
HAL Id: hal-01459729
https://hal.science/hal-01459729

Submitted on 20 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Revisiting finite difference and finite element methods
applied to structural mechanics within enriched continua
Noël Challamel, Vincent Picandet, Bernard Collet, Thomas Michelitsch, Isaac

Elishakoff, C. M. Wang

To cite this version:
Noël Challamel, Vincent Picandet, Bernard Collet, Thomas Michelitsch, Isaac Elishakoff, et
al.. Revisiting finite difference and finite element methods applied to structural mechanics
within enriched continua. European Journal of Mechanics - A/Solids, 2015, 53, pp.107-120.
�10.1016/j.euromechsol.2015.03.003�. �hal-01459729�

https://hal.science/hal-01459729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Revisiting finite difference and finite element methods applied
to structural mechanics within enriched continua

No€el Challamel a, *, Vincent Picandet a, Bernard Collet b, Thomas Michelitsch b,
Isaac Elishakoff c, C.M. Wang d

a Universit�e de Bretagne Sud, EA 4250, LIMATB (Laboratoire d'Ing�enierie des MAT�eriaux de Bretagne), F-56100 Lorient, France
b Sorbonne Universit�es, Universit�e Pierre et Marie Curie (Paris 6), Institut Jean le Rond d'Alembert, CNRS UMR 7190, Tour 55-65, 4 place Jussieu,

75252 Paris cedex 05, France
c Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431-0991, USA
d Engineering Science Programme and Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge, Singapore 119260,

Singapore

In this paper, we revisit the capability of numerical approaches such as finite difference methods and
finite element methods, in approximating exact one-dimensional continuous eigenvalue problems (such
as lateral vibrations of a string, the axial or the torsional vibrations of a bar, and the buckling of elastic
columns). The numerical methods analysed in this paper are converted into difference equations.
Following a continualization procedure or the method of differential approximation, the difference op-
erators are then expanded in differential operators via Taylor expansion or Pad�e approximants. Analogies
between the finite numerical approaches and some equivalent enriched continuum are shown, using this
continualization procedure. The finite difference methods (first-order or higher-order finite difference
methods) are shown to behave as integral-based nonlocal media (or stress gradient media), while the
finite element method is found to behave as gradient elasticity media (or strain gradient media). The
length scale identification of each equivalent enriched continuum strongly depends on the order of the
numerical method considered. For the finite difference methods, the length scale identification of the
equivalent nonlocal medium depends on the static versus dynamic analysis, whereas this length scale
appears to be independent of inertia effects for the finite element method. Some comparisons between
the exact discrete eigenvalue problems and the approximated continuous ones show the efficiency of the
continualization procedure. An equivalent enriched Rayleigh quotient can be defined for each numerical
method: the integral-based nonlocal method gives a lower bound solution to the exact eigenvalue
multiplier, whereas the gradient elasticity method furnishes an upper bound solution.

1. Introduction

The source of discreteness in mechanics or physics may come
from the inherent nature of matter which is composed of a discrete
(or a finite) number of local repetitive cells. One can say that the
matter composition is essentially discrete, even if some equivalent
continua may be used as efficient engineering models for many
practical problems. Discrete-based medium may be classified as a

microstructured medium, and the microstructure can be related to
the atomistic composition at a subscale, but also to the molecule,
crystal or grain composition at larger scales, depending on the
problems (Mindlin, 1964). The microstructure may depend on the
scale analysis, from nanoscale up to macroscale characterization.
One way to incorporate the microstructure into a continuum
modeling is the consideration of enriched continua. Enriched
continua, which can be classified as non-simple materials, have a
wide spectrum of applications for modeling the constitutive laws of
microstructured media, from atomistic scale to large repetitive
structures. Among these enriched continua, gradient elasticity
(where the constitutive law depends on the gradient of the strain
variables) and nonlocal integral-based elasticity (where the
constitutive law depends on an integral of the strain variables) can
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be utilized, and sometimes both enriched contributions are com-
bined. Nowadays, the interest of such constitutive laws stems from
the desire for accurately capturing some specific effects such as
scale factor, boundary layers or localization phenomena, although
the micromechanics foundation of these enriched laws is still
debated.

Another source of discreteness in mechanics is related to the
numerical discretization of a continuous engineering model. Based
on this viewpoint, the discrete problem is considered as an
approximation of the continuous one, which now plays the role of
the reference system. The aim of the characterization of a numerical
scheme is to understand how the discrete problem is able to
approximate the continuous one. This alternative perspective is the
numerical evaluation of approximate methods such as the Finite
Difference Method or the Finite Element Method for computing the
solutions of continuous problems (see for instance Greenwood,
1961; Zienkiewicz and Cheung, 1967; Cyrus and Fulton, 1968;
Walz et al., 1968; Strang and Fix, 1973; Gawain and Ball, 1978;
Subrahmanyam and Kaza, 1983).

The comparison of discrete methods with some equivalent
continuous ones is not new. In fact, it was investigated by many
researchers since the 1950's for beam vibration problems; see for
instance papers by Livesley (1955) and Leckie and Lindberg (1963).
Moreover, Lagrange (1788) and later Rayleigh (1894) determined
the exact vibration frequencies of a string with a finite number of
concentrated masses and compared the solution with the contin-
uous system asymptotically obtained for an infinite number of cells
(see also Livesley, 1955 or Gantmacher, 1970 on this topic). This
discrete string problem will be analysed herein by using a con-
tinualization procedure. Continualization procedures are based on
various approximations of the discrete operators by some contin-
uous ones via Taylor expansion or Pad�e approximants (see Collins,
1981; Rosenau, 1986, 1987; Wattis, 2000; Kevrekidis et al., 2002;
Andrianov et al., 2010). The so-called enriched continuum equiva-
lent to the discrete one is sometimes called a quasi-continuum (see
for instance Collins, 1981), and is generally dependent on the
truncated terms in the asymptotic expansion of the differential
operators. This method was pioneered by Kruskal and Zabusky
(1964) for a nonlinear discrete axial chain, and initially applied to
discrete wave equations. In fact, it can be shown that the discrete
chain problem is firmly linked to the investigation of the finite
difference scheme of the “local” continuous axial problem, as it can
be viewed as the physical support of the finite difference scheme.
Hence, the microstructured problem and the Finite Difference
method may be strongly related (and can be viewed as mathe-
matically similar). With respect to the numerical schemes, the
method of differential approximation which was developed in the
1950's by Zhukov (1957) (see also Shokin, 1983) is based on the
differential representation of a difference scheme. It was applied
successfully for discrete time-spatial schemes, to build new dif-
ference schemes with well defined properties, or to better analyse
the existing numerical schemes. In the following, we are concerned
by discrete spatiality with continuous time dependence. Therefore,
only spatial discrete operators will be asymptotically expanded for
building equivalent nonlocal continua.

It has been already shown by Kunin (1982) and more recently
by Charlotte and Truskinovsky (2012) that a discrete chain may
behave dynamically as an equivalent nonlocal continuum whose
kernel depends on the level of approximation of the reference
discrete medium. However, the link between the differential
format of Eringen's nonlocal model (Eringen, 1983) is more recent
(see Wang et al., 2013). It has been recently argued that discrete
elastic systems (including bending and shear interaction law)
behave as nonlocal structural elements, in the context of the so-
called continualization procedure (Wang et al., 2013; Challamel

et al., 2014a; 2014b, 2014c, 2015c; Zhang et al., 2014a). This
fundamental property has been shown on microstructured
bending structural systems, and the induced nonlocality may be
based on Eringen's classical model (Eringen, 1983) for the consti-
tutive law. The methodology has been also applied to discrete
shear systems which can be equivalently investigated within
nonlocal shear Timoshenko theories (Duan et al., 2013; Zhang
et al., 2013 or Challamel et al., 2014c). Eringen's nonlocality has
been shown to be an efficient engineering tool for capturing the
out-of-plane behavior of discrete systems (Challamel et al., 2015a).
A similar reasoning has been recently considered in Zhang et al.
(2014b) for justifying nonlocal elastic plate models from a
microstructured beam-grid model (see also Zhang et al., 2015). In
other words, Eringen's nonlocality model has a rigorous physical
support based on some repetitive discrete systems. In this way,
nonlocal approaches can be treated as a relevant enriched con-
tinuum for capturing scale effects in discrete systems. Within this
point of view, the enriched continuum is considered as an
approximate theory for approaching the main phenomena of the
reference discrete system.

In this paper, a similar continualization (or method of differ-
ential approximation) reasoning will be followed for approxi-
mating some finite numerical schemes (finite difference methods
and finite element methods) by some equivalent enriched con-
tinua. We have already shown for bending systems that finite
difference formulation (or its analogical lattice physical system)
has resemblance to nonlocal theory, whereas finite element
formulation may have a strain gradient continuum analogy (see
recently Challamel et al., 2015b for the analysis of beam vibra-
tions). We have used this analogy to calibrate the small length
terms of nonlocal theories with respect to the reference lattice
systems. Most of the papers devoted to this question in the past
were focused on bending systems, but some questions were
unanswered up to now:

- What about higher-order finite difference methods? Will they
behave as higher-order nonlocal models (or higher-order stress
gradient models)?

- What about finite element models? Will they behave as stress
gradient or strain gradient models, and how will the enriched
continuum depend on the choice of the shape function?

- Is the nonlocal length scale of the finite difference methods or
the finite element methods inertia dependent (does it depend
on the static versus dynamic analysis)?

- Is the equivalent enriched continuum dependent on the kine-
matics of the problem, for instance when considering the
bending, axial or torsional motion of a beam?

In the paper, we give some answers to these open questions,
from the analysis of exact one-dimensional discrete eigenvalue
problems (such as lateral vibrations of a string, the axial or the
torsional vibrations of a bar, and the buckling of elastic columns).
We show that the rate of convergence is strongly dependent on the
order of the finite discrete scheme: higher-order finite schemes
lead to higher-order enriched constitutive laws with a higher
convergence rate. For historical reasons, we first start from the
string problem and then investigate some column problems in
buckling by both the finite difference and finite element methods.

2. Discrete string problem

Starting from equilibrium considerations, the vibration fre-
quencies u of a string of length L are obtained from the linear
second-order differential equation of the transverse deflection w

(see Lagrange 1788, Leissa and Qatu, 2011; Wang and Wang, 2013):
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Tw
00 þ mu2w ¼ 0 (1)

where m¼ rS is the line density, T the tensile force, r the volumetric
density, S the cross sectional area and the prime denotes differen-
tiation with respect to the axial coordinate x. For fixed end condi-
tions, we have w(0) ¼ 0 and w(L) ¼ 0. By assuming a sinusoidal
vibration mode w ¼ w sinðkpx=LÞ, the vibration frequency is given
by

uk;∞ ¼ kp

L

ffiffiffi

T

m

s

(2)

where k is an integer, the subscript “∞” is related to the continuous
string with an infinite number of degrees-of-freedom. If now, the
string is assumed to compose a finite number nþ 1 of equidistantly
spaced masses (L ¼ n � a), the continuous problem is converted
into a discrete problem governed by the following linear second-
order finite difference equation

T
wiþ1 � 2wi þwi�1

a2
þ mu2wi ¼ 0 (3)

where a is the distance between the nodes. Equation (3) is the
central finite difference approximation of the continuous problem
defined by Eq. (1). On the other hand, Eq. (3) can be also considered
as a true discrete problem, as introduced by Lagrange (1788) for the
vibration frequencies of a system with a finite number of concen-
trated masses. It can be shown that the frequency equation of this
discrete problem with the fixedefixed boundary conditions
w0¼wn¼ 0 can be analytically solved and the exact frequencies are
given by (Lagrange, 1788):

uk;n ¼ 2n
L
sin

�

kp

2n

�

ffiffiffi

T

m

s

(4)

In fact, the linear second-order difference equation can also be
presented as

wiþ1 þ
�

b

n2
� 2

�

wi þwi�1 ¼ 0 with w0 ¼ 0 and wn ¼ 0

(5)

where b ¼ mu2L2/T is the dimensionless frequency parameter (or
eigenvalue parameter). The solution of this finite difference
boundary value problem is derived by Goldberg (1958). Goldberg
(1958) also mentioned that this second-order finite difference
boundary value problem arises in the mathematical theory of scale
analysis (see also Guttman, 1950). We reproduce the main
reasoning of the mathematical proof for the investigation of this
discrete eigenvalue problem.

The characteristic equation is obtained by replacing wi ¼ Ali in
Eq. (5) which leads to

lþ 1
l
¼ 2� b

n2
(6)

Equation (6) is symmetrical with respect to interchanging l and
1/l. This equation admits the following two solutions for
�

�1� b=2n2
�

�<1:

l1;2 ¼ cos f±j sin fwith f ¼ arccos

�

1� b

2n2

�

and j ¼
ffiffiffiffiffiffiffi

�1
p

(7)

The solution of the finite difference equation can be expressed
with the real basis as:

wi ¼ A cosðfiÞ þ B sinðfiÞ (8)

The introduction of the two boundary conditions
w0 ¼ 0 and wn ¼ 0 leads finally to the natural vibrations mode
wi ¼ Bsin(f i) for the fixedefixed string with the natural frequency
formulae:

sinðfnÞ ¼ 00fn ¼ kp0cos
kp

n
¼ 1� b

2n2
0b ¼ 4n2 sin2

�

kp

2n

�

(9)

which is exactly the frequency value reported in Eq. (4). As detailed
in Goldberg (1958), it can be shown that no nontrivial solution of
the boundary value problem exists for

�

�1� b=2n2
�

� � 1.
Rayleigh (1894) and Livesley (1955) showed by using asymptotic

expansion that the discrete equivalent system has slightly lower
natural frequencies when compared to its continuum counterpart:

uk;n

uk;∞
¼ 2n

kp
sin

�

kp

2n

�

¼ 1� k2p2

24n2
þ o

�

1

n4

�

� 1 (10)

This lower bound property of the discrete approachwith respect
to the continuous one could be argued a consequence of the
nonlocal continuum property of the discrete system. In fact, the
discrete equations can be extended to an equivalent continuum via
a continualization method. The following relation between the
discrete and the equivalent continuous systemwi ¼w(x ¼ ia) holds
for a sufficiently smooth deflection function as:

wðxþ aÞ ¼
X

∞

k¼0

akvkx
k!

wðxÞ ¼ eavxwðxÞ with vx ¼
v

vx
(11)

The pseudo-differential operators can be introduced as (see
Rosenau, 1986; Rosenau, 1987; Wattis, 2000; Kevrekidis et al.,
2002; Andrianov et al., 2010):

wi�1 þwiþ1 � 2wi

a2
¼
�

eavx þ e�avx � 2
�

a2
wðxÞ

¼ 4

a2
sinh2

�a

2
vx

	

wðxÞ

¼ v
2
x

1� l2c v
2
x

wðxÞ þ…with l2c ¼ a2

12
(12)

As a consequence, the continualization approach based on
Pad�e's approximant Eq. (12) and applied to the discrete system Eq.
(3) gives a truncated nonlocal approach for the string dynamics (see
Rosenau, 1986 or 1987 for the vibration model of the axial chain):

Tw
00 þ mu2w�mu2l2cw

00 ¼ 0 with l2c ¼ a2

12
(13)

where a ¼ L/n is the size of the repetitive cell and the underlined
term is related to the additional nonlocal effect. The vibration fre-
quency of the fixedefixed nonlocal string is then obtained by
introducing the sinusoidal mode shape in Eq. (13), thereby leading
to:

u
2
k

u
2
k;∞

¼ 1

1þ k2p2l2c
L2

¼ 1� k2p2

12n2
þ o

�

1

n4

�

(14)

which is the same approximation as the one for the discrete
problem given by Eq. (10). This does not contradict an assertion that
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the discrete string behaves as a nonlocal string. Note that for this
problem, no constitutive elasticity law is used for deriving the
equations but only the equilibrium equations are employed. It is
seen that the analysis of discrete systems within nonlocal contin-
uous media can be handled through the string vibration model
(which is formally analogous to the vibration of an axial rod) e an
old problem exactly characterized by Lagrange for both the discrete
version and its continuum limit. However, naturally, at that early
time, the discussion on the properties of the discrete system in
term of nonlocal continuum was not present.

The present analysis for the string problem can be easily
extended for analysing the dynamics behavior of an axial bar or a
torsional bar. In fact, the string problem is mathematically analo-
gous to the axial chain problem, as observed from the second-order
finite difference equation associated with the Bornevon K�arm�an
mono-atomic model (Born and von K�arm�an, 1912):

ES
uiþ1 � 2ui þ ui�1

a2
þ u

2
rSui ¼ 0 (15)

where ui is the axial displacement of the ith mass, E the Young
modulus, S the equivalent cross sectional area and r the density.
Equation (15) can be seen as the finite difference form of the axial
vibrations equations of a continuous bar, or the vibration equations
of a lattice spring axial model. It is clear that Eq. (15) is analogous to
Eq. (3). For similar reasons, the frequency equation of this discrete
axial chain problem with the fixedefixed boundary conditions
u0 ¼ 0 and un ¼ 0 can be analytically obtained as (see also Tong
et al., 1971; Thomson, 1972 or Blevins, 2001 for this discrete axial
problem):

uk;n ¼ 2n
L
sin

�

kp

2n

�

ffiffiffi

E

r

s

(16)

By using a nonlocal approach, the enriched vibration equation
may be given in this axial case by Rosenau (1986, 1987):

ESu
00 þ rSu2u�rSu2l2cu

00 ¼ 0 with l2c ¼ a2

12
(17)

This is the low frequency matching of the nonlocal approxi-
mated model with respect to the discrete one. Equations (10) and
(14) are still valid for the axial case. The high frequency matching
based on k ¼ n leads to the matching value l2c =a

2 ¼ 1=4� 1=p2

given by Eringen (1983) e see Andrianov et al. (2010) or more
recently Challamel et al. (2014b). Equation (17) is an enriched dy-
namics equation which may come from the nonlocal Eringen's
differential formulation applied to the axial bar (Challamel et al.,
2009; Aydogdu, 2009):

N � l2cN
00 ¼ ESu0 and N0 ¼ rS€u (18)

The Eringen's type nonlocal model (Eringen, 1983) is recognized
in the normal force N -strain ε ¼ u0 differential equation, and the
nonlocal axial wave equation is written in this case as (Rosenau,
1986):

ESu
00þl2crS€u

00
¼ rS€u (19)

This kind of “nonlocal” wave equation was already obtained by
Rayleigh (1894) when including the kinetic energy due to lateral
motion (the nonlocal length scale is related to the cross sectional
properties for Rayleigh wave analogy). The same reasoning may be
followed for the torsional vibration of a discrete elastic bar, gov-
erned by:

GJ
4iþ1 � 24i þ 4i�1

a2
þ u

2
rJ4i ¼ 0 (20)

where 4i is the torsional angle, G the shear modulus, and J the
torsional section constant. As previously developed, the frequency
equation of this discrete torsional chain problem with the fix-
edefixed boundary conditions 40 ¼ 0 and 4n ¼ 0 can be given by:

uk;n ¼ 2n
L
sin

�

kp

2n

�

ffiffiffiffi

G

r

s

(21)

Similarly, the nonlocal torsional model which may be seen as an
approximation of the discrete torsional problem may be written,
using the same length scale calibration, from:

Mt � l2cM
00

t ¼ GJ40 and M0
t ¼ rJ€4 (22)

One recognizes the nonlocal Eringen's differential formulation
applied to the torsional problem, as investigated by Narendar
(2011), Islam et al. (2014) or Arda and Aydogdu (2014). In sum-
mary, the wave equation governing the vibrations of a string is
mathematically similar to the wave equation of an axial or a
torsional elastic rod, whose discretized version using a finite dif-
ference scheme has been shown to be equivalent to a kind of
nonlocal wave model. Both the discrete and the continuous prob-
lems of the string were already solved by Lagrange (1788), but the
relationship between discrete elastic systems and enriched con-
tinuum mechanics is pointed out more recently. Rosenau (1986)
already obtained the enriched wave equation for this one-
dimensional problem, but the link between Eringen's nonlocality
was not pointed out. Only recently, discrete microstructured sys-
temswhichmay be equivalent to a finite difference formulation of a
continuous problem have been shown to behave as nonlocal elastic
systems, in the Eringen sense (see for instance Challamel et al.,
2014b).

In the sequel, the beam problem will be mainly investigated,
and the specificities of the numerical schemes applied to an elastic
buckling problem will be analysed. As already discussed by
Silverman (1951), Hencky's chain (Hencky, 1920a, 1920b) e which
is the lattice bending system (or microstructured model, also
called discrete bending system) e is in fact strictly equivalent to
the finite difference formulation of a continuous problem, i.e. the
EulereBernoulli continuous beam problem. The performance of
Finite Difference Method for solving buckling or vibrations
eigenvalue problems has already been evaluated in the literature
(see early studies by Salvadori, 1951; Wang, 1951, 1953; Seide,
1975, and more recent papers by Elishakoff, 1998; Santoro and
Elishakoff, 2006), but without resorting to any nonlocal me-
chanics perspective (except recently in Challamel et al., 2014b). A
consequence of the nonlocal equivalent principle for the modeling
of discrete systems is that the finite difference system can be
efficiently approached by nonlocal continuum mechanics tools. As
it is known in the case of nonlocal mechanics behaviors, this result
confirms the lower bound solution of such approximate Finite
Difference Methods, at least for homogeneous structures (with
respect to both convergence and rate of convergence arguments).
We extend such a result for approximate Finite Element Methods
using gradient elasticity constitutive law, which shows the upper
bound solution of Finite Element results based on the work-
eenergy formulation.

3. Finite difference method e buckling

Consider the buckling problem of a local EulereBernoulli col-
umn axially loaded by an axial force P. The equilibrium equation is
given by
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M
00 ¼ �Pw

00
(23)

whereM is the bending moment,w the deflection of the beam, and
the prime denotes differentiation with respect to x. The elastic
bending constitutive law is given by the relationship:

M ¼ EIw
00

(24)

The finite difference approximation (central difference method)
of the equilibrium equations is obtained from Eq. (23) as:

Mi�1 � 2Mi þMiþ1

a2
þ P

wi�1 � 2wi þwiþ1

a2
¼ 0 (25)

where a is the constant step of the finite difference approximation,
and the elastic bending constitutive law is rewritten with this
approximation as:

Mi ¼ EI
wi�1 � 2wi þwiþ1

a2
(26)

By combining Eq. (25) and Eq. (26), we have the fourth-order
finite difference equation:

EI
wiþ2 � 4wiþ1 þ 6wi � 4wi�1 þwi�2

a4
þ P

wiþ1 � 2wi þwi�1

a2
¼ 0

(27)

For the buckling problem of a column with simply supported
boundary conditions, it is possible to integrate this equation twice,
thus leading to a second-order finite difference equation:

EI
wiþ1 � 2wi þwi�1

a2
þ Pwi ¼ 0 (28)

This is the same finite difference equation as that obtained for
axial vibrations. In fact, the linear second-order difference equation
can also be presented in the form as in Eq. (5):

wiþ2 þ
�

b

n2
� 2

�

wiþ1 þwi ¼ 0 with b ¼ PL2

EI
(29)

By using the solution already developed in Eq. (9), the funda-
mental buckling load of this discrete system is obtained for k ¼ 1
from the exact critical buckling load formulae (see also Wang,
1951):

Pcr;n
Pcr;∞

¼ bn

b
∞

¼ 4n2

p2
sin2

�

p

2n

	

¼ 1� p
2

12n2
þ o

�

1

n4

�

(30)

The continualization of the discrete equilibrium Eq. (25) leads to
the unchanged “local” equilibrium Eq. (23), whereas the con-
tinualization of the discrete constitutive laws Eq. (26) leads to the
Eringen's type nonlocal constitutive law:

M � l2cM
00 ¼ EIw

00
with l2c ¼ a2

12
(31)

By inserting Eq. (31) into Eq. (23), the equations of the uncou-
pled buckling problem reduce to

�

EI � Pl2c

	

wð4Þ þ Pw
00 ¼ 0 (32)

Equation (32) is equivalent to considering an Eringen's based
nonlocal model being applied to an EulereBernoulli beam kine-
matics (omitting the discussion on the boundary conditions e see
Challamel et al., 2014d for the specific role of boundary conditions
in nonlocal mechanics). As it is known, Eringen's nonlocal model
leads to the lower bound solution of the buckling load with respect

to its local counterpart (Elishakoff et al., 2012; Challamel, 2013).
This can be easily shown from the Rayleigh's quotient of Eringen's
EulereBernoulli column model:

R ¼

Z L

0
EIw

002dx

Z L

0
w02 þ l2cw

002dx

�

Z L

0
EIw

002dx

Z L

0
w02dx

(33)

This Rayleigh's quotient R can be used to compute approximate
upper bounds or exact solution of the variationally-based eigen-
value problem (see Rayleigh, 1894; Temple and Bickley, 1956 or
more recently Ba�zant and Cedolin, 2003 or Ilanko andMonterrubio,
2015). For example, consider a pinnedepinned column, and intro-
ducing a sinusoidal shape function ~w ¼ w sinðpx=LÞ as an admis-
sible function into the Rayleigh's quotient, we get the exact
buckling value of the pinnedepinned case as:

~w ¼ wsin
�

px

L

	

0Pcr ¼
p

2EI
L2

1þ p2 l
2
c

L2

� p
2EI

L2
with l2c ¼ a2

12
(34)

It turns out that the buckling load of the finite difference system
with respect to its continuous “local” counterpart can be expressed
for the pinnedepinned column as:

Pcr;n
Pcr;∞

¼ 1

1þ p2

12n2

¼ 1� p
2

12n2
þ o

�

1

n4

�

(35)

Equation (35) is numerically shown by Seide (1975) within the
central finite difference method. Note that the Rayleigh's quotient
can be derived from the Lagrangian equivalence obtained by con-
tinualization of the discrete Lagrangian, following a methodology
introduced by Rosenau (2003) for axial systems.

The Rayleigh's quotient of the finite difference approximate
system is given by

R ¼

Pn
i¼0 EI

�

wiþ1�2wiþwi�1

a2

�2

Pn
i¼0

�

wiþ1�wi

a

�2
(36)

Consider now the regular deflection variable w defined by

v
2
xw ¼ wiþ1 � 2wi þwi�1

a2
(37)

This condition can be inverted, i.e.

wi ¼
a2v2x

4 sinh2
�

a
2 vx

	w (38)

The potential energy can be expanded with this new variable as
(see Appendix A):

X

n

i¼0

a

�

wiþ1 �wi

a

�2

¼
Z

L

0

w02 þ a2

12
w

002 þ o
�

a4
	

dx� a2

12

h

w0w
00
iL

0

(39)

which shows indeed, except for the boundary terms, the corre-
spondence between the potential energy of the discrete system and
the one of the nonlocal continuous system. This closes the proof
from the Rayleigh's quotient of the discrete system to the one of the
continuous enriched one. Note that the Rayleigh's quotient pro-
vides information on the rate of convergence of the discrete
problem when compared to the exact solution. The length scale
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calibration of the nonlocal model equivalent to the finite difference
formulation in buckling is then equal to:

l2c;static ¼
a2

12
¼

l2
c;dynamic

2
(40)

As shown by Challamel et al. (2015b), a factor 2 affects the
equivalent length scale of the finite difference formulation applied
to the vibrations analysis, which shows that the nonlocal model
associated with the finite difference formulation, depends on the
static versus vibration analysis. Furthermore, using the generalized
Rayleigh ratio, and for some other standard boundary conditions
(including also the clampedeclamped, or clamped-free boundary
conditions), the general formulae can be applied as well (see
Challamel, 2013):

Pcr;n
Pcr;∞

¼ 1

1þ Pcr;∞l
2
c

EI

with l2c ¼ a2

12
(41)

which is consistent with the asymptotic results of Seide (1975) for
these other boundary conditions.

Some other discrete models can be investigated in a similar way,
possibly introducing some numerically-based nonlocal equivalent
laws. For instance, the model of Myklestad derived from the three-
moment equation (see Myklestad, 1944; Leckie and Lindberg, 1963)
leads to the finite difference equation:

Miþ1 þ 4Mi þMi�1

6
¼ EI

wiþ1 � 2wi þwi�1

a2
(42)

which leads to the continualization nonlocal law:

M

1� a2v2x
6

¼ EI
v
2
x

1� a2v2x
12

w0M � a2

12
M

00 ¼ EI

�

w
00 � a2

6
wð4Þ

�

(43)

that can be reinterpreted as a mixed nonlocal law, as used for
instance by Challamel and Wang (2008) at the beam scale.

Another approximation of Eq. (43) gives:

M ¼ EI
�

w
00 � l2cw

ð4Þ
	

with l2c ¼ a2

12
(44)

which is typically a gradient elasticity bending-curvature law (see
Papargyri-Beskou et al., 2003) associated with the linear differen-
tial equation (the equilibrium equations are assumed to be un-
changed at this stage):

�EIl2cw
ð6Þ þ EIwð4Þ þ Pw

00 ¼ 0 (45)

As it is known, the gradient elasticity model leads to the upper
bound solution of the buckling load with respect to its local
counterpart (Elishakoff et al., 2012; Challamel, 2013). This can be
easily shown from the Rayleigh's quotient of gradient elasticity
model:

R ¼

Z L

0
EI
�

w
002 þ l2cw

0002
	

dx

Z L

0
w02dx

�

Z L

0
EIw

002dx

Z L

0
w02dx

(46)

Consider again the example of a pinnedepinned column and
introducing a sinusoidal shape function ~w ¼ w sinðpx=LÞ as an
admissible function into the Rayleigh's quotient leads to the exact

buckling value of the pinnedepinned case (with the compatible
higher-order boundary conditions):

~w ¼ w sin
�

px

L

	

0Pcr ¼
p
2EI

L2
1þ p

2 l
2
c

L2

!

� p
2EI

L2
(47)

Again, using the generalized Rayleigh ratio applied to the
equivalent gradient elasticity system with clampedeclamped, or
clamped-free boundary conditions, the general formulae can be
applied as well (see Challamel, 2013):

Pcr;n
Pcr;∞

¼ 1þ Pcr;∞ l2c
EI

with l2c ¼ a2

12
(48)

An improved finite difference analysis may be based on the
introduction of the second-order central difference for the ex-
pressions of the first and the second derivatives of the displace-
ment (see Greenwood, 1961; Subrahmanyam and Kaza, 1983;
Subrahmanyam and Leissa, 1985 or more recently Elishakoff and
Santoro, 2005). The higher-order finite difference formulation of
the equilibrium equations now reads as

�Mi�2 þ 16Mi�1 � 30Mi þ 16Miþ1 �Miþ2

12a2

þ P
�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 �wiþ2

12a2

¼ 0 (49)

where a is the constant step of the finite difference approximation,
and the constitutive law is rewritten with this approximation as:

Mi ¼ EI
�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 �wiþ2

12a2
(50)

For the pinnedepinned column, the finite difference equation to
be solved with this improved finite difference analysis is given by

EI
�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 �wiþ2

12a2
þ Pwi ¼ 0 (51)

The characteristic equation is obtained by replacing wi ¼ Ali in
Eq. (51) which leads to

�
�

lþ 1
l

�2

þ 16

�

lþ 1
l

�

� 28þ 12b

n2
¼ 0 with b ¼ PL2

EI

(52)

that admits the following four solutions

l1;2 ¼ cos f±j sin f and

l3;4 ¼ 8� cos f±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð8� cos fÞ2 � 1
q

with

f ¼ arccos 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 3b

n2

r
!

(53)

For the pinnedepinned column, the buckling mode is obtained
from the trigonometric shape function wi ¼ Bsin(f i) thus
furnishing the exact buckling load formulae:

cos
p

n
¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 3b

n2

r

0

Pcr;n
Pcr;∞

¼ bn

b
∞

¼ n2

3p2

h

7� 8 cos
p

n
þ cos2

p

n

i

¼ 1� p
4

90n4
þ o

�

1

n6

�

(54)
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The higher-order pseudo-differential operator can also be
expanded as:

�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 �wiþ2

12a2

¼
�

� e�2avx þ 16e�avx � 30þ 16eavx � e2avx
�

12a2
wðxÞ

¼ v
2
x 1� a4v4x

90

!

wðxÞ þ… (55)

In other words, the bending moment e curvature enriched law
associatedwith the higher-order finite difference scheme is written
as:

M þ l4cM
ð4Þ ¼ EIw

00
with l4c ¼ a4

90
(56)

To the authors' knowledge, this nonlocal law has not been re-
ported before. By inserting Eq. (56) into Eq. (23), the equations of
the uncoupled buckling problem reduce to

Pl4cw
ð6Þ þ EIwð4Þ þ Pw

00 ¼ 0 (57)

Equation (57) is equivalent to considering a nonlocal model
being applied to an EulereBernoulli beam kinematics; the nonlocal
model leads to the lower bound status of the buckling load with
respect to its local counterpart. This can be easily shown again from
the Rayleigh's quotient of Eringen model:

R ¼

Z L

0
EIw

002dx

Z L

0
w02 þ l4cw

0002dx

�

Z L

0
EIw

002dx

Z L

0
w02dx

(58)

Consider again the pinnedepinned column, and introducing a
sinusoidal shape function ~w ¼ w sinðpx=LÞ as an admissible func-
tion into the Rayleigh's quotient leads to the exact buckling value of
the pinnedepinned case:

~w ¼ w0 sin
�

px

L

	

0Pcr ¼
p

2EI
L2

1þ p4 l
4
c

L4

� p
2EI

L2
with l4c ¼ a4

90

(59)

In this case, the buckling load of the higher-order finite differ-
ence system with respect to its continuous “local” counterpart can
be expressed for the pinnedepinned column as:

Pcr;n
Pcr;∞

¼ 1

1þ p4

90n4

¼ 1� p
4

90n4
þ o

�

1

n6

�

(60)

which, of course, gives a higher rate of convergence than for the
central difference method. The length scale calibration of the
nonlocal model equivalent to the higher-order finite difference
formulation in buckling is then equal to:

l4c;static ¼
a4

90
¼

l4
c;dynamic

2
(61)

As shown by Challamel et al. (2015b), a factor 2 affects the
equivalent length scale of the higher-order finite difference
formulation applied to the vibrations analysis, which shows that
the nonlocal model associated with the finite difference formula-
tion, depends on the static versus vibration analysis. Furthermore,
using the generalized Rayleigh ratio, a new general formulae can be

applied as well for some other boundary conditions (including the
clamped-free and the clampedeclamped boundary conditions):

Pcr;n
Pcr;∞

¼ 1

1þ
�

Pcr;∞
EI

�2

l4c

with l4c ¼ a4

90
(62)

It is clearly shown that the buckling load is more sensitive to the
cell size, which is affected by a fourth-order power in the fraction.
This result is not surprising as the efficiency of higher-order finite
difference schemes is already known in the literature (see
Greenwood, 1961; Subrahmanyam and Kaza, 1983; Subrahmanyam
and Leissa, 1985 or more recently Elishakoff and Santoro, 2005).
The analysis of these higher-order schemes in term of continualized
enriched continuum contributes here to a new understanding of
this efficiency. This is clearly related to the nonlocal nature of the
equivalent continuous medium, involving the fourth-order deriv-
ative of the generalized stress variable.

A similar result is obtained from the following discrete equa-
tions issued of a mixed variational principle, as detailed by Seide
(1975):

8

>

>

<

>

>

:

EI
qiþ1 � qi�1

2a
�Miþ1 þ 4Mi þMi�1

6
¼ 0

Miþ1 �Mi�1

2a
þ P

qiþ1 þ 4qi þ qi�1

6
¼ 0

(63)

where qi ¼ w0
i is the discrete rotation field. This two-dimensional

discrete system can also be expressed with the difference opera-
tors d0 and d1:




EId1q� d0M ¼ 0
d1M þ Pd0q ¼ 0

(64)

where the difference operators are defined by

d0 ¼ 1
6

h

e�avx þ 4þ eavx
i

and d1 ¼ 1
2a

h

� e�avx þ eavx
i

(65)

It is possible to use present the finite difference system in terms
of the kinematics variable:

EId21qþ Pd20q ¼ 00EI
qiþ2 � 2qi þ qi�2

4a2

þ P
qiþ2 þ 8qiþ1 þ 18qi þ 8qi�1 þ qi�2

36
¼ 0 (66)

An asymptotic expansion of the two difference finite operators
gives:

d20 ¼ 1þ ðavxÞ2
3

þ ðavxÞ4
18

þ o
�

a6
	

and d21

¼
"

1þ ðavxÞ2
3

þ 2ðavxÞ4
45

þ o
�

a6
	

#

v
2
x (67)

Finally, the finite difference system can be approximated by the
following differential equation:

EIq
00 þ P

"

1þ ðavxÞ4
90

#

q ¼ 0 (68)

which is equivalent to the differential equation Eq. (57) by setting
q ¼ w

0
. In this case, the mixed variational principle and the higher-

order finite difference method lead to equivalent first-order
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numerical results, associated with an equivalent linear differential
equation. This continualization analysis of the mixed variational
principle is consistent with the numerical results presented by
Seide (1975) for the buckling of pinnedepinned columns, or other
standard boundary conditions already mentioned.

4. Finite element method e buckling

In this section, the status of the finite element method will be
investigated by using higher-order constitutive laws. For the
buckling problem, and following the reasoning of Seide (1975)
(called finite element method Ia in Seide, 1975), we will show
that the linear interpolation shape form of the rotation function
leads to a gradient elasticity constitutive law. The linear interpo-
lation field is assumed as:

8

>

>

>

<

>

>

>

:

dw
dx

¼ qi�1ð1� xÞ þ qix

d2w

dx2
¼ �qi�1 þ qi

(69)

where x¼ x/a is the dimensionless abscissa and the notation qi ¼ w0
i

is used for the discrete rotation field. The buckling load can be
computed from the Rayleigh's quotient (see also Seide, 1975):

R ¼

Pn
i¼1

Z 1

0

EI

a4
d2w

dx2

!2

dx

Pn
i¼1

Z 1

0

1

a2

�

dw
dx

�2

dx

(70)

For the linear interpolation shape function considered, this
Rayleigh's quotient is calculated as:

R ¼ EI

a2

Pn
i¼1 ðqi � qi�1Þ2

Pn
i¼1

q2i þqiqi�1þq2i�1
3

(71)

Consider the regular deflection variable w defined by

ðvxwÞ2 ¼ q2i þ qiqi�1 þ q2i�1

3
(72)

This condition can be inverted (see Appendix B), i.e.

qi ¼
"

1� ðavxÞ2
12

#

vxw (73)

The strain energy can be expanded with this new variable as
(see Appendix B):

X

n

i¼1

a

�

qi � qi�1

a

�2

¼
Z

L

0

w
002 þ a2

12
w

0002 þ o
�

a4
	

dx� a2

12

h

w
00
w

000
iL

0

(74)

For this finite element model, the Rayleigh's quotient can then
be continualized as:

R ¼

Z L

0
EI
�

w
002 þ l2cw

0002
	

dx

Z L

0
w02dx

�

Z L

0
EIw

002dx

Z L

0
w02dx

with l2c ¼ a2

12

(75)

leading to the gradient elasticity solution:

�EIl2cw
ð6Þ þ EIwð4Þ þ Pw

00 ¼ 0 with l2c ¼ a2

12
(76)

associated with the gradient elasticity constitutive law:

M ¼ EI
�

w
00 � l2cw

ð4Þ
	

with l2c ¼ a2

12
(77)

In this case, the buckling load of the finite element system (with
linear interpolation of the rotation field) with respect to its
continuous “local” counterpart can be expressed as:

Pcr;n
Pcr;∞

¼ 1þ p
2

12n2
þ o

�

1

n4

�

(78)

as numerically shown by Seide (1975) for the finite element
method (with linear interpolation of the rotation field).

The discrete equations of this finite element method are ob-
tained from taking the stationarity condition of Rayleigh's quotient
d R ¼ 0 as defined in Eq. (71), thereby leading to (see also the dis-
cussion in Ba�zant and Cedolin, 2003 on Rayleigh's quotient
properties):

EI
qiþ1 � 2qi þ qi�1

a2
þ P

qiþ1 þ 4qi þ qi�1

6
¼ 0 (79)

The characteristic equation is obtained by replacing qi ¼ Ali in
Eq. (79) which leads, with b ¼ PL2/EI to:

�

1þ b

6n2

�

l2 þ
�

� 2þ 4b

6n2

�

lþ 1þ b

6n2
¼ 0 (80)

For the pinnedepinned column, the buckling load of this finite
element problem is obtained by solving Eq. (80):

l1;2 ¼ cos f±j sin f with cos f ¼
1� 2b

3n2

1þ b

6n2

(81)

The buckling load is then given by f ¼ p/n and is expressed as
(Seide, 1975):

b ¼ 6n2
1� cos p

n

2þ cos p

n

0

Pcr;n
Pcr;∞

¼ 3
2þ cos p

n

0

B

@

sin p

2n
p

2n

1

C

A

2

¼ 1þ p
2

12n2
þ o

�

1

n4

�

(82)

The discrete equations can be directly continualized by:

EI
v
2
xq

1� ðavxÞ2
12

þ P
q

1� ðavxÞ2
6

¼ 00EI

"

1� ðavxÞ2
12

#

v
2
xqþ Pq ¼ 0

(83)

and then Eq. (76) is found again by differentiation.
Returning to the axial, torsional and string vibrations problem,

the finite element formulation would also lead to a gradient
elasticity-type solution. For instance, when studying the axial bar
problem, the linear displacement interpolation field can be used:

8

>

<

>

:

u ¼ ui�1ð1� xÞ þ uix

du
dx

¼ �ui�1 þ ui
where x ¼ x

a
(84)
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The Rayleigh's quotient associated with the free vibrations
problem of the axial bar is given by:

R ¼

Pn
i¼1

Z 1

0

ES

a2

�

du
dx

�2

dx

Pn
i¼1

Z 1

0
m u2dx

(85)

The discrete equations of this finite element method are ob-
tained from taking the stationarity condition of the Rayleigh's
quotient d R ¼ 0 as defined in Eq. (85),

ES
uiþ1 � 2ui þ ui�1

a2
þ mu2uiþ1 þ 4ui þ ui�1

6
¼ 0 (86)

This difference equation is also obtained by Tong et al. (1971) for
the so-called consistent mass matrix. These difference equations
can be continualized, leading to the following enriched equation:

ESu
00 þ mu2u� ESl2cu

ð4Þ ¼ 0 with l2c ¼ a2

12
(87)

For fixedefixed boundary conditions, one finds from the fourth-
order differential equation Eq. (87):

u
2
k

u
2
k;∞

¼ 1þ k2p2l2c
L2

with l2c ¼ a2

12
(88)

Equation (87) is an enriched dynamics equation which may
come from the gradient elasticity formalism (see Tsepoura et al.,
2002 or Challamel, 2013) as:

N ¼ ES
�

u0 � l2cu
000
	

and N0 ¼ rS€u (89)

Now, we will show that a higher-order displacement field in the
Finite Element Method is associated with a higher-order gradient
elasticity law. Going back to the buckling problem, the Hermitian
cubic functions can also be used for the interpolation function of
the displacement field:

w ¼ wi�1

�

1� 3x2 þ 2x3
	

þwix
2ð3� 2xÞ þ qi�1axð1� xÞ2

� qiax
2ð1� xÞ where x ¼ x

a

(90)

Using again the definition of the discrete Rayleigh's quotient, Eq.
(70) gives the Rayleigh's quotient of the cubic-based Hermitian
interpolation function:

By taking the stationarity conditions of the Rayleigh's quotient
d R ¼ 0 for the two-variable field (wi,qi), we obtain the coupled
system of finite difference equations:

which were also obtained by Seide (1975). This system looks like
the coupled system of finite difference equations considered for the
discrete Timoshenko beam with some additional discrete shear
effect (see Zhang et al., 2013), even if the structure of the governed
equations differ between both problems. This can be easily seen
from the expression of the Rayleigh's quotient of this two field
problem, which is clearly different from the one of the discrete
Timoshenko equations.

The finite difference system can be presented using the finite
difference operators:
8

>

>

>

>

<

>

>

>

>

:

�

4� 2Pa2

5EI

�

d2w�
�

4� Pa2

15EI

�

d1q ¼ 0

�

12� Pa2

5EI

�

d1w�
�

12d0 þ
Pa4

30EI
d2 �

Pa2

5EI

�

q ¼ 0

(93)

with the finite difference operator defined in Eq. (65) and

d2 ¼ 1

a2

h

e�avx � 2þ eavx
i

(94)

The finite difference equation is then obtained as:
�

�
�

12d0 þ
Pa4

30EI
d2 �

Pa2

5EI

��

4� 2Pa2

5EI

�

d2

þ
�

4� Pa2

15EI

��

12� Pa2

5EI

�

d21

�

w ¼ 0

(95)

R ¼

Pn
i¼1

Z 1

0

EI

a4
d2w

dx2

!2

dx

Pn
i¼1

Z 1

0

1

a2

�

dw
dx

�2

dx

¼ 10EI

a2

Pn
i¼1

h

ð6wi � 6wi�1Þ2 � ð6wi � 6wi�1Þð6aqi�1 þ 6aqiÞ þ 12a2
�

q2i�1 þ qi�1qi þ q2i

	i

Pn
i¼1

h

ð6wi � 6wi�1Þ2 � ð6wi � 6wi�1Þðaqi�1 þ aqiÞ þ a2
�

4q2i�1 � 2qi�1qi þ 4q2i

	i (91)

8

>

>

>

>

<

>

>

>

>

:

ðwiþ1 � 2wi þwi�1Þ
�

4� 2Pa2

5EI

�

� aðqiþ1 � qi�1Þ
�

2� Pa2

30EI

�

¼ 0

ðwiþ1 �wi�1Þ
�

6� Pa2

10EI

�

� aðqiþ1 þ qi�1Þ
�

2þ Pa2

30EI

�

� aqi

�

8� 4Pa2

15EI

�

¼ 0

(92)
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which can be also presented as:

� 12

�

4� 2Pa2

5EI

�

wi�2 þ 2wi�1 � 6wi þ 2wiþ1 þwiþ2

6a2

� Pa4

30EI

�

4� 2Pa2

5EI

�

wi�2 � 4wi�1 þ 6wi � 4wiþ1 þwiþ2

a4

þ Pa2

5EI

�

4� 2Pa2

5EI

�

wi�1 � 2wi þwiþ1

a2

þ
�

4� Pa2

15EI

��

12� Pa2

5EI

�

wi�2 � 2wi þwiþ2

4a2
¼ 0

(96)

The characteristic equation is obtained by replacing wi ¼ Ali in
Eq. (96) which leads, with b ¼ PL2/EI to:

4þ 4b

15n2
þ b2

60n4

!

�

lþ1
l

�2

þ �16þ 44b

15n2
� 2b2

15n4

!

�

lþ1
l

�

þ16�104b

15n2
þ b2

5n4
¼ 0

(97)

that admits the following four solutions

The buckling load is then given by f ¼ p/n and is expressed as:

cos p

n � 3

60n4
b2 þ 4 cos p

n þ 26

15n2
bþ 4

�

cos
p

n
� 1

	

¼ 0 (99)

For the pinnedepinned column, the buckling load of this finite
element problem is then obtained from:

Pcr;n
Pcr;∞

¼
13þ 2 cos p

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

124þ 112 cos p

n � 11 cos2pn

q

3� cos p

n

�

2n
p

�2

¼ 1þ p
4

720n4
þ o

�

1

n6

�

(100)

which is also the value reported by Seide (1975). Now, by using a
continualization procedure, an asymptotic expansion of each dif-
ference operator in Eq. (96) gives:

�12

�

4� 2Pa2

5EI

�

"

1þ ðavxÞ2
4

þ 11
360

ðavxÞ4 þ
43

20160
ðavxÞ6

þ o
�

a8
	

#

w
00 � Pa4

30EI

�

4� 2Pa2

5EI

�

"

1þ ðavxÞ2
6

þ 1
80

ðavxÞ4

þ o
�

a6
	

#

wð4Þ þ Pa2

5EI

�

4� 2Pa2

5EI

�

"

1þ ðavxÞ2
12

þ 1
360

ðavxÞ4

þ 1
20160

ðavxÞ6 þ o
�

a8
	

#

w
00 þ

�

4� Pa2

15EI

��

12� Pa2

5EI

�

"

1

þ ðavxÞ2
3

þ 2
45

ðavxÞ4 þ
1

315
ðavxÞ6 þ o

�

a8
	

#

w
00

¼ 0

(101)

which can be efficiently approximated by the following sixth-order
differential equation, when collecting the terms up to the fourth-
order in a4:

EI
a2

6
wð6Þ þ

�

EI þ 3Pa2

20

�

wð4Þ þ P

�

1� Pa2

60EI

�

w
00 ¼ 0 (102)

This differential equation can be factorized by:

"

ðavxÞ2
6

þ 1� Pa2

60EI

#

h

EIv4x þ Pv2x

i

w ¼ 0 (103)

Equation (103) shows the product of differential operators, with
the so-called local differential operator. As a consequence, the local
solution Pcr,n ¼ Pcr,∞ is a solution of this system, which means that a
higher-order asymptotic expansion is needed for developing the
finite difference operators in Eq. (101) with higher-order terms.
Now collecting the terms up to the sixth-order in a6 leads to the
enriched equation:

EI
a4

80
wð8Þ þ

�

EI
a2

6
þ Pa4

72

�

wð6Þ þ
�

EI þ 3Pa2

20
þ P2a4

360EI

�

wð4Þ

þ P

�

1� Pa2

60EI

�

w
00 ¼ 0

(104)

By introducing the sinusoidal shape function ~w ¼ w sinðpx=LÞ
in this eight-order differential equation, we obtain the following
buckling load

l1;2 ¼ cos f±j sin f and l3;4 ¼
16� 44b

15n2 þ 2b2

15n4

8þ 8b
15n2 þ b2

30n4

� cos f±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0

B

B

@

16� 44b
15n2 þ 2b2

15n4

8þ 8b
15n2 þ b2

30n4

� cos f

1

C

C

A

2

� 1

v

u

u

u

u

u

u

t

with

f ¼ arccos

2

6

6

6

6

6

6

4

16� 44b
15n2 þ 2b2

15n4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 

16� 44b
15n2 þ 2b2

15n4

!2

� 4

 

4þ 4b
15n2 þ b2

60n4

! 

16� 104b
15n2 þ b2

5n4

!

v

u

u

t

4 4þ 4b
15n2 þ b2

60n4

!

3

7

7

7

7

7

7

5

(98)
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An asymptotic expansion shows that:

Pcr;n
Pcr;∞

¼ 1þ p
4

720n4
þ o

�

1

n6

�

(106)

which is the value reported by Seide (1975) based on the cubic-
based finite element method. This coefficient 1/720 in the asymp-
totic expansion of the eigenvalue problem is also found by Tong
et al. (1971) for the FEM solution of the eigenfrequencies of a pin-
nedepinned column. The differential equation Eq. (104) can also be
factorized as

EI
a4

80
v
8
x þ

�

EI
a2

6
þ Pa4

72

�

v
6
x þ

�

EI þ 3Pa2

20
þ P2a4

360EI

�

v
4
x

þ P

�

1� Pa2

60EI

�

v
2
x ¼

"

1þ ðavxÞ2
6

� Pa2

60EI
þ ðavxÞ4

90
þ Pa2

360EI
ðavxÞ2

#

�
�

EIa4

720
v
8
x þ EIv4x þ Pv2x

�

þ o
�

a6
	

(107)

which means that the cubic-based finite element model can be
equivalently reduced to the eight-order differential equation:

EI
a4

720
wð8Þ þ EIwð4Þ þ Pw

00 ¼ 0 (108)

Walz et al. (1968) also obtained a corrected eight-order differ-
ential equation for the continualized bending problem which was
investigated by the Hermitian-based Finite Element model, with
the correct coefficient 1/720 but with a different sign. For the finite
element model considered herein, the associated Rayleigh's quo-
tient can then be expressed by:

R ¼

Z L

0
EI
�

w
002 þ l4cw

ð4Þ2
	

dx

Z L

0
w02dx

�

Z L

0
EIw

002dx

Z L

0
w

002dx

with l4c ¼ a4

720

(109)

leading to the gradient elasticity solution Eq. (109), associated with
the gradient elasticity constitutive law:

M ¼ EI
�

w
00 þ l4cw

ð6Þ
	

with l4c ¼ a4

720
(110)

Consider again a pinnedepinned column and introducing a si-
nusoidal shape function ~w ¼ w sinðpx=LÞ as an admissible function
into the Rayleigh's quotient leads to the exact buckling value of the
pinnedepinned case, also given in Eq. (106). Equation (106) shows
that the Finite Element column model gives an upper bound of the
“local” problem asymptotically found for n tending towards infinite.

The length scale calibration of the gradient elasticity model
equivalent to the cubic hermitian finite element formulation in
buckling is then equal to:

l4c;static ¼
a4

720
¼ l4c;dynamic (111)

As shown by Challamel et al. (2015b), one also recognizes the
equivalent length scale of the finite element formulation applied to
the vibrations analysis, which shows that the gradient elasticity
model associated with the finite element formulation, is indepen-
dent of the static versus vibration analysis (a property which is
different from the one associated with the finite difference
schemes). Furthermore, using the generalized Rayleigh ratio, a new
general formulae can be applied as well for some other boundary
conditions (including the clamped-free and the clampedeclamped
boundary conditions):

Pcr;n
Pcr;∞

¼ 1þ
�

Pcr;∞
EI

�2

l4c with l4c ¼ a4

720
(112)

which is again consistent with the asymptotic results of Seide
(1975).

In other words, the central finite difference method can be
efficiently approximated by a nonlocal Eringen's model based
on the second derivative of the generalized stress variable (the
bending moment for the considered beam model) as a cor-
rected term, whereas the higher-order finite difference method
can be captured by a higher-order nonlocal model based on the
fourth-order derivative of the generalized stress variable. Both
finite difference based models can be classified as stress
gradient models. In both cases, a lower bound of the buckling
load is obtained as shown by the associated nonlocal Rayleigh's
quotient (see Fig. 1 or Fig. 2). On the other hand, the finite
element method with a linear interpolation field of the rotation

Fig. 1. Finite difference method (or some equivalent nonlocal elastic systems) leads to
a lower bound of the buckling load, whereas finite element method (or some equiv-
alent gradient elasticity systems) leads to an upper bound.

Pcr;n
Pcr;∞

¼
1� 3p2

20n2 þ p
4

72n4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1� 3p2

20n2 þ p4

72n4

�2

� 4

�

1� p2

6n2 þ p4

80n4

��

p2

60n2 þ p4

360n4

�

s

p2

30n2 þ p4

180n4

(105)
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can be efficiently approximated by a gradient elasticity model
based on the second derivative of the generalized strain vari-
able (the curvature variable for the considered beam model) as
a corrected term, whereas the cubic-based Finite Element
method can be captured by a higher-order gradient elasticity
model based on the fourth-order derivative of the generalized
strain variable (see Figs. 1 and 2). Both finite element based
models can be classified as strain gradient models. As it is also
shown from the equivalent formulation of the Rayleigh's quo-
tient, finite element methods give an upper bound of the
buckling load of the local model obtained for an infinite number
of elements.

5. Conclusions

Numerical approaches often convert the mathematical equa-
tions of continuous systems into a finite number of variables
associated with some discrete equivalent systems in order to
reduce the complexity of the mathematical problem for solution. It
is shown herein, from the vibrations and the buckling analyses of
one-dimensional systems, that the obtained discrete equations
behave as a kind of enriched nonlocal continua with respect to the
local reference continua. The analogy between the finite numerical
approaches and some equivalent enriched continuum is shown by
using a continualization procedure (or equivalently by using the
method of differential approximation). The finite difference
method is investigated using an integral-based nonlocal method,
whereas the finite element method appears to be equivalent to a
gradient elasticity method. As a consequence, the integral-based
nonlocal method gives a lower bound solution to the exact eigen-
value multiplier whereas the gradient elasticity method furnishes
an upper bound solution.

The convergence rate of the finite numerical approaches may be
quantified through the use of Rayleigh's quotient for the con-
tinualization approach. The rate of convergence is strongly
dependent on the order of the finite discrete scheme: higher-order
finite schemes lead to higher-order enriched constitutive law with
a higher convergence rate. These analogies between enriched
continuum and finite numerical schemes give a new attractive
framework for potential applications of enriched continua in
computational mechanics. Surprisingly, these higher-order nu-
merical schemes give the opportunity to build some new higher-
order nonlocal or gradient constitutive laws.

Appendix A. Rayleigh's quotient for finite difference system

The potential energy depends on the difference:

wiþ1 �wi

a
¼ ½expðavxÞ � 1�

a
wi with wi ¼

a2v2x

4 sinh2avx
2

w (A1)

A new differential operator can be introduced as:

wiþ1 �wi

a
¼ Q1ðavxÞvxw with Q1ðavxÞ ¼

½expðavxÞ � 1�avx
4 sinh2avx

2

¼
exp

�

avx
2

�

avx

2 sinh

�

avx
2

�

(A2)

The last differential operator can be expanded as:

Q1ðavxÞ ¼
exp

�

avx
2

�

avx

2 sinh

�

avx
2

� ¼ �avx
expð�avxÞ � 1

¼
X

∞

k¼0

Bkð�1ÞkðavxÞk

¼ 1þ avx
2

þ 1
12

ðavxÞ2 þ…

(A3)

where Bk being the Bernoulli numbers defined by the expansion
of x=expðxÞ � 1 ¼P∞k¼0Bk=k!x

k .
The potential energy can then be obtained from:

Z

L

0

�

wiþ1 �wi

a

�2

dx ¼
Z

L

0

Q1ðavxÞðvxwÞQ1ðavxÞðvxwÞdx

¼
Z

L

0

ðvxwÞQ*

1ðavxÞQ1ðavxÞðvxwÞdx (A4)

where Q*

1ðavxÞ ¼ Q1ð�avxÞ. For infinite medium,
Q*

1ðavxÞ ¼ Q1ð�avxÞ is the adjoint operator whereas for finite sys-
tems as the ones considered in this paper, the adjointness of
Q*

1ðavxÞ ¼ Q1ð�avxÞ depends on the boundary conditions of the
system. It is possible to expand this differential operator as:

Q*

1ðavxÞQ1ðavxÞ ¼
a2v2x

4 sinh2
�

avx
2

� ¼
"

1� ðavxÞ2
12

þ o
�

a4
	

#

(A5)

The potential energy term can then be rewritten as:

Z

L

0

�

wiþ1 �wi

a

�2

dx ¼
Z

L

0

w0
�

w0 � a2

12
w

000 þ o
�

a4
	

�

dx (A6)

An integration by part finally gives Eq. (A7).

Z

L

0

�

wiþ1 �wi

a

�2

dx ¼
Z

L

0

w02 þ a2

12
w

002 þ o
�

a4
	

dx� a2

12

h

w0w
00
iL

0

(A7)

Fig. 2. Comparison of finite difference and finite element approaches for buckling of
simply supported column; Efficiency of enriched continua with respect to exact nu-
merical results.
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Appendix B. Rayleigh's quotient for finite element system

The discrete potential energy is written in the following form,
with the new continuous variable:

q2i þ qiqi�1 þ q2i�1

3
¼ ðvxwÞ2 (B1)

The discrete left hand-side term can be also expressed by:

q2i þ qiqi�1 þ q2i�1

3
¼ 1

3
ð qi qi�1 Þ

0

B

B

@

1
1
2

1
2

1

1

C

C

A

�

qi
qi�1

�

¼ 1
3




1 e�avx
�

qi

0

B

B

@

1
1
2

1
2

1

1

C

C

A

�

1
e�avx

�

qi (B2)

and then by integration, the following expansion can be performed:

Z

L

0

q2i þ qiqi�1 þ q2i�1

3
dx ¼

Z

L

0

1
3
qi½2þ coshðavxÞ�qidx

¼
Z

L

0

qi

"

1þ ðavxÞ2
6

þ o
�

a4
	

#

qidx (B.3)

Using the definition Eq. (B1), the continuous rotation can then
be expressed by:

vxw ¼
"

1þ ðavxÞ2
12

þ…
#

qi (B.4)

This condition can be inverted, i.e.

qi ¼
"

1� ðavxÞ2
12

þ…
#

vxw (B.5)

A new differential operator can be introduced as:

qi � qi�1 ¼ Q2ðavxÞvxw with Q2ðavxÞ

¼
h

1� e�avx
i

"

1� ðavxÞ2
12

þ…
#

(B.6)

The differential operator can be expanded as:

Q2ðavxÞ ¼ 1� avx
2

þ ðavxÞ2
12

þ…
!

avx (B.7)

The strain energy can then be expressed with this differential
operator Q2 or with a new differential operator Q3:

Z

L

0

ðqi � qi�1Þ2dx ¼
Z

L

0

Q2ðavxÞðvxwÞQ2ðavxÞðvxwÞdx

¼ a2
Z

L

0

Q3ðavxÞ
�

v
2
xw
	

Q3ðavxÞ
�

v
2
xw
	

dx with

� Q3ðavxÞ ¼ 1� avx
2

þ ðavxÞ2
12

þ…
!

(B.8)

It is then possible to expand the strain energy in the following
form:

Z

L

0

ðqi � qi�1Þ2dx ¼ a2
Z

L

0

Q3ðavxÞ
�

v
2
xw
	

Q3ðavxÞ
�

v
2
xw
	

dx

¼ a2
Z

L

0

�

v
2
xw
	

Q*

3ðavxÞQ3ðavxÞ
�

v
2
xw
	

dx (B.9)

where Q*

3ðavxÞ ¼ Q3ð�avxÞ. It is easy to notice that:

Q*

3ðavxÞQ3ðavxÞ ¼ Q*

1ðavxÞQ1ðavxÞ ¼ 1� ðavxÞ2
12

þ o
�

a4
	

(B.10)

The strain energy can be expanded with this new variable as:

Z

L

0

�

qi � qi�1

a

�2

dx ¼
Z

L

0

v
2
xw

"

1� ðavxÞ2
12

#

v
2
xw dx (B.11)

Finally, the strain energy can be presented in its gradient elas-
ticity format, by integration by parts:

Z

L

0

�

qi � qi�1

a

�2

dx ¼
Z

L

0

w
002 þ a2

12
w

0002 þ o
�

a4
	

dx� a2

12

h

w
00
w

000
iL

0

(B12)
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