpolarized (by tuning the QPC at gE = 2e2/h), the
positions of both peaks are equally shifted by VE .

With the aim of understanding the physical mechanisms
behind these results, we illustrate in figs. 2(a)-2(b) the
schematic representation of the energy level diagram in
the QD at gE = e2/h and gE = 2e2/h respectively, for
finite VD, VE and ∆. From eq. (3) it is easy to see that
the spectral density Aσ(ω) exhibits two Kondo peaks at
about (µασ̄ + εσ − εσ̄) = µασ̄ − σ∆ for each α [37]. Fol-
lowing eq. (2), gD vs VD exhibits a peak whenever one
of the chemical potentials for a given spin gets aligned
with a Kondo DOS peak for the same spin. This oc-
curs when µβσ = (µασ̄ + εσ − εσ̄), leading to the ana-
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Fig. 2: (a)-(b) Schematic representation of the energy level
diagram in the QD at gE = e2/h and gE = 2e2/h for finite
VD, VE and ∆. ρ↑ (ρ↓) represent the Kondo peaks in A↑(ω)
(A↓(ω)). (c)-(d) Results for the differential conductance gD in
gray-scale representation in the plane (VD,VE) at gE = e2/h
and gE = 2e2/h. (e)-(f) Results for the differential conduc-
tance gD vs VD at gE = e2/h and gE = 2e2/h for VE ranging
from -0.10 mV (bottom) to 0.26 mV (top). The curves are ver-
tically offset by 0.2e2/h for clarity. The results are obtained
for the symmetric Anderson model at T = 100 mK with U =
3 meV, Γασ = 0.25 meV and ∆ = 0.13 meV.

lytic prediction for the positions of the Kondo peaks. At
gE = 0 the Zeeman-split Kondo peaks is found to occur
at VD = ±(εσ − εσ̄)/e = ±∆/e. The splitting is equal
to 2∆/e. At gE = e2/h, the two Kondo peaks are found
to be located at VD = −∆/e + VE and VD = ∆/e. The
separation between these two peaks is (2∆/e−VE), which
decreases with increasing VE . When VE = 2∆/e, the Zee-
man splitting of the Kondo peak is exactly compensated
by spin accumulation in the lead produced by the injection
of a spin-polarized current. At this compensation point,
the two peaks merge into a single peak and the Kondo
peak is restored. This manifestation can be viewed as
the fingerprint of the formation of the Kondo spin-singlet
state at low temperature. At gE = 2e2/h, the analytic
predictions for the positions of the two Kondo peaks are

VD = −∆/e + VE and VD = ∆/e + VE . The separation
between peaks is 2∆/e, independent of VE .
In order to extract the peak parameters from our nu-

merical results, we fit the curves in figs. 2(e)-2(f) by a
double-Lorentzian function with a quadratic background

according to: f(x) = a+bx+cx2+z1

[
1
π

w1/2
(x−x1)2+(w1/2)2

]
+

z2

[
1
π

w2/2
(x−x2)2+(w2/2)2

]
. The quadratic background is nec-

essary to account for the contributions of the two broad
charge peaks in the DOS. We take two different weight
factors z1 and z2 to account for the asymmetry in the
spectral density arising mainly from charge accumulation
in S when VE 6= 0. The extracted values for peak positions
xi (i=1,2), FWHMs wi, heights 2zi/(πwi) and weight fac-
tors zi are reported in fig. 3. It is worth noticing that
the parameter extraction is possible only up to VE = 0.15
mV. Beyond this value the two peaks are too close and
can no longer be resolved. As expected, wi, heights and
weight factors of the two peaks coincide at VE = 0 in both
cases. In fig. 3, P1 and P2 correspond respectively to the
lower-VD and upper-VD peaks at gE = e2/h whereas P3

and P4 are the equivalent peaks at gE = 2e2/h. As can
be seen in fig. 3(a), our numerical results for the peak po-
sitions (in solid lines) are in excellent agreement with our
analytical predictions of VD = VE ±∆/e and VD = ∆/e
(in broken lines). The extracted FWHMs vs VE for the
different peaks are reported in fig. 3(b). The values of
the FWHM give us some useful information about the de-
gree of decoherence in the Kondo resonance. The higher
VD, ∆ or (µασ − µ0), the higher the FWHM. As can be
seen from fig. 3(b), wi for both P1 and P2 saturate at
large positive values of VE when the system gets closer to
the compensation point where the Kondo peak is restored.
From the same figure, one can see that wi for P3 and P4

do not show any evidence of saturation at large values of
VE as expected. Finally the extracted peak heights and
weight factors vs VE are reported in figs. 3(c)-3(d). While
the peak height results from the two antagonistic effects
brought by zi and 1/wi contributions respectively, the re-
sults show that the dominant contribution is provided by
zi.
The orders of magnitude of the various peak parame-

ters and their overall evolution as a function of VE are in
good agreement with the experimental data [18] although
the value that we adopted for U is slightly different from
the experimental estimation. However we would like to
point out that unlike what we find in our calculations,
the experimental results show a deflection of the P2 line
from VD = ∆/e in the vicinity of the Kondo compensa-
tion point along with large and sudden fluctuations of the
FWHMs for both P1 and P2 in this range. One of the
reasons for this behavior as suggested in Ref. [18] is that
the system is in a highly nonequilibrium situation when
gE = e2/h and hence the fermion states below µS↑ along
the cyclotron trajectory from E to S, are not fully occu-
pied at zero temperature [38, 39]. Ihis would result in a
double-step instead of the single-step Fermi-Dirac distri-
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Fig. 3: Kondo peak parameters extracted from results for gD
vs VD. (a) Peak positions. The extracted peak positions are
represented in solid lines whereas our analytical predictions
VD = VE ±∆/e and VD = ∆/e are represented in broken lines.
(b) FWHMs. (c) Peak heights. (d) Weight factors.

bution function considered in our calculations. It would
be interesting in the future to investigate consequences of
this situation.

Conclusion. – In summary, we have studied the com-
bined effects of Zeeman magnetic field and current injec-
tion into one lead on the nonlinear conductance of a QD
in the low temperature regime. When the injected current
is spin-polarized, the Zeeman splitting of the Kondo peak
in the differential conductance is found to be compensated
by an appropriate amount of spin accumulation in the lead
and the Kondo peak is restored in good agreement with
experimental data [18]. Our results in this Letter show
that the injection of a current in one lead of a QD offers a
new and promising route to controlling and manipulating
spin in nanoelectronic devices. Present work opens the
possibility of studying other important situations such as
separate spin accumulations in both leads with or without
the presence of magnetic field. In the absence of magnetic
field, we predict that the Kondo peak is restored when the
two leads have an equal amount of spin accumulation with
opposite spin orientation.
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