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COCoMoPL: A Novel Approach for Humanoid
Walking Generation Combining Optimal Control,
Movement Primitives and Learning and its transfer

to the real robot HRP-2

Debora Clever!, Monika Harant?, Katja Mombaur!, Maximilien Naveau?, Olivier Stasse?, Dominik Endres®

Abstract—COCoMoPL [6] is a recently developed approach
Combining Optimal Control, Movement Primitives and Learning
for the generation of humanoid walking motions. It solves optimal
control problems based on detailed dynamic models of the robot
for a variety of walking parameters and uses the solutions as
training data to create movement primitives that are very close
to feasibility and optimality. These can be employed to synthesize
complex walking sequences for humanoid robots online in a very
efficient way. We demonstrate, for the first time, that COCoMoPL
works on a real humanoid robot, here HRP-2 with 36 DOF and
30 position controlled actuators. To this end, it was necessary to
significantly extend the existing approach by including transition
steps into the training data, modify the movement primitives
(MP) to admit these transitions, improve the representation of the
ZMP MPs and tighten the transition conditions at the beginning
and end of steps. We present a thorough validation of the method
in simulation and on the real robot for a challenging sequence of
movements. We also compare the characteristics of movements
after each step of the methodology.

Index Terms—Optimization and Optimal Control, Learning
and Adaptive Systems, Humanoid and Bipedal Locomotion

I. INTRODUCTION

N the development of humanoid robots one major challenge

is to make these bipedal machines walk in a robust,
versatile and efficient way. Nowadays, many state of the art
walking motion generation methods are based on a simplified
dynamics, e.g. the table cart model [14] and quite conserva-
tive stability criteria, e.g. the requirement that the simplified
model’s zero moment point (ZMP) must be located in a small
area around the ankle joint [14].

If computing time is not an issue, then there is the possibility
to model the full dynamics of the robot. This allows one to
simulate its motions and to compute dynamical properties,
for example the ZMP of the full model. Full body motion
generation facilitates the synchronization of upper and lower
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body movement and usually results in a more dynamical
gait [24]. Using optimal control (OC) techniques, it is even
possible to compute a full body motion, which is optimal with
respect to some predefined objective function, e.g. [16]. It is
possible to decrease the computational time by using a flavor
of DDP called iLQR, which is dropping terms that have a low
impact on the cost function [26]. Further improvement in speed
is achieved in [26] by using a tailored contact model. The
drawback of this contact model is the difficulty in generating
realistic motions for walking [19]. Therefore, to overcome
the reality gap and to ensure that such motions are feasible
for the real robot, a very detailed model is needed [17].
Consequently, the computational effort is much too high for
real-time execution.

If optimality is a secondary concern, but small computa-
tional effort at production time is important, it is possible
to simplify the problem formulation [5], [7], [12] by con-
sidering the centroidal dynamics on a small window and the
whole body for instantaneous control. The problems can be
disconnected [5] or coupled [7], [12]. These methods however
assume heuristics to generate the end-effector trajectories,
while the methods considering the whole body motion can
find automatically complex feet and upper body motions.

Another interesting approach is movement primitives (MP)
[8], [11]. While MPs allow for real-time computation, it is
hard to guarantee optimality and feasibility of the generated
motions, because the typical cost functions employed in MP
learning do not measure these quantities explicitly.

Fig. 1. The humanoid robot HRP-2. From left to right: optimal control
model, OpenHRP model, real robot. Note that, even though the model in the
robot simulator OpenHRP takes into account the full dynamics of the robot,
it cannot be used for optimization purposes.

In this paper, we propose a new approach to generate full
body walking motions for a bipedal robot by combining OC
and MPs. Since we also employ machine learning for the
extraction of MPs from OC solutions, we call our approach
Combination of Optimal Control, Movement Primitives and
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Fig. 2. Methodology. Optimal and dynamically feasible motion trajectories (O Pa ) are computed by an optimal control approach from a given set of
parameters (l1, ..., k). Movement primitives (M Ps) are learned in a Gaussian process framework. New motions (X}), parametrized by [/, are generated
by using a small number of primitives. The resulting motions prove to be sufficiently close to optimality and dynamical feasibility, validated in the virtual
robot simulator OpenHRP and run on the real robot (upper branch). After this general validation, the generated trajectories are executable online on the robot

without the additional robot simulator validation (lower branch).

Learning, short COCoMoPL. Our approach inherits the key
advantages of both: local-optimality of the generated motions
and low computational effort for the production of novel
movements. Specifically, in comparison to existing approaches
that combine optimal control and movement primitives, e.g.
[9], [21], our approach has the following properties:

¢ Optimality: due to our sophisticated optimal control
model, we are able to compute locally optimal full body
motions with respect to a variety of different objective
functions, e.g. squared motor torques.

o Consistency: due to our detailed dynamical robot model,
computed full body motions are reliably feasible in the
robot simulator, which is a predictor for feasibility on the
real robot, too.

o Modularity: due to our Gaussian process based primitive
model, only a small set of training data is necessary to
generate a large variety of new motions.

« Augmentability: our approach allows to successively in-
clude new motions into the training data, e.g. optimal
transition steps that were not used in our previous work.

While the general approach has already been introduced
in our previous work [6], [17], we present the following
significant extensions in this paper:

« It contains the first validation of the approach on the real

robot on the basis of a very challenging walking motion.
To overcome the problem of large ground reaction forces
and torques, a number of improvements of the method
had to be implemented:

— the inclusion of transition steps between steps of
different stride lengths into the training data for MP
learning,

— the refinement of the learned ZMP trajectories by
using a higher number of MPs,

— the enforcement of a better match of the states
between two subsequent differing steps.

o We show that the performance of the generated motions
reaches - or even surpasses - the performance of the OC
motions on the real robot.

o Finally, due to damping effects, we show that the MP
motions close the reality gap even better than the OC

solutions.

The paper is organized as follows: in section II, we briefly
summarize the general task addressed in this paper and give
some background information about the robot HRP-2 and
the robot simulator OpenHRP; in section III we summarize
the theoretical background of our combined optimal con-
trol, movement primitives and machine learning approach
and explain how the approach is tailored to the robot; and
in section IV we discuss challenges and solutions for the
transfer of computational results to the real robot and the
reality gap. In section V, we analyze the generated motions
with respect to optimality and quality. We compare optimal
control results with learned results and simulation results with
their counterparts on the real robot, where the focus of the
comparisons is on squared joint torques and the contact forces
during touchdown and stance. We conclude our work and give
future perspectives in section VI.

II. TASK AND ROBOT DESCRIPTION

A. Task

The challenging task discussed in this paper is the online
generation of walking motions for humanoid robots with
variable walking steps. This should enable robots to re-plan
their walking motion on the spot, e.g. in response to perceived
properties of the environment, which impose new constraints
on feasible steps.

We are interested in the planning of longer walking se-
quences that may be quite demanding for the robot. This
necessarily involves the planning of individual steps as a sub-
problem. The method outlined in the following sections is
generally applicable to on-line movement planning. Here we
focus on the example of changing step lengths, because it is
a very important property to sustain in rough terrains. Other
step parameters could be handled the same way. The method
could also be applied to any other humanoid robot, for which
a dynamic model is available. However, several choices in
the method depend on the specific kinematic and dynamic
structure of the robot as well as its control system, so we will
briefly describe the robot first.
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B. Robot

We used the humanoid robot HRP-2 at LAAS-CNRS built
by Kawada Robotics [15]. It has 36 degrees of freedom,
and 30 motors, one for each internal degree of freedom:
(legs,2x6), (chest, 2), (head, 2), (arms, 2 x 7). To minimize
impact on the ground, the robot has three shock absorbers in
the ankles. The remaining 6 degrees of freedom describing the
floating base are unactuated. The sensors used for balancing
are an Inertial-Measurement-Unit (IMU) in the chest and two
6-axis force sensors located in each ankle of the legs. Less
powerful than ATLAS, or S-One, this robot has nonetheless
an industrial quality which affords good repeatability. The
manufacturer provides a rigid body model for the robot,
which is built upon the robot CAD model. The robot is
position controlled with high gain local controllers at each
joint. In addition, there is a global control system, the so-called
stabilizer, which supervises the overall stability of walking
motion and may interfere with any motion to improve stability.
A generated motion should therefore be feasible with respect
to the requirements of the stabilizer, because otherwise the
motion may be significantly altered.

The robot HRP-2 also comes with the OpenHRP simulator,
which uses a rigid multibody dynamics model. Rigid contacts
are computed using a linear complementary problem formu-
lation. The actuators are simulated taking into account rotor
inertia and gear ratio. Springs are considered as torque gen-
erators and simulated using a forward dynamics computation.
This provides a relatively faithful simulation of the humanoid
robot HRP-2 [22] which provides an important step in the
validation of motions. However, it is not suitable to use this
robot simulator for complex optimization tasks, see Section
1I-B.

III. FRAMEWORK

A. Overview

To quickly generate walking motions that are highly dynam-
ical, exploit the operational range of the robot and are close
to optimality with respect to a desired optimization criterion
we propose an approach that combines optimal control, move-
ment primitives and learning (COCoMoPL). We validate this
approach for challenging walking sequences in simulation as
well as on the real robot.

The general workflow of our approach is presented in Fig.2:
in a first step, described in section III-B, training data for the
MP learning is generated by solving optimal control problems
that take into account a detailed model of the robot dynamics
and its constraints. The resulting non-convex optimal control
problems (OCPs) are solved using a direct multiple shooting
approach combined with sequential quadratic programming
(SQP). Even though this only ensures local optimality, in the
following we refer to the solution of such an OCP simply
as ’optimal solution’. Optimal solutions are computed for
individual walking steps of different step length, of starting
and stopping steps, as well as for acceleration and deceleration
steps. Each of these solutions contains the histories of the
robot’s positions, velocities, forces and parameters (e.g. stride

length or phase time), which are all determined simultane-
ously. While all these solutions form the basis of the training
data, the nature of the robot’s control system determines which
solutions are used for MP learning (see section III-B).

In a second step, outlined in section III-C, MPs are learned
with a Gaussian process approach from the trajectories in
the training data. The MP model’s complexity and type,
here number of MPs and Gaussian process kernel type, are
determined automatically by approximate Bayesian model
comparison. We performed this comparison for HRP-2, it
might yield different results for another robot. It is important
to note that the number of MPs is much lower than the number
of training trajectories. We found that with a dataset containing
~ 10 training trajectories, the optimal number of MPs is in
the order of 10!. The generated movements are controlled by
morphing the weights with which the MPs are superimposed.
The weights are determined by functions that take the step
type and stride lengths as inputs. These functions are drawn
from a Gaussian processes.

These two steps form the preparatory phase of this method.
They take a significant amount of time - depending on the
robot and the amount of training data generated - between
many hours and up to several days. However, this effort has
to be expended only once.

In our workflow, in Fig.2 we now distinguish the paths for
the validation of the method (top/Validation), which we pursue
in this paper and for online motion generation (bottom/Online
motion generation), which describes the intended deployment
of this approach outside the lab. In both cases, the third
step addresses the synthesis of new walking motions by first
choosing desired step parameters, then drawing the weights
corresponding to these parameters, and finally superimposing
the MPs with these weights. Matching the beginning of the
trajectory of a step to the endpoint of the previous one is done
via approximate Bayesian conditioning, see section III-C and
[6] for details. In the validation case, this is executed for a set
of test motions, and at deployment time it will be performed
for any new motion the robot is supposed to perform.

For validation purposes, the generated motions are first
tested within the robot simulator OpenHRP before being trans-
ferred to the real robot, as described in section V. The result of
all these tests and their comparison with the original optimized
solutions is described in section V. The computational effort
for validation of a single movement ranges from several
seconds to several minutes.

During deployment, the newly generated movement se-
quences would be transferred to the robot immediately without
preliminary testing in the simulator, due to real time con-
straints. This step currently takes a few seconds. We are in
the process of optimizing it to make it truly real-time feasible.

B. Optimal Control based Training Data Generation

The general workflow to generate the training data is de-
picted in Fig.3. Due to the fact that the humanoid robot HRP-
2 is position controlled and takes as input joint angles, hip
orientation and ZMP trajectories, we include these quantities
in the training data. To be able to compute optimal and
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Fig. 3. Optimal control based training data generation. Optimal and
dynamically feasible training data are computed by an optimal control
approach. We set up four different kinds of OCPs: starting steps, cyclic steps,
transitions steps, and stopping motions. Each OCP is solved for each training
step length (150mm, 250mm, 300mm, 350mm, 400mm).

dynamically feasible full body motions, a detailed dynamics
model of the robot has to be considered within the opti-
mal control problems. Even though the model in the robot
simulator OpenHRP takes into account the full dynamics of
the robot, it is not usable for optimization purposes. To be
able to exploit efficient mathematical optimization algorithms
and ensure a suitable handling of constraints, we define an
additional dynamic model in form of a hybrid system of
differential algebraic equations with all relevant constraints.
Such an OCP consists of different phases taking into account
the change of contacts, impacts at touchdown and the resulting
changes in the dynamics.

Here, the humanoid robot HRP-2 is modeled as a rigid
multibody model with 36 degrees of freedom. Each step
consists of two phases with varying contact sets (double and
single support) and one discontinuity at the end (touchdown).
Phase transitions are defined in terms of events (e.g. with
respect to contact forces) to allow for a free phase timing of
the motion. The resulting equation of motion is a system of
hybrid differential algebraic equations (DAE) of index three.
For computational efficiency, we reformulate it as a system of
index one. The dynamic equations are composed analytically
and converted into C-code by the dynamic model builder
DYNAMOD based on 6D spatial geometry [10] and symbolic
code generation following [27].

To be able to generate a wide range of walking motions,
we define four different kinds of optimal control problems:

o The first type of OCP generates one optimal step of a
cyclic motion with constant and predefined step length.
Note, that the configuration (i.e. position, velocity and
force/torque) at the beginning and the end of a step are
just mirrored to each other and that the distance between
the robot’s feet in this configuration coincides with the
physical step length.

o The second type of OCP generates optimal transition
steps. They start at the final configuration of a cyclic
step with a given step length, perform one transition step

and end in a configuration that coincides with the initial
configuration of a cyclic step of different step length.

o The third type of OCP generates optimal starting motions
of a predefined step length. They begin at a static posture
with both feet next to each other, perform one step and
end at a configuration that coincides (i.e. same position,
velocity and force/torque) with the initial configuration
of a cyclic or a transition step.

o The fourth and last type of OCPs generates torque optimal
stopping motions, that start at the final configuration of
the cyclic or transition steps with a predefined step length,
perform two steps, and finally stop at a static posture with
both feet next to each other.

For the sake of smoother motor torque profiles 7, the control
function w is defined by the time derivative of the motor
torques in the actuated joints (v := 7). The state function
x maps time onto pelvis translation, pelvis orientation, joint
angles, all corresponding velocities and the actuated torques
(z := (q,v,7)). The parameter set p describes model- and
gait-specific quantities, where some of them are free to be
determined by optimization. Finally, the objective J is defined
as

Npor

ty
J(x,u,p>=J<q,v,T,+,p>=/ S 2 dt 4 Jen (D)
0 =0

to resolve the redundancy via torque minimization in the pow-
ered joints. The penalty term Jp, is a Lagrangian relaxation of
inherent constraints imposed by the high level control system
of the robot. Note, that for an optimal solution, where the
constraints are fulfilled, this term becomes negligibly small.

Summing up, this results in an optimal control problem
with 110 state and 30 control functions, which we solve with
a direct approach that is based on a control discretization
with local support functions, a state parameterization by
multiple shooting and a structure exploiting SQP method [3],
implemented in the software package MUSCOD-II [20]. For
more details on the dynamic optimal control model of HRP-2,
including the constraints in the penalty term, we refer to [16],
[18].

Besides the parameterization by step type we also param-
eterize the walking motions by their physical step length.
Exploiting the symmetry of the robot, we solve the involved
OCPs only for steps where the first support is on the right leg
and mirror the computed solutions for the corresponding OCPs
with the roles of legs being exchanged. We compute optimal
motions for five different step lengths (150mm, 250mm,
300mm, 350mm, 400mm) for starting, stopping and cyclic
motions, increasing transitions 150mm — 250mm, 250mm
— 300mm, 300mm — 350mm, 350mm — 400mm and
decreasing transitions 400mm — 350mm, 350mm — 300mm,
300mm — 250mm, 250mm — 150mm. Considering right and
left steps, the generated training data consists of two times
23 torque optimal and dynamically feasible motions, each
defined by 30 joint angle trajectories, 3 ZMP trajectories and
3 trajectories describing the pelvis orientation. This sums up
to a total number of 2 - 23 - (30 + 3 + 3) = 1656 training
trajectories.
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C. Learning MPs and Generating New Movements

The general workflow for the MP part of our work is
shown in Fig.4: we machine-learn MP models from the OCP-
generated training data, select the best of these with approx-
imate Bayesian model comparison, and validate the result by
generating novel movements that are not part of the training
data.

Section 1T —C
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Fig. 4. Learning movement primitives (MP) and motion synthesis. We
use variational free energy learning to extract MPs from the optimal control
generated training data. MPs are drawn from Gaussian processes. The number
of MPs and the kernel type are determined via approximate Bayesian model
comparison.

As detailed in [6], we employ a temporal MP model, i.e.
the MPs are stereotypical time courses, which are linearly
superimposed to approximate the training data. A graphical

GP(ump(t), kap(t,t)) GP(xi.s(1),7i,s(1,17))

—(r)  Q.u—e
|/
i/
..

o4
o— @ K

Fig. 5. The morphable movement primitive model, figure adapted from [6].
We generate time series X;(t) of I signals (joint angles etc.) by multiplying
S many movement primitives M P (t) with weights W;. There is one weight
per signal and MP. Weights are controlled by step type/stride length parameters
lj, of which there is one instance per trial K. GP(.,.) indicates a Gaussian
process.

model in plate notation is shown in Fig.5. We index the train-
ing movements with k, degrees of freedom (DF, joint angles,
pelvis rotation and ZMP) with ¢ and movement primitives
with s. Let [ be the parameters of movement k, Xy;(t)
be the trajectory of DF ¢ in movement k, M Ps(t) the s-
th movement primitive and W;,(l;) the weight with which
primitive s contributes to DF ¢ in movement k. Then

Xi(t) =Y Wis(ls) MPy(t) + i () )
where mi;(t) ~ N(0,0;) is Gaussian noise. To promote

smooth MPs, we draw them from Gaussian process priors
GP(parp, (t), karp, (¢, ")) with a RBF kernel

kap, (t,t) = o exp (—s(t — t’)z) 3)

and mean functions prp, (t) estimated from a PCA decom-
position of the training data. Gaussian processes are a staple
in modern machine learning for regression and interpolation
problems [25].

The weights W;,(l)) are functions of the step parameters
li.. In [6], we parameterized the weights by step type and step
lengths, i.e. the I, = (type,, length, ) were tuples. In contrast,
we now want to model transition steps, too. Therefore, we
augment the [;, with the lengths at the beginning and the end
of a step,

I, = (type,, start length,, end length, ). 4

We learn the functions from these triples onto the weights in a
Gaussian process framework: weight functions are drawn from
GP(xis(l),mis(1,1")) with kernels

ris(l, 1) = 5type,type’ - Qs €XP (_’Yis‘z|2) (5)

where vector z = (start length — start length’, end length —
end length’) and Kronecker delta Otype,type’ = 1 if type =
type’ and zero otherwise.

Since the exact posterior distributions of the W;(l,) and the
M P,(t) are intractable, we resort to a variational free energy
approximation [2] and maximize the usual lower bound £ on
the marginal log-likelihood of the trajectory data X

L (log (P(X|H)))qm)—D (Q(H)||P(H))
< log(P(X)). (6)

where H are latent variables and parameters, and Q(H) is an
approximation to the correct posterior. We chose Q(H) to be
conjugate to the prior, i.e. the posterior distributions of both
MPs and weights are assumed to be multivariate Gaussian. For
details of the derivation of this bound, see [6]. We maximized
L with respect to the parameters of QQ(H) and the kernel
parameters using the Broyden-Fletcher-Goldfarb-Shanno al-
gorithm for constrained optimization [4] implemented in the
SciPy package [23]. Automatic gradient computation was
done with the Theano library [1]. The training data was com-
prised of regular steps (left foot swing) and starting/stopping
steps of 150mm, 250mm, 300mm, 350mm, 400mm lengths,
and their mirror images (right foot swing). Furthermore, the
data included the following step length transitions: 150mm <+
250mm, 250mm < 300mm, 300mm <> 350mm, 350mm <>
400mm, and their mirror images.

To generate a new step k' with parameters I/, we compute
the posterior means of the X/;(t), conditioned on lx. If we
are not generating a starting step, we furthermore condition the
initial state of the step to be nearly equal to the end state of the
previous step. For steps that could be executed by the robot
without falling, we had to set the target explained variance to
99.9% for the joint angle and ZMP trajectories. A smaller
explained variance target results in infeasible movements,
whereas a higher one unnecessarily increases computational
effort. This target was approximately reached with 11 MPs,
where we found a (broad) maximum of L earlier [6]. Note
that the training data for the joint angles were comprised
of 1656 trajectories in total, so 11 MPs is a significant
compression which the MP learning achieved with nearly no
loss in accuracy.
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IV. TRANSFER TO ROBOT

The reality gap between a motion run on the simulated robot
in OpenHRP and run on the real robot is due to a certain
number of assumptions which are violated. First, our OC
method assumes that the rigid multibody dynamic model and
the real robot are sufficiently coherent, such that the controller
on the robot is able to compensate for the differences. Our
experience confirms that the model is quite close to reality.
Of course, identifying the robot parameters using state-of-the-
art methods helps in diminishing the differences [13]. We use
a model provided by the robot manufacturer without additional
corrections. Another major assumption on HRP-2 lies in the
low-level position control system. We assume that defects such
as elasticities in the harmonic drives, the timing belt, and
possibly in the 1 KHz PID can be neglected. This assumption
is reasonable due to the use of high gain controllers. The robot
has three shock absorbers in its ankles [22]. In simulation
they are represented by one linear and two torsional springs.
However, the simulated springs do not model the limits of
the shock absorbers. Indeed, when the limits are reached the
shock absorbers can not be compressed anymore. For very
dynamic motions, such as the ones proposed in the paper, the
shock absorbers’ deformation limits need to be avoided on
the real robot. In OCP, these issues are taken into account
by generating consistent dynamical motions, which do not
deform the rotational springs. Even though such constraints
can be easily formulated in the OCPs, the challenge here is to
avoid such deformations when generating a new motion with
machine learning algorithms which do not explicitly constrain
the solutions to be feasible for the robot.

Transitions are important because they describe the landing
of the swing foot and the weight shift from one foot to
another. If the controller is not able to act properly the swing
foot may hit the ground with an impact that is too strong
for the robot. This is especially true with highly dynamic
motions. In order to detect this problem, we used the simulator
OpenHRP to verify the generated motions. However, due to the
discrepancy explained above, the simulator is overly optimistic
when the center of pressure (CoP) strays from the center of
the feet. In simulation, the controller is able to recover from
situations which are not feasible in reality. This happens for
instance when all the contact forces appear to lie only at the
border of the foot. We struggled with this discrepancy when
we tried to run a 7 MP generated movement whose ZMP
trajectories were feasible in OpenHRP (Fig.6, blue lines) on
HRP-2: feasibility was predicted but not obtained in reality.
By increasing the number of MPs from seven to eleven, we
were able to generate an HRP-2-feasible movement (Fig.6,
red lines). This observation coincides with one important
result of our previous work [6]: the generated motions learned
from optimal control results have been feasible for the robot
simulator and therefore had a high potential to be executable
on the real robot as well. However, analyzing contact forces
and mean (squared) torques shows a significant increase of
both on step transitions. Whereas the high mean torques only
mean suboptimal movements (c.f. eqn.l), the high contact
forces can damage the robot. Having improved the quality

ZMP, transition 150mm-250mm
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Fig. 6. ZMP trajectories for transition steps from 150mm to 250mm length.
Black lines are OCP generated, red/blue lines are generated with 11 and 7
MPs, respectively. The movement with 11 MPs matches the OCP solution
more closely, especially towards the end. All shown trajectories are parts of
feasible movements in OpenHRP, but only the OCP and the 11 MP trajectories
are feasible on HRP-2.

of these transitions significantly, the generated motions are
now feasible for the real robot. Therefore, the next section is
devoted to the analysis of these motions.

V. MOTION ANALYSIS

In the following section we discuss two important issues of
transferring the generated motions to the real robot: feasibility
and optimality. To this end, we consider a generated motion,
which includes large changes in stride lengths, and several
steps that were not part of the training data:

Motion Mgey: (150mm) — 150mm — 250mm — 350mm
— 390mm — 350mm — 250mm — 150mm — (150mm),

where the values in brackets stand for the step length of
the starting step and the stopping step, respectively. With the
exception of the transitions 150mm <> 250mm and the 150mm
starting/stopping movement, the steps in this sequence are
novel with respect to the training data. Fig.7 shows example
frames of this sequence.

We compare this MP generated step sequence to the fol-
lowing OC generated sequence

Motion Myp: (150mm) — 150mm — 250mm — 350mm
— 400mm — 350mm — 250mm — 150mm — (150mm).

As noted above, most of this sequence is not a part of
the training data and has been computed for comparison and
analysis reasons afterwards. The one slight difference between
a 390mm step in the generated motion and a 400mm step in the
optimized motion has been chosen for the following reason: as
the difference of one centimeter in physical step length (which
is not explicitly set, but a result of all joint angles) lies in the
range of variation, the two motions can be considered to be
similar. But using 390mm instead of 400mm in the generated
motion gives an additional validation of the learning results of
intermediate physical steps sizes that have not been present in
the training data.

From previous work [6] we have learned, that a sudden in-
crease of contact forces up to a moderate value is compensable
by the position controller in simulator but causes problems on
the real robot. For the revised approach, which is now feasible
for the robot, contact forces are always close to the guiding
value of 600N, even on transitions between steps, see Fig.8.
In comparison to the contact forces from a motion generated
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Fig. 7. Highly dynamic motion with large step size changes. Motion resulting form MP-learning (MP) executed in robot simulator OpenHRP (top) and

on real robot HRP-2 (bottom).

with a common pattern generator (Kajita), the contact forces
from the generated MP motion are even smoother.
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Fig. 8. Contact forces. From top to bottom: OC computational, OC executed
on HRP-2, MP executed on HRP-2, pattern generator (Kajita).

Even though the most important issue is the feasibility of
the generated motions on the real robot, optimality is also
interesting. As our training data consists of motor torque
optimal motions, minimizing (1), we are interested in the
question of how well optimality carries over from optimized
to generated motions. To this end, we evaluate the mean joint
torques

1
Npor 2

. . 1 b
J(q, v, Tacts Tact) = m /0 Z 7—a2ct,i dt,
=0

for optimal control results, simulation results and robot results
and compare them to each other. In comparison to the com-
putational motor and joint torques of the rigid body model in
the OC context and the joint torques on HRP-2, the torques
for the corresponding motions in OpenHRP are significantly
damped. This behavior is shown exemplary for the knee joints
in Fig.9. As a consequence, the integral over the squared
torques is smaller for the executed motions in the robot
simulator than for the rigid body model in the OC context and
the real robot, see Table I. Even though (except for the OC
motor torques) all evaluated mean torques ([ 72dt)1 /(N -ty)
should be comparable, due to model mismatches we observe
a range between 15.6Nms~! and 19.8Nms~!. However, it
appears that the value of the mean torques with respect to

right knee pitch

— OC motor torques|
— OC joint torques
100 — OC OpenHRP

torque [Nm]
o

—0OC OpenHRP
MP OpenHRP

OC HRP-2

100r ——MP HRP-2

torque [Nm]

6
time [s]

Fig. 9. Right knee torques. Exemplary for the behavior in all joints.
Comparison between the computational motor torques of the OCP (black),
the computational joint torques of the OCP (red), the torques for the OC
based motion in OpenHRP (blue), the torques for the MP based motion in
OpenHRP (cyan), the torques for the OC based motion on HRP-2 (green) and
the torques for the MP based motion on HRP-2 (magenta).

TABLE I
MEAN TORQUES ([ 72dt)$ /(N - ty) [NMs™1]

oC oC oC MP oC MP
motor t joint t sim sim rob rob
34.1 23.5 15.6 15.6 19.8 19.2

each device (robot or simulator) carries over from OC to
MP. Finally, all test motions were repeated at least 4 times
on the HRP-2 humanoid robot. In each case, there was no
problem with respect to large impact at the ankles while
landing. Concerning the reality gap, this is the most important
improvement compared to our previous work. A persistent
problem however is the divergence of ZMP at the junction of
starting and ending motion primitives. This is mostly due to the
fact that despite strong constraints on the ZMP included at the
OC and MP level, the stabilizer is not always able to recover.
As pointed out in Section IV this can be due to the motion
generation, but also due to the model inaccuracies. Indeed,
such problems do not only appear during the MP generated
motions but also when using the OC motions. An interesting
way to solve this problem would be to feed such limitations
back to the MP and/or the OC level. Practically, it is usually
implemented directly in the controllers using inequalities.
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VI. CONCLUSIONS

We demonstrated, for the first time, that our proposed
Combination of Optimal Control, Movement Primitives and
Learning (COCoMoPL) yields nearly optimal movements,
which can be feasible on a real robot, here HRP-2. An
important contribution is the addition of transitions steps,
which enable the robot to change step length during walking.

While we predicted feasibility without such transitions steps
in our earlier work [6] based on OpenHRP simulations, the
real robot could not execute these movements safely. This was
mostly due to unbearably high contact forces at the transition
points. We showed here, that the addition of a small number
of transitions steps to the training data and a new kernel
that explicitly accounts for transitions remedies this problem,
making the MP generated movements as feasible on the robot
as the OCP solutions.

Another appealing feature of COCoMoPL is the ability to
generalize a small amount of training data into a continuum of
new full-body movements while maintaining near-optimality
and feasibility. We deem this feature very useful, because
computing OCP solutions is a computationally costly off-
line process, whereas MP-based generation is a cheap on-line
process that could even be made real-time capable with some
code optimizations.

However, our work is far from done. As next steps, we plan
to extend our approach in several directions: first, we want to
include more types of movements into the MP training data,
such as turning, stair climbing, etc. Given that we were able
to represent 1656 training trajectories with only 11 MPs, we
are hopeful that the inclusion of further training data will not
lead to an inflated model. Furthermore, we expect that other
movements, which are not as dynamic as our OC steps, will
prove to be even more easily executable on the real robot. Such
an extended MP model would be an important step towards
a fully on-line movement control system for HRP-2. Second,
since the ZMP trajectories (Fig.6) were over-smoothed by an
RBF kernel with 7 MPs, we are looking into different kernels
which can model the cusps in these trajectories. Third, we
aim to close the ’reality gap’ between OpenHRP and HRP-2
further, so as to achieve feasibility for even more movements.
To this end, we plan to incorporate feedback from trials on
the robot into the MP learning process. The simplest form of
such feedback would be a reinforcement learning signal, or
richer feedback in the form of sensor data from the robot that
might even be useful for on-line corrections.
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