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order finite volume method for the solution of compress-ible viscous flows on unstructured meshes. The 
oving Kriging shape functions for the computation of the derivatives in the numerical flux reconstruction 

sive derivatives of the flow variables are deduced from the inter-polation function constructed from a 
 quartic spline cor-relation models. A particular attention is paid for the study of the influence of the 
umerical scheme. The effect of the size of the moving Kriging stencil is also investigated. Robustness and 

nviscid and viscous flows. Results reveal that the moving Kriging shape function can be considered as an 
igh-order methodology for complex geometries.
1. Introduction the properties of the numerical scheme. The use of meshless
Nowadays computational fluid dynamics (CFD) is routinely
used for many applications in aerodynamics, hydromechanics
and aerospace. Achieving high-order of accuracy on unstructured
grids, and thus obtaining a better solution than second-order
schemes for the same grid resolution, should improve the predic-
tion of complex flow features. Such issue can be addressed using
several numerical approaches [1], among others, the high-order
continuous finite element method (FEM), the discontinuous Galer-
kin (DG) method and the spectral volume method (SVM). For in-
stance, significant reduction of spurious entropy generation can
be obtained using a third-order discretization for the solution of
an inviscid steady flow past a subsonic airfoil [2,3].

The most popular approaches employed to construct high-order
finite-volume schemes for hyperbolic conservation laws on
unstructured grids are the k-exact least-squares reconstruction
[4–11] and the ENO [12,5,13] or WENO [14–17] reconstructions.
However, it is well known that the accuracy of a high-order finite
volume method depends strongly in the computation of the gradi-
ents and higher-order derivatives. As a consequence, the selection
of the approximation or interpolation methodology to the compu-
tation of the derivatives is very important, and it greatly influences
(J.-C. Chassaing), xnogueira@
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approximations methods seems to be an promising alternative to
k-exact and WENO reconstructions since these approaches are de-
signed to work with scattered data [18,19]. Thus, they can be
straightforwardly used on unstructured grids for problems in com-
plex geometries. Cueto-Felgueroso et al. [20] and Nogueira et al.
[21] adopted a moving least squares (MLS) reproducing kernel
method for the computation of the derivatives required for the
reconstruction of the variables inside the control volumes. This ap-
proach, namely the finite-volume MLS (FV-MLS) method, has been
successfully employed for solving wave propagation problems as
the linearized Euler equations [22], and also not purely wave prop-
agation problems, such as Navier–Stokes equations [23,24]. If we
only consider the convective terms, MLS reconstruction may be re-
garded as a higher-order extension of classical second-order finite
volume methods since they serve to compute the extra terms in-
volved in the Taylor expansion used in the reconstruction step
[11], similarly to the k-exact least-squares reconstruction [4]. An
additional advantage of this approach is the treatment of diffusive
terms, that are computed directly at integration points. This allows
a very accurate, centered, discretization of these terms. The result-
ing savings in coding efforts are therefore significant compared to
the WENO reconstruction. Suitable interpolation kernels must be
employed for the computation of the MLS shape functions in order
to maintain the robustness and the accuracy of the method. Most
and Bucher [25,26] developed regularized MLS weighting functions
in the context of the element-free Galerkin method in structural
analysis.



However, MLS-based reproducing kernel method is not the only
possible choice. There are many other candidates to be selected as
the interpolation/approximation technique [27–29]. Cite, for in-
stance, the radial polynomial interpolation method (RPIM)
[30,31], the local maximum entropy (LME) approach [32] and the
moving Kriging (MK) interpolation [27,29]. The latter can be
regarded as a regression technique to interpolate spatially and
temporally correlated data [33]. Kriging models, whose regression
coefficients are based on the best linear unbiased estimation, are
also widely used to construct accurate global approximations in
multidisciplinary design optimization [34,35]. In order to over-
come the difficulty of accurately imposing essential boundary con-
ditions in element-free Galerkin (EFG) methods, Gu [36] proposed
to build EFG shape functions using moving Kriging (MK) interpola-
tion instead of MLS approximations for solving the weak form of
the steady-state heat conduction problem. This approach was then
deployed for various applications in solid mechanics [29,37–43]
including both static and dynamic structural analysis. Moving
Kriging interpolation requires the choice of a correlation parameter
which depends from the problem of interest. This is very similar to
the selection of the shape parameters for MLS reconstructions [21].
Recently, Bui and Nguyen [43] used a MK-based meshfree method
for the eigenvalue analysis of Kirchhoff thin plate structures with
complex geometric shapes. Improved mesh-free approximations
were developed by Shaw et al. [44] using a Kriging based error-
reproducing and interpolating kernel method (ERIKM). In order
to prevent numerical instabilities, the derivatives of the basis
functions are not computed directly but using a polynomial repro-
ducing condition.

In this work, we aim to show the feasibility of using MK shape
functions for building a novel high-order finite volume method for
the solution of compressible flows on unstructured grids. To this
end, the successive derivatives of the MK basis are computed di-
rectly based on the choice of the expected formal order of accu-
racy. Then, numerical fluxes are evaluated in the similar way as
for other high-order reconstruction schemes using Taylor expan-
sions. A particular attention will be paid for the study of the influ-
ence of the correlation parameter on the solution accuracy and
robustness.

The outline of this paper is organized as follows. Section 2
briefly describes the finite volume formulation of the governing
equations. The high-order discretization algorithm based on mov-
ing Kriging reconstruction is detailed in Section 3. Section 4 pre-
sents a deep investigation of the proposed scheme for both
smooth and transonic inviscid flows. The application of the FV-
MK approach to viscous unsteady flows is presented in Section 5
and concluding remarks are drawn in Section 6.
2. Governing equations and finite volume formulation

The conservative form of the two-dimensional Navier–Stokes
equations can be written in Cartesian coordinates as
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where the vector of conservative variables Q , the vector of the
inviscid fluxes F ¼ ðFx;FyÞT and the vector of the viscous fluxes
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Here, q is the density, u; v are the x-wise and y-wise components of
the velocity vector, and p; E denote the pressure and the total en-
ergy respectively, l denotes the dynamic molecular viscosity, T is
the temperature, Pr is the Prandtl number and Cp denotes the spe-
cific heat at constant temperature. The Sutherland’s law is em-
ployed to compute the dynamic viscosity

l ¼ l1
T þ S0

T1 þ S0

T
T1

� �1:5

; ð4Þ

where l1 and T1 are the free-stream viscosity and temperature
and S0 ¼ 110:4 K. The equation of state for an ideal gas is used to
close the system of equations

p ¼ ðc� 1Þ E� q
2

u2 þ v2� �� �
; ð5Þ

where the ratio of specific heats is c ¼ 1:4. The governing equations
are discretized using a cell-centered finite-volume formulation on
an arbitrary unstructured grid. The problem domain X is divided
into non-overlapping triangular cells Xi whose number of face is de-
noted by nf . Since the present study is restricted to the particular
case of non-moving and non-deforming meshes, the semi-discrete
finite-volume formulation of Eq. (1) reads
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where �Q i denotes the cell-averaged value of the solution

�Q i ¼
1
jXij

Z
Xi

Q ðx; tÞds: ð7Þ

The flux integrals involved in (6) must be computed in such a
way that the order of the flux integration should be at least equal
than the accuracy of the reconstruction of the solution [11]. In this
work, we employ Gauss–Legendre quadratures. Therefore, a quad-
rature rule with nq points integrates exactly a polynomial of degree
2nq � 1. For instance, the integral involving the inviscid fluxes (6) is
approximated asZ

C‘

FðQ ðx; tÞÞ � n̂ds � jC‘j
Xnq

q¼1

wqFðQ ðxq; tÞÞ � n̂; ð8Þ

where xq denotes the quadrature point with quadrature weight wq.
A single quadrature point situated at mid-side of the face with unit
weight is considered for linear reconstruction. Two equally-
weighted quadrature points per face are employed for the case of
quadratic and cubic reconstructions.

The spatially discretized form of the semi-discrete finite volume
Eq. (6) can be written in short form as
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¼ � 1
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jC‘jwq FðQ ðxq; tÞÞ � GðQ ðxq; tÞÞ
� 	

� n̂ � Rið �Q Þ;

ð9Þ

where Rið �Q Þ represents the residual for the ith cell. Hereafter the
bar symbol will be dropped for sake of clarity. The normal fluxes
across each element face in (9) can be evaluated using any suitable
numerical flux Fnum based on the right and left Riemann states of
cell face



FðQ Þ � n̂ � FnumðQ L;Q R; n̂Þ; ð10Þ

where subscripts L and R indicate the states of the flow properties at
the right- and left-side of the cell face. In this work, we employ the
HLLC approximate Riemann solver [45,46] which is based on the
approximation of the Riemann fan with two intermediate states
Q �L and Q �R separating the contact wave. The HLLC numerical flux
is expressed as

FhllcðQ L;Q R; n̂ijÞ ¼

FðQ LÞ if SL > 0;
FðQ �LÞ if SL 6 0 < SM;

FðQ �RÞ if SM 6 0 6 SR;

FðQ RÞ if SR 6 0;

8>>><
>>>:

ð11Þ

where the expressions of the acoustic waves SL; SM and the contact
wave SM can be found in [45]. The corresponding numerical fluxes
possess good properties in resolution of shocks, contact waves
and preservation of monotonicity. Finally, the semi-discrete system
(6) is marched in time using an explicit three-stage third-order TVD
Runge–Kutta scheme [47]

Q ð1Þ ¼ Q n þ Dt RðQ nÞ;

Q ð2Þ ¼ 3
4

Q n þ 1
4

Q ð1Þ þ Dt RðQ ð1ÞÞ
h i

;

Q nþ1 ¼ 1
3

Q n þ 2
3

Q ð2Þ þ 2
3

Dt RðQ ð2ÞÞ

 �

; ð12Þ

where subscript i was dropped for sake of clarity. Local time step-
ping acceleration is employed for steady state flow solution.

3. Spatial discretization methods

From a practical point of view, the computation of the numeri-
cal fluxes (10) requires the reconstruction of the vector of the
primitive variables q ¼ ½q; u;v ; p�T at both right- and left-side of
the cell faces. For first-order spatial accuracy, a constant piecewise
cell distribution is assumed. The Riemann states are simply taken
from the cell centroids. In order to construct high-order schemes,
qL and qR are interpolated from the cell centroids using Taylor ser-
ies expansions. A simple algorithm based on the use of a least
squares approach for the computations of the cell gradients is pre-
sented in Section 3.1. The resulting second-order discretization
scheme (namely the LS2 scheme) will serve as a reference scheme
for comparison with second- and higher-order schemes con-
structed using the moving Kriging (MK) shape functions described
in Section 3.2. The correlation functions and a brief discussion
about the construction of the domain of influence are presented
in Sections 3.3 and 3.4 respectively.

3.1. Least squares linear reconstruction

Second-order spatial accuracy leads to the following piecewise
linear component wise reconstruction of any primitive variables
q in the vicinity of cell centroid x0

qðxÞ ¼ qðx0Þ þ $q0ðx� x0Þ; ð13Þ

where $q0 is the gradient vector of the unknowns which is assumed
to be constant for each cell Ci. Wang and Liu [31] computed the cell
gradients by means of the following least squares fitting
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This method has the advantage to use directly the unknowns at cell-
centroids without depreciating the formal second-accuracy of the
numerical scheme. The corresponding reconstruction stencil is sim-
ply build using the first layer of neighbors to the cell center control
volume (e.g. Nf ¼ 3 for triangular elements). Previous numerical
experiments have shown that the results of the LS2 scheme are
comparable to those obtained from the high-resolution procedure
proposed by Jawahar and Kamath [48] where the gradients of cell
Ci are computed using the area-weighted average of the corre-
sponding face gradients. However, the present scheme is more flex-
ible to implement and it does not require some nodal averaging
procedure to compute the flow gradients.

3.2. Higher-order discretization based on Moving Kriging shape
functions

High-order reconstructions of qL and qR can simply be derived,
in the framework of finite volume methods, from the following
expansion in the vicinity of x0
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For instance, the cubic Taylor polynomial approximation of the
solution reads
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For unsteady applications, it is necessary to introduce addi-
tional terms in (17) and (18) to enforce the conservation of the
mean [4,23,49].

The primary objective of this study is to compute the successive
derivatives at cell centroids involved in (17) by means of the mov-
ing Kriging (MK) interpolation technique for scattered data [33].
Let Xx a compact support containing n grid nodes around the node
of interest x0. We first consider the estimated value qh of the func-
tion qðxÞ at point x0

qðx0Þ � qhðx; x0Þ ¼
Xn

i¼1

kiqðxiÞ ¼ UMKðxÞqXx
; ð19Þ

where qXx
2 Rn contains the values at support points and the weight

ki, defining the shape of the reconstructed interpolating function
around node x0, is a function of x. The shape function matrix
UMKðxÞ 2 R1�n is decomposed based on a regression representation
plus local departures [34,36,40]

UMKðxÞ ¼ pTðxÞAþ rTðxÞB; 8x 2 Xx; ð20Þ



where pTðxÞ ¼ ½1; x; y; xy; x2; y2; . . .� is the row vector of the m-
dimensional polynomial basis. For two-dimensional problems, the
reconstructions defined by Eqs. (13) and (18) imply that m ¼ 3
and m ¼ 10 respectively. The matrix rTðxÞ 2 R1�n of correlation be-
tween the nodes of the stencil and x is defined by

rTðxÞ ¼ ½Cðx1; xÞ; . . . ;Cðxn; xÞ�; ð21Þ

where Cðxi; xÞ denotes the correlation function of the MK
interpolation.

The coefficients of matrices A 2 Rm�n and B 2 Rn�n in (20) are
determined by minimizing the mean square of the estimation error

E½qðx0Þ � qhðx; x0Þ�2 ¼ E½qðx0Þ�2 �
Xn

i¼1

2kiE½qðx0ÞqðxiÞ�

þ
Xn

i¼1

Xn

j¼1

kikjE½qðxiÞqðxjÞ�: ð22Þ

Moreover, the Kriging weights k1; . . . ; kn must satisfy the no-bias
property of the estimator which means that the expected values
of qhðx; x0Þ and qðx0Þ are equal. The resulting linear optimization
problem, which is expressed using the Lagrange function Lðki;lkÞ,
is characterized by a linear system of ðnþmÞ equations with re-
spect to the unknown k 2 Rn and the Lagrange multipliers l 2 Rm

relative to mth linear constraints

Xn

j¼1

kjE½qðxiÞqðxjÞ� þ
Xm

k¼1

lkpkðxjÞ ¼ E½qðx0ÞqðxiÞ�; 1 6 i 6 n; ð23Þ

Xn

j¼1

kjpkðxjÞ ¼ pkðx0Þ; 1 6 k 6 m; ð24Þ

where pkðxiÞ denote the monomials of the polynomial basis.
The Kriging system defined by Eqs. (23) and (24) can be written

in matrix form as

Ckþ Pl ¼ rðx0Þ;
PT

k ¼ pðx0Þ; ð25Þ

where the covariance matrix C 2 Rn�n is defined as

C ¼

1 Cðx1; x2Þ � � � Cðx1; xnÞ
Cðx2; x1Þ 1 � � � Cðx2; xnÞ
..
. ..

. . .
. ..

.

Cðxn; x1Þ Cðxn; x2Þ � � � 1

2
66664

3
77775 ð26Þ

and jP ¼ pðx1Þpðx2Þ � � �pðxnÞ½ � 2 Rm�n contains the values of the
polynomial basis at all nodes of the stencil.

Substituting the weights k solved from (25) in Eq. (19) and
expressing the matrix of shape functions UMKðxÞ, we obtain the
expressions of the matrices A and B introduced in (20)

A ¼ ðPTC�1PÞ�1PTC�1; ð27Þ
B ¼ C�1ðI � PAÞ: ð28Þ

It is possible to demonstrate that Kriging shape function possesses
some useful mathematical properties such as the Kronecker delta
property and the partition unity property [36]. Furthermore, any
function encompassed in the basis can be reproduced exactly.

Finally, the computation of the successive derivatives of the MK
shape functions can be readily obtained as

UMK
;x ðxÞ ¼ pT

;xðxÞAþ rT
;xðxÞB;

UMK
;xy ðxÞ ¼ pT

;xyðxÞAþ rT
;xyðxÞB: ð29Þ

We see from (29) that all derivatives can be computed exactly
very easily since we only have to deal with the derivatives of the
polynomial basis and the model of covariance function. This is in
4

contrast with the MLS approach where the high derivatives are of-
ten evaluated by means of the diffuse approximation approach
[50,20,21] in order to diminish coding efforts. Once the partial
derivatives of the MK shape functions are evaluated, the high-order
reconstruction step (17) can applied using the successive deriva-
tives of the solution at cell centroids

q;xðx0Þ � UMK
;x ðx0ÞqXx

;

q;xyðx0Þ � UMK
;xy ðx0ÞqXx

: ð30Þ
3.3. Correlation models

The performances of the MK shape functions in terms of sup-
port compactness, robustness and accuracy are closely related to
the choice of the correlation function. Various correlation models
are employed in the field of element-free Galerkin methods for
structural mechanics [36,29,40]. The first correlation function
which be used in this work is the Gaussian correlation function
[27,36]

Cðxi; xjÞ ¼ e� hg dij=dmaxð Þ2 ; ð31Þ

where dij denotes the Euclidian distance between centroids of cells i
and j;dmax denotes the largest distance between the centroid of the
control volume and any grid nodes of the compact support, and
hg > 0 is the correlation coefficient which have to be chosen based
on numerical experiments.

We also consider the quartic spline (QS) function [41] as a pos-
sible choice for the correlation function

Cðxi; xjÞ ¼ 1� 6ðhqsdij=dmaxÞ2 þ 8ðhqsdij=dmaxÞ3 � 3ðhqsdij=dmaxÞ4;
ð32Þ

where hqs denotes the corresponding correlation coefficient.
As an illustration purpose, we plot on Fig. 1 the MK interpola-

tion obtained from the Gaussian and quartic spline correlation
functions. The support has seven nodes which are equally distrib-
uted. A linear p ¼ 1 basis was considered. As expected, due to the
Kronecker delta property, the MK approximation passes through
all the nodal values of the support. Both correlation functions pres-
ent a high sensitivity level to the correlation parameter. For in-
stance, hg ¼ 0:7 gives to a smooth solution around node three but
it generates excessive oscillations near the boundary of the support
(Fig. 1a). On the contrary, the solution obtained for high value of
the correlation coefficient, say hg ¼ 0:7, exhibits an irregular shape
with a narrow peak around node three. Moreover, extra oscilla-
tions are still visible. A similar behavior can be observed on the
plots of the shape function obtained using the quartic spline corre-
lation (Fig. 1b).

It is interesting to note on this example that optimal values of
the correlation parameters (e.g. hg ¼ 1:4 and hqs ¼ 1) deduced from
the analysis on a regular support (Fig. 1) are still applicable for an
irregular distribution of the support nodes of the discretization
stencil (Fig. 2). However, it is obvious that the best choice correla-
tion parameters is strongly dependent to the solution and to the
size of the support. As a consequence it is not possible to design
a problem-independent law in order to obtain an optimal value
of the correlation parameters. Nevertheless, a judicious choice of
the correlation function will give accurate results for a large range
of possible values of the correlation parameters.

3.4. Domain of influence and monotonicity enforcement

The computation of the shape function and its derivatives at the
cell centroids requires the knowledge of surrounding nodes form-
ing a compact support (namely the reconstruction stencil). The
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Fig. 1. Moving Kriging interpolation for a regular distribution of nodes in the reconstruction stencil using a linear polynomial basis and Gaussian of quartic spline correlation
function.
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Fig. 2. Moving Kriging interpolation for an irregular distribution of the nodes in the reconstruction stencil using a linear polynomial basis and Gaussian of quartic spline
correlation function on an irregular grid.
construction of the stencil is of crucial importance in the context of
high-order finite volume methods on unstructured grids
[23,11,51]. It must be constructed to avoid ill-conditioned covari-
ance and polynomial matrices. Furthermore, the number of control
volumes inside the reconstruction stencil must be a compromise
between affordable computational cost and solution accuracy. In
this work, the local stencil used to compute the convective fluxes
is constructed by adding neighbor elements sharing a face with
cells belonging to the previous layer (Fig. 3). The minimum size
of the stencil is dictated by ðpþ 1Þðpþ 2Þ=2 grid nodes for a pth or-
der polynomial basis [23,11]. However, the size of the supporting
nodes Ns may be increased in practice to enforce the robustness
of the numerical method. In this study, we will paid a particular
attention to the influence of both the size of the stencil and the va-
lue of the correlation parameter on the formal accuracy of the
high-order moving Kriging reconstruction scheme. Viscous compu-
tations require the evaluation of viscous fluxes at the quadrature
Fig. 3. Typical moving Kriging reconstruction stencil with Ns ¼ 10 control volumes
employed for constructing a third-order accurate MK scheme.
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points of all the faces of the control volume. Thus, it is required
to compute the flow variables at these points. These are easily
computed as:

tq ¼
Xnq

j¼1

tjUjðxqÞ; Tq ¼
Xnq

j¼1

TjUjðxqÞ; ð33Þ

$tq ¼
Xnq

j¼1

tj 	 $UjðxqÞ; $Tq ¼
Xnq

j¼1

Tj$UjðxqÞ: ð34Þ

The corresponding viscous MK stencil is simply obtained by merg-
ing all of the MK stencils of the first neighbors of the cell of interest.
From a practical point of view, the construction of the discretization
stencil and the computation of the MK shape function derivatives
are done as a preprocessing step prior to the iterative procedure.

In order to prevent nonphysical oscillations in the solution for
non-smooth flows, we use a shock-capturing procedure where
slope-limiters are applied on both the linear part and the high-or-
der terms in the reconstruction step (17). To this end, the multidi-
mensional limiting procedure based on a three-gradient limiter
developed by Jawahar and Kamath [48] for second-order discreti-
zation on unstructured triangular grids is applies to the present
high-order method. It must be noted that more advanced limiting
techniques can be employed in the context of reproducing kernel
finite volume methods such as selective limiting based on MLS sen-
sor which can be regarded as a high-pass filter to detect flow dis-
continuities [52].

4. Numerical tests for inviscid flows

In this section, the accuracy and robustness of the high-order
FV-MK algorithm are studied for steady inviscid transonic flow
problems with smooth or discontinuous solutions.



4.1. Ringleb flow

First, the accuracy of the present FV-MK solver is investigated
for the case of the Ringleb flow problem. This configuration, which
is widely used for accuracy assessment of high-order unstructured
methods [53–56,24], corresponds to a smooth flow in a transonic
curved channel. Numerical results are compared with the exact
solution obtained from the hodograph method for the steady Euler
equations [57]. The flow is described by means of the streamline
constant k and the total velocity q. Fig. 4 shows the isolines of
the Mach number obtained from the exact solution for the case
of left and right streamline constants equal to kleft ¼ 0:55 and
kright ¼ 1:05 respectively. The inflow boundary condition is defined
by qinflow ¼ 0:35. The transonic outflow boundary corresponds to
y ¼ 0. A small supersonic region is clearly visible near the bottom
left streamline boundary with a maximum Mach number equal to
1.2 (Fig. 4). As a consequence, the outflow exhibits both subsonic
and supersonic conditions. The accuracy study is performed using
a sequence of three computational grids with irregular triangular
cells as depicted in Fig. 4. The corresponding number of control
volumes for the coarse, medium and fine mesh are 131, 566 and
2328 respectively.

In the following, the convergence rates are monitored by means
of a log–log plot of the L1- and L2-norm of the error in the entropy
production as a function of the number of control volumes of the
computational grid. First, we compare the solution errors obtained
using the second-order least squares (LS2) scheme and the moving
Kriging reconstruction using Gaussian (MK2-G) or quartic-spline
(MK2-QS) correlation functions. The correlation parameter is
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Fig. 4. (Top left) Exact density isolines for the Ringleb flow problem (kleft ¼ 0:55; kright ¼
left) and 1239 elements (bottom-right).
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hg ¼ hqs ¼ 1:5. We keep the same size Ns ¼ 4 of the discretization
support for both LS2 and MK2. We can observed on Fig. 5 that all
schemes present a correct asymptotic rates of convergence. The
differences between the Gaussian and quartic spline correlation
functions are undistinguishable. However, it is clearly visible that
MK-based schemes give the smallest error level which means that
the approximation of the first derivatives is more accurate than for
the case of the least squares approach. This remark is confirmed by
the examination of Fig. 6 which presents a comparison between
LS2 and MK2-G on the discrete error field in density defined as
errðqiÞ ¼ jqi � qexactðxi; yiÞj. The regions dominated by high errors
are mainly located in the transonic flow zone close to the left
boundary (Fig. 6a). We notice on Fig. 6b that the maximum error
can be reduced by almost a factor two when MK shape functions
are employed in the reconstruction step instead of the LS2 scheme.

Table 1 summarizes the error norms and the order of conver-
gence for second-order accurate solution algorithms presented in
Fig. 5. To this end, the experimental order of convergence is evalu-
ated by comparison between the solution computed on two grids
with characteristic mesh size ha and hb as follows

Ordab ¼
logðerraÞ � logðerrbÞ

log ha � log hb
; ð35Þ

where erra;b;c denotes either the L1-norm or the L2-norm of the error
in the entropy production for the various computational grids of
interest. We notice that the level of discretization error resulting
from the MK interpolation exceeds slightly the theoretical Oðh2Þ
order of accuracy, especially for the coarse to medium grid level
(Table 1). As expected, MK-G and MK-QS give similar results. Recall
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1:05 and qinflow ¼ 0:35) and computational grids with 84 (top-right), 320 (bottom-
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Fig. 5. L1- and L2-norm of entropy error as function of the number of cells for second-order least square (LS2) and for linear (p ¼ 1) moving Kriging reconstruction using
Gaussian (MK2-G) or quartic-spline (MK2-QS) correlation functions (Ns ¼ 4; hg ¼ hqs ¼ 1:5).

Fig. 6. Discrete error of the density computed on an unstructured grid with 320 elements for (a) LS2 scheme and (b) MK2-G scheme with hg ¼ 1:5.

Table 1
L1 and L2 norms of error in entropy production and orders of accuracy of the FV-MK solver for the ringleb flow problem (Ns ¼ 4; hg ¼ hqs ¼ 1:5).

Method Mesh Elements L1-error Order L2-error Order

LS2 a 131 1.7991E�03 – 2.9073E�03 –
b 566 4.1116E�04 2.02 7.5288E�04 1.85
c 2328 1.0534E�04 1.93 2.1503E�04 1.77

MK2-G a 131 2.2595E�04 – 5.2184E�04 –
b 566 4.2374E�05 2.29 9.5648E�05 2.32
c 2328 9.7102E�06 2.08 2.1034E�05 2.14

MK2-QS a 131 2.2966E�04 – 5.3935E�04 –
b 566 4.2762E�05 2.30 9.6074E�04 2.36
c 2328 9.9039E�06 2.07 2.1610E�05 2.11
that the smallest admissible MK-stencil (e.g. Ns ¼ 4) is sufficient to
achieve the expected second-order accuracy, meaning that no extra
computational costs are required compared to the LS2 scheme.

As a global indicator representative of the solution accuracy, we
perform a least squares curve fit of the L2-norm given in Fig. 6 and
in Table 1 for the three grid levels. The corresponding slopes are
1.81, 2.23 and 2.24 for LS2, MK-G and MK-QS respectively.

Now, the previous computations based on the MK schemes
(namely the MK-G and MK-QS) are repeated for different combina-
tions of the correlation parameters hg and hqs ranging from 0.01 to
10. The number of elements in the stencil is Ns ¼ 4 or Ns ¼ 7. The
slopes of the L1- and L2- norm in the entropy error are presented in
Fig. 7. It clearly appears that the global order of convergence is not
sensitive to the correlation parameter as far values of the correla-
tion parameter are greater than 5. The MK-QS scheme was found to
be at least second-order accurate over the whole range ½0:01;10�
for both Ns ¼ 4 and Ns ¼ 7. On the contrary, it was not possible
to obtain a solution for the MK-G scheme when the correlation
parameter is below than unity. In general, higher rates of conver-
7

gence are achieved when additional cells are added in the MK-
stencil. However these differences remain small as far as second-
order accurate schemes are concerned.

Next, we investigate the properties of high-order accurate MK
schemes based on quadratic (p ¼ 2) and cubic (p ¼ 3) polynomial
basis. A Gaussian correlation function was considered and the
same correlation parameters hg ¼ 10 was retained for the formally
third- (MK3-G) and fourth-order accurate (MK4-G) schemes. The
reduction of the discrete error field in density obtained using
MK3-G (Fig. 8a) is clearly visible compared to MK2-G (Fig. 6). In
particular, we remark that the maximum error is divided by one
order of magnitude. The effect of the increase of the spatial
accuracy from the third-order MK3-G scheme to the fourth-order
MK4-G scheme is clearly noticeable on Fig. 8b where the discreti-
zation error is improved both in the region of strong gradients and
near the inflow boundary.

The L1- and L2-error norm of the entropy production are shown
in Fig. 9 and in Table 2. In order to verify that the correct order of
accuracy is preserved for very fine grids, we consider an additional
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Fig. 7. Effect of the correlation parameter and the size of the stencil on the convergence rate of the method for both Gaussian (MK-G) and quartic spline correlation (MK-QS)
functions.

Fig. 8. Discrete error of the density computed on an unstructured grid with 320 elements for MK3-G (left) and MK4-G (right) with hg ¼ 10 for both schemes.
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Fig. 9. L1- and L2-norm of entropy error as function of the number of cells for second-order least square (LS2) and for linear (p ¼ 1) moving Kriging reconstruction using
Gaussian (MK2-G) or Quartic-Spline (MK2-QS) correlation function.
unstructured mesh with 8832 cells and 4563 nodes. The size of the
reconstruction stencil Ns was chosen as small as possible, based on
robustness considerations. The correlation factor is h ¼ 10 for both
MK3-G and MK4-G computations. For quartic spline correlation
functions, we used hqs ¼ 3 and hqs ¼ 5 for third- and fourth-order
MK schemes respectively. The Gaussian and quartic spline correla-
tion functions with Ns ¼ 10 give identical results for third-order
MK3 schemes. Minor differences are visible for the fourth-order
discretization where it seems that MK4-QS is slightly more accu-
rate than MK4-G. However, the two approaches exhibit similar
convergence rates as shown in Fig. 9.

We remark on Table 2 that the expected convergence rates of
pþ 1 is recovered with the L1-norm. This is an interesting result
because it means that MK schemes are accurate using relatively
small stencils, thus limiting excessive computational costs. It must
also be noted that the formal fourth-order accuracy of the MK4-G
8

scheme is depreciated for the L2-norm in comparison with the L1-
norm (Table 2), especially for coarse grids.

Table 3 presents the influence of Ns on the L1 and L2 slopes
resulting from the curve fit of the convergence rates over the four
computational grids for both MK3-G and MK4-G. We notice that
MK3-G with hg ¼ 10 is not very sensitive to Ns. On the contrary,
it is necessary to use large stencils for MK4-G if we aim to recover
the fourth-order formal accuracy (Table 3).

The density field obtained using MK4-G with Ns ¼ 17 and
hg ¼ 10 on the coarse grid with 131 control volumes is
shown in Fig. 10a. The distribution of the density profile along
the line starting from point A with position (xA; yA) = (�1.7,3.7)
to point B with (xB; yB) = (1.5,0) is presented in Fig. 10b for all
MK discretization orders. The improvement due to the use of
higher-order representations is clearly visible in the transonic
region.



Table 2
L1 and L2 norms of error in entropy production and corresponding convergence rates for p ¼ 2 and p ¼ 3 MK schemes.

Method Mesh Elements Ns h L1-error Order L2-error Order

MK3-G a 131 10 10 1.6638E�04 – 5.2349E�04 –
b 566 10 10 1.3118E�05 3.47 5.9560E�05 2.97
c 2328 10 10 1.1670E�06 3.42 6.0104E�06 3.24
d 8832 10 10 1.4505E�07 3.13 7.3522E�07 3.15

MK3-QS a 131 10 3 1.6508E�04 – 5.2266E�04 –
b 566 10 3 1.3235E�05 3.45 5.7696E�05 3.01
c 2328 10 3 1.1638E�06 3.44 5.9940E�06 3.20
d 8832 10 3 1.4617E�07 3.10 7.2876E�07 3.16

MK4-G a 131 17 10 1.1149E�04 – 3.1779E�04 –
b 566 17 10 8.8799E�06 3.46 3.1273E�05 3.17
c 2328 17 10 5.1682E�07 4.02 2.1290E�06 3.80
d 8832 17 10 4.0172E�08 3.83 1.9420E�07 3.59

MK4-QS a 131 19 5 1.2164E�04 – 3.6752E�04 –
b 566 19 5 7.4405E�06 3.82 2.5592E�05 3.64
c 2328 19 5 4.5067E�07 3.97 1.9795E�06 3.62
d 8832 19 5 3.2331E�08 3.95 1.6315E�07 3.74

Table 3
Influence of the size of the stencil Ns on the slope of entropy error computed for MK3-
G and MK4-G using and hg ¼ 10 for a sequence of four grids.

MK3-G (p ¼ 2) MK4-G (p ¼ 3)

Ns Slope L1 Slope L2 Ns Slope L1 Slope L2

10 3:35 3:13 17 3:79 3:54
15 3:46 3:17 21 3:96 3:68
20 3:37 3:37 26 4:1 3:72
4.2. Inviscid flow around a NACA 0012 airfoil

In this section, we investigate the performance of the high-or-
der moving Kriging reconstruction for the case of an inviscid flow
past a NACA 0012 airfoil. The unstructured triangular mesh shown
in Fig. 11 has 158 nodes on the solid wall and 40 nodes on the outer
boundary. The far field is situated at 25 chords from the airfoil. The
corresponding number of cells in the computational domain is
6274. Characteristic boundary conditions based on the Riemann
invariants are implemented in the far field. At the solid wall, we
prescribe impermeability conditions for straight sided bodies [3].
Ghost states at Gauss–Legendre integration points are constructed
from the interior state which is obtained using the same high-or-
der reconstruction procedure employed for the computation of
the Riemann problem for interior cells.

The first case corresponds to a subsonic flow with a free stream
Mach number M ¼ 0:63 and an angle of attack a ¼ 2
. Since we
solve a smooth flow over the airfoil without any discontinuities
[58], slope limiters are not employed for this problem. Computa-
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Fig. 10. (a) Density field obtained using MK4-G with Ns ¼ 17 and hg ¼ 10 on the coarse
density profiles along line A–B.
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tions are performed until the residuals fall below 10�12. The initial
flow field corresponds to the free stream conditions. The contours
of the Mach number are plotted in Fig. 12. We remark that the re-
sults obtained using LS2 exhibits isolines with some cups at the so-
lid wall and around the trailing edge (Fig. 12a). This is obviously
the signature of spurious entropy production. It is clearly visible
that this drawback may be raised using the MK2 scheme whose
Mach number isolines are smoother. Fig. 12b shows that the use
of quadratic (MK2) and cubic (MK4) polynomial basis gives compa-
rable results for the computational grid of interest.

The distribution of the pressure coefficient along the chord of
the airfoil is presented in Fig. 13a for different reconstruction tech-
niques. We notice that the flow acceleration around the leading
edge is correctly predicted for both second-order least squares
and moving Kriging schemes. The third-order MK reconstruction
gives similar results. On the contrary, dramatic improvements in
the production of spurious entropy production �ent are observed
on the airfoil surface (Fig. 13b) when MK interpolations are em-
ployed. In particular, the maximum entropy error obtained using
LS2 is 1:02� 10�2 and those computed from MK2 is 1:10� 10�3.
This decrease corresponds to a reduction by about one order of
magnitude. We also remark on Fig. 13b that the use of a third-or-
der MK limits the production of spurious entropy compared to its
second-order counterpart excepted near the leading edge.

The lift (CL) and drag (CD) coefficients are reported in Table 4 for
all discretization orders employed in the MK reconstruction step.
Here, we considered a Gaussian correlation function with a
correlation parameter hg ¼ 20. The size of the stencil Ns ranges
from five control volumes for MK2 up to 20 elements for MK4.
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grid with 131 control volumes and (b) effect of the MK discretization order on the
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Fig. 11. Unstructured grid used for the inviscid computations past a NACA 0012
airfoil.
For comparison purposes, we have tabulated in Table 4 the results
from previous studies based on a third-order DG method [3] or on
a fourth-order finite volume approach combined with a piecewise
polynomial reconstruction procedure [10]. The number of control
volumes used in the computational grids is also reported. As
expected, the use of MK reconstruction gives better prediction
for both CL and CD than the LS2 scheme. We notice that increasing
the discretization order results in dramatic reductions of the drag
coefficient. The value of CD obtained for a cubic polynomial basis
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Fig. 12. Isolines of the Mach number (DM ¼ 0:05) for the subsonic NACA 0012 airfoil, M ¼
Kriging scheme (MK2) with hg ¼ 20 (b) effect of the MK discretization order p ¼ 2 and p
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Fig. 13. Inviscid subsonic flow past NACA 0012 airfoil M ¼ 0:63 and a ¼ 2
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is close to those obtained using third-order DG method [3] but
the lift coefficient is underestimated. Results obtained using a
fourth-order MK discretization are similar to the values reported
in [10].

Next, we consider a transonic flow condition defined by M ¼ 0:8
and a ¼ 1:25
. This configuration [58] is characterized by the pres-
ence of a weak shock on the pressure side and a strong shock on
the suction side. The computational grid and numerical parameters
are unchanged compared to the subsonic case. Slope-limiters are
employed to avoid numerical oscillations in the vicinity of flow dis-
continuities. Fig. 14 shows the distribution of the pressure coeffi-
cient on the profile for different discretization orders. All
schemes give similar predictions of the location of the strong shock
on the upper surface. It appears on Fig. 14b that high-order recon-
structions produce moderate oscillations downstream of the dis-
continuity which are not observed on second-order MK results.

The isolines of the Mach number obtained for a fourth-order MK
scheme are presented in Fig. 15a and the corresponding distribu-
tion of entropy generation on the airfoil surface is plotted in
Fig. 15b. The use of a second-order MK reconstruction reduces
the entropy production compared to LS2 except locally on the
shock wave and near the leading edge. On the other hand, the
third-order MK discretization fails to decrease the generation of
entropy. This is due to the fact that our limiting procedure, which
is based on the multidimensional limiters developed by Jawahar
and Kamath [48] for second-order discretization, is applied in a
similar manner to both the linear and the high-order part. Less dif-
fusive limiters can be designed using shock detector for selective
limiting [59,10,52] in order to recover the full high-order accuracy
for smooth flows. However, we notice from Table 4 that both CL

and CD obtained from a MK reconstruction are similar to the results
reported in the literature using high-order discretization [52,10].
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Table 4
Lift (CL) and drag (CD) coefficient for inviscid flow past a NACA 0012 airfoil, subsonic case M1 ¼ 0:63 and a ¼ 2
 , transonic case with M ¼ 0:8;a ¼ 1:25
 (MK computations are
performed using a Gaussian correlation function with hg ¼ 20).

Numerical scheme Order CVs Ns M1 ¼ 0:63;a ¼ 2 M1 ¼ 0:85;a ¼ 1

CL CD CL CD

DG [3] 3rd 2960 – 0:333 1.50E�04 – –
FV k-exact [10] 4th 9931 16 0:325 3.25E�04 0:347 2.24E�02
LS2 2nd 6274 4 0:316 3.47E�03 0:349 2.27E�02
MK2-G 2nd 6274 5 0:330 3.29E�03 0:339 2.28E�02
MK3-G 3rd 6274 8 0:318 1.67E�04 0:346 2.33E�02
MK4-G 4th 6274 20 0:324 3.25E�05 0:347 2.25E�02
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Fig. 14. Inviscid transonic flow past a NACA 0012 profile, M ¼ 0:8;a ¼ 1:25
 . (a) Pressure coefficient distribution on the airfoil (b) closeup view around the shock wave.
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Fig. 15. Transonic flow past a NACA 0012 airfoil, M ¼ 0:8 and a ¼ 1:25
 (a) Isolines of the Mach number (DM ¼ 0:05) for the fourth-order moving Kriging scheme (MK4) and
(b) comparison of the second- and third-order MK schemes with LS2 for the distribution of the entropy production on the airfoil surface (a Gaussian correlation function with
hg ¼ 20 is used for all MK computations).
5. FV-MK computations of unsteady flows

Here, the performance of the FV-MK scheme is investigated in
the context of 2D and 3D unsteady flows using either the linearized
Euler equations or the Navier–Stokes equations. Third-order accu-
rate computations are addressed by means of explicit time integra-
tion schemes with zero-mean reconstruction properties [4,60].

5.1. Acoustic pulse

The objective of this test is to illustrate the capability of the
presented MK scheme for the problem of wave propagation on
arbitrary unstructured grids. To this end, the present FV-MK meth-
od, which is deployed for the solution of the linearized Euler equa-
tions, is used to propagate a Gaussian pulse with zero mean flow.
The computational domain corresponds to a square extending
from �100 to 100 in the two space directions. The source, located
at xs ¼ ys ¼ 0, is defined as
11
S ¼ exp � lnð2Þ
9
ðx2 þ y2Þ

� �
� ½1 0 0 1�T : ð36Þ

Several configurations are tested based on different values of
the Gaussian correlation coefficient (hg ¼10, 15 and 20). Time inte-
gration is performed using an explicit low-dissipation low-disper-
sion Runge–Kutta scheme [61]. The results are stopped at t ¼ 50
before the wave reaches the domain boundaries to avoid the even-
tually spurious waves. Fig. 16 shows the instantaneous pressure
field computed at time t ¼ 50.

The analytical solution [62] is used to compute the convergence
rate of the third-order FV-MK method reported on Table 5. Similar
to previous observations on inviscid flows (see Section 4.1), pres-
ent results are not very sensitive to the correlation parameter hg .
This is illustrated by the fact that all computations give comparable
level of accuracy in the error of the pressure field. Moreover, the
formal third-order accuracy of the method is recovered as shown
in Table 5 and in Fig. 17.



Fig. 16. Instantaneous acoustic pressure field of the pulse solved using the linearized Euler equations and a third-order FV-MK scheme (t ¼ 50 corresponding to the last grid
of Table (5) below).

Table 5
L2-norms of error in pressure and corresponding convergence rates obtained for
different values of the correlation parameter.

Cells hg ¼ 10 hg ¼ 15 hg ¼ 20

L2-error Order L2-error Order L2-error Order

2020 8.213E�03 – 8.803E�03 – 6.101E�03 –
4548 2.171E�03 3.28 2.361E�03 3.24 1.757E�03 3.07
5608 1.574E�03 3.07 1.720E�03 3.02 1.237E�03 3.35
8102 7.771E�04 3.84 8.964E�04 3.54 7.254E�04 2.90
15470 2.913E�04 3.03 3.346E�04 3.05 2.664E�04 3.10

Fig. 17. L2-norm of pressure error as a function of the grid size for the acoustic
pulse problem computed with the third-order FV-MK scheme.
5.2. Flow past a circular cylinder at ReD ¼ 3900

In this example we show the application of the proposed
scheme to a viscous unsteady flow problem illustrated by the un-
steady 2D Navier–Stokes equations. The considered case concerns
a detached flow around a cylinder at Mach 0.2 with a Reynolds
number of 3900. The present computational results are compared
to other numerical studies [63–65] and also to experiments
[66,67] in order to assess the accuracy of our approach. To solve
this case, we employ the third-order order FV-MK scheme based
on a Gaussian correlation function with hg ¼ 10. This level of spa-
tial accuracy was selected according to the results of [68,69].

Fig. 18 depicts the unstructured triangular grid which has 150
elements on the surface around the cylinder and 200 points on
the outer circular boundary. The corresponding total number of
control volume is 35,000. The far-field boundaries are 25 D far from
the cylinder (D being the diameter of the cylinder). The aerody-
namic coefficients are computed using 30 vortex shedding cycles
and the size of the non-dimensional time-step is 10�4.

Table 6 shows that the aerodynamic coefficients (namely the
drag coefficient ðCdÞ, the back pressure coefficient ðCpbÞ the separa-
tion angle h and the Strouhal ðStÞ number) present a global agree-
ment with previous computations as far as we compare with 2D or
poorly resolved 3D numerical simulations. Obviously, the values of
Cd and Cpb are much too high compared with the experimental
measurement since the three-dimensional effects, which strongly
influence the near-wake, are not captured. On the contrary, the
computed value of St seems to be less sensitive as already observed
in [65].

The sequence of instantaneous vorticity fields presented in
Fig. 19 exhibits the typical flow structure obtained on previous
2D numerical simulations [63].
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5.3. Decay of compressible isotropic turbulence

In this section we investigate the ability of the finite volume
method based on moving Kriging interpolations to solve turbulent
flows. To this end, we address the problem of compressible isotro-
pic turbulence decay. This is a standard test case for numerical
methods and turbulence models. In this example a third-order
FV-MK method with exponential correlation is used with a com-
plete cubic polynomial basis. Note that for this 3D case, we use
34 interpolation points to compute the derivatives at each cen-
troid, and 42 interpolation points for the computation of viscous
fluxes. The computational domain is the cube ½0;2p�3, and periodic
boundary conditions are used in all the directions. No explicit tur-
bulence model is used in this example. We follow the idea pre-
sented in [70], where the dissipation introduced by the
numerical scheme plays the role of the subgrid model. We follow
the setup of one of the cases presented in [71]. The turbulence
length scale is defined by selecting the initial three-dimensional
energy spectrum as

E3D / k4 exp �2
k
kp

� �2
" #

; ð37Þ



Fig. 18. Unstructured grid used for the unsteady computation past a circular cylinder at Re ¼ 3900.

Table 6
Third-order FV-MK results for the simulation of an unsteady flow past a circular cylinder at Re ¼ 3900.

Ref. Method Dimension Cd �Cpb h St

Present FV-MK3-G 2D 1.33 1.21 84.2 0.239
Young and Ooi [63] URANS 2D 1.59 1.96 – 0.24
Lynch and Smith [64] LES-RANS 2D 1.5 – 86.5 0.25
Young and Ooi [63] LES 3D (nz ¼ 4) 1.55 1.86 – 0.22
Breuer [65] LES 3D (nz ¼ 64) 1.016 0.94 87.4 –
Kravchenko and Moin [67] Experiments – 0:99� 0:05 0:88� 0:05 86� 2 0:215� 0:005

Fig. 19. Instantaneous vorticity field of the unsteady flow past a circular cylinder at Re = 3900 (computed using a third-order FV-MK scheme with hg ¼ 20 at t = 0.5T, 1.5T, 4T,
4.75T, 5.75T and 10T, T being the period of the vortex shedding).
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where kp ¼ 4 is the wavenumber corresponding to the peak of the
spectrum and k is the wavenumber.

The parameter v is defined as the ratio of compressible kinetic
energy to the total turbulent kinetic energy [72]. It can be seen as
an indicator of the level of compressibility of the flow, where v ¼ 0
corresponds to an incompressible flow. In the present case we
choose v ¼ qd=q

� �2 ¼ 0:2, where q is the root mean square magni-
tude of the fluctuation velocity, and qd is the root mean square
magnitude of the dilatational fluctuation velocity.

We have tested the method in two grids. One with 323 elements
and the other with 643 elements. An explicit fourth-order Runge–
Kutta scheme is used for time integration, with a time step of
Dt ¼ 0:05. This value corresponds approximately to 250 time-steps
per eddy turnover time (s0). The eddy turnover time is defined as
the ratio of the turbulent kinetic energy to the dissipation rate
based on the initial field. As a reference solution we use a compu-
tation on a 1283 grid, computed with sixth-order compact finite
differences and an explicit Padé filter with parameter a ¼ 0:49
[70].

Fig. 20 shows the decay of the turbulent kinetic energy in the
two grids. We observe that the solution converges to the DNS as
the grid is refined. For comparison purposes, we also show the re-
sults for a fourth-order centered finite difference method. Note
that the results obtained for the third-order FV-MK method are
also more accurate than the results obtained with an standard
MUSCL third-order finite volume scheme [70]. Density fluctuations
are plotted in Fig. 21. The results also converge to the DNS as the
grid is refined. In this figure we also show the isovorticity surfaces
and streamlines on the 643 grid. Vortical structures such as worms
or sheets are clearly identified.

The instantaneous three-dimensional energy spectra at
t=s0 ¼ 0:3 is plotted in Fig. 22. The method is able to capture the
two different slopes appearing of the three-dimensional energy
spectrum. This result is predicted by the Eddy-Damped Quasi-
Normal Markovian Theory (EDQNM) [73].
6. Conclusion

A novel combination between a moving Kriging kernel repro-
ducing approximation and a high-order finite volume method
has been developed for the solution of viscous compressible flow
on unstructured grids. A Taylor series expansion is considered to
evaluate the value of the variables at the edges of the element.
The numerical fluxes are computed at each quadrature points of
the cell face. The successive derivatives of the continuous recon-
struction field are expressed in terms of the derivatives of the mov-
ing Kriging shape functions evaluated at the cell centroids. In
general, this step is cheaper than for other existing kernel repro-
ducing approximations, since only the derivatives of the polyno-
mial basis and of the correlation functions are involved in the
reconstruction.

The moving Kriging finite volume method was first applied to
the Ringleb flow problem. Expected theoretical orders of accuracy
were recovered up to quadratic reconstructions. In particular, we
have observed that the accuracy of the method is not excessively
sensitive to the choice of the correlation parameter. Moreover, dra-
matic reduction in the production of spurious entropy were ob-
served for the case of a subsonic flow past a NACA 0012 airfoil,
in contrast with second-order least squares reconstructions. The
results obtained for relatively large moving Kriging stencils, which
are used in practice to enforce well-conditioning of the correlation
matrix, show that robustness enhancement can be achieved with-
out deteriorating the accuracy of the numerical scheme. Finally,
the FV-MK approach was successfully deployed in the context of
unsteady flows with applications to both wave propagation and
15
viscous flow problems. Due to attractive features, such as robust-
ness, flexibility, accuracy and easy implementation, we believe that
the use of moving Kriging shape functions represents an interest-
ing alternative to existing reproducing kernel approximations for
the development of efficient high-order finite volume methods.
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