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The influence of surface imperfections on the propagation of guided waves in an immersed elastic plate
can be interpreted by means of a rheological model. The corrugated surface is modeled by a very thin
interface, similar to a Jones spring model, which replaces the continuity boundary conditions at the liquid
– corrugated solid-plate interface. As the surrounding liquid is considered to be perfect, only one complex
stiffness is used for the model of Jones. The selection of the plate guided mode and the test frequency are
motivated by the detectability and non-interference with other modes. The spring stiffness is obtained by
a best fit procedure, between the analytical solution and the results obtained by the finite elements
method (FEM). One way ensuring the agreement of the two approaches, rheological and FEM, is to con-
sider angular resonances provided by the transmission coefficients. Small changes in the parameters of
the roughness keep the positions of the angular resonances of the plate practically unchanged, while
at the same time large variations of the half width of the transmission coefficient curve is observed.
The effect of corrugation parameters on the guided modes in the plate can be predicted by using the rhe-
ological model with the deduced spring complex stiffness.

1. Introduction

Machined plane surfaces are prone to imperfections, which can
be described as local deviations from the theoretical plane surface.
In most practical applications, the measurements are done along a
selected direction in the plane, which can be assumed as the Ox
axis. For a plate of average thickness H, the function hrðxÞmeasured
from the H value, describes the surface imperfections. The Fourier
spectrum of this function, can bring information about waviness
(large periods) and roughness (short periods). In most cases,
roughness is considered a random function, but experiments have
shown that the spectrum can still exhibit several spatial periods.
Roughness is in general defined by statistical functions such as Rq

[1], which is the root mean square (RMS) of the function hrðxÞmea-
suring deviations along a distance x 2 ½0; Lx�, in which Lx is a char-
acteristic length of the corrugation:

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Lx

Z Lx

0
h
2
r ðxÞdx

s

: ð1Þ

The geometrically imperfect interfaces between solids and liquids
have raised a challenge in practical applications of ultrasonic wave

propagation, for which both waviness and roughness should be
taken into account. The earliest analytical treatment of a nonplanar
reflection problem in acoustics was Rayleigh’s solution (1893) for
wave’s reflection at a sinusoidal interface between two liquid media
[2]. Miles investigated planar wave reflection at a rough interface
between two liquids [3]. Biot considered a planar rigid wave reflec-
tor, for which the roughness is modeled by small hemispheres [4,5].
The reduction of the Rayleigh wave velocity due to roughness,
which is considered as a uniform surface distribution of pyramids,
has been theoretically deduced by Sinclair [6]. Measurements of
scattered acoustic field by a random or periodic rough surface were
performed by Quentin et al. [7] for water immersed blocks of alu-
minum at high frequencies (5–25 MHz), detecting diffraction peaks
of the grating. Diffraction from water-acrylic saw-tooth interface,
has been computed and measured by Chuang and Johnson [8] and
for the opposite sense (solid-liquid) by Mampaert and Leroy [9].
The Rayleigh theory of reflection at rough surfaces with pressure
release boundary conditions (total pressure cancels) has been inves-
tigated by Wirgin [10]. Reflection of ultrasonic pulses from rough
rigid surfaces has been studied by Haines and Langston [11], intro-
ducing a roughness factor for planar surfaces. Ogilvy presents in his
book [12] the most important theories on wave scattering from ran-
dom rough surfaces, with emphasis on slightly rough surfaces for
which the perturbation theories or Kirchhoff theories are widely⇑ Corresponding author.
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applied. Numerical methods related to this problem are also pre-
sented. A critical survey of the analytical approximate methods that
are encountered in scattering from random rough surfaces was per-
formed by Elfouhaily and Guérin [13]. For a liquid-loaded flat plate,
Fiorito, Madigosky and Überall (FMU) [14] deduced explicit mathe-
matical expressions for the resonance amplitudes of transmission
and reflection, based on series expansions about the free plate dis-
persion curves. The liquid loading effects are incorporated into the
resonances widths, which can be related to the half-width of the
angular resonances. In this way, computation of complex
wavenumbers via an equation of dispersion is avoided. Resonances
in the backscattered acoustic field of immersed plates were deter-
mined and measured by Maze et al. [15]. Pilarsky et al. [16] inves-
tigated the reflection and transmission coefficients of longitudinal
and transverse waves travelling at oblique incidence in a tri-layer
planar structure made of only solid materials. Vlasie and Rousseau
[17] studied two plates bonded by an adhesive layer, using the same
model, with and without spring mass.

Nagy and Adler [18,19] investigated the attenuation of reflected
and transmitted waves by a rough aluminum plate immersed in
water, but only at normal incidence. Nagy extended the investiga-
tion on the various types of imperfect interfaces, by comparing
several theories with experimental data. Duclos et al. [20] used
the resonant formalism to describe Rayleigh’s wave propagation
at the liquid-solid interface. Their approach is similar to the one
used in the present paper, but they focused on one perfectly plane
interface, and only the Rayleigh wave was investigated. Drinkwater
et al. [21] have investigated the reflection coefficient for normal
incidence waves at the interface between two rough aluminum
blocks. Their model integrates also a spring model, for which the
normal stiffness KL is deduced as function of frequency and reflec-
tion coefficient. Chimenti and Lobkis [22] considered the plate
thickness to be a complex number, with imaginary part accounting
for the roughness Rq. The deduced modal attenuations for a wide
frequency range were confirmed by experiments. The incident
wave was on the smooth side of the plate and the corrugations
on the opposite side of the water immersed plate.

In the present work, the Finite Element Method (FEM) is used to
simulate the acoustic transmission through a plate with a periodic
corrugation on only one face. The plate is immersed in water. The
transmission coefficient is obtained as a function of the geometri-
cal parameters of the corrugations. In the selected frequency range,
the wavelengths in water are comparable with the period of the
corrugation and diffraction effects are negligible at the positions
of pressure evaluation, contrary to measurements in Ref. [7].
Depending on the wavelength, the spatial periodicity could induce
additional effects such as band gaps or phonons [23]. These effects
do not take place in the present study, because band gaps and pho-
nons can be generated only when the ratio between the wave-
length and the length of the periodic cell are small compared to
unit. Thus, one deals with only the first Lamb modes of the plate,
i.e., S0, A0, S1 and A1. The A0 and S0 modes are the only ones existing
at all frequencies. Unfortunately, at fixed amplitude of excitation,
due to a stronger attenuation, they do not propagate over a long
distance in plates as A1 and S1 modes do. This is the reason for
focusing on A1 or S1 modes. Since the analytical results for S1 and
A1 do not differ qualitatively, we will emphasize on the computa-
tions for the A1 mode.

The characteristics of the peaks of the transmission coefficients,
such as width at half height, are obtained and interpreted within
the classical model of resonances [14]. The frequency is chosen
such that the two peaks are not overlapping. The attenuations of
the leaky Lamb waves are then deduced by using the rheological
model of Jones involving a complex spring stiffness. Our justifica-
tion of the use of Jones model is the following: the corrugation
being periodic, one can assume for small heights of the asperities

with respect to the wavelength that the interface is composed of
a very thin layer, neither liquid nor solid, separating liquid from
plate. Furthermore, this layer is assumed to be homogeneous all
along the plate and therefore can be modeled by using the rheolog-
ical approach described by Jones.

The angles of the resonances are obtained from the complex
valued solutions of the characteristic equation of the leaky Lamb
waves. The main objective is to represent the attenuation of the
leaky Lamb waves by a rheological model, with normal spring stiff-
ness depending on the corrugation geometry, which can then pro-
vide much faster results than the FEM approach for practical
applications.

2. Theoretical background and extension

We summarize in this section two approaches that will be used
throughout the paper: the medialization of a corrugated surface by
means of a rheological model and the concept of angular resonance
which is a current alternative to the frequency resonances used for
describing the characteristics of Lamb modes in plates.

2.1. Rheological model

Let us derive the boundary conditions at the interface between
a viscous compressible liquid (index 1) and a perfectly plane elastic
medium (index 2). It is well known that the constitutive equations
for a viscous liquid can be written (i; j ¼ x; z)

r1ij ¼ �p1dij þ s1ij; ð2Þ

where s1ij ¼ k1D1kkdij þ 2l1D1ij is the viscous stress tensor, with
D1ij ¼ ð _u1i;j þ _u1j;iÞ=2 the tensor of the rate of deformation and dij

the second-order unit tensor and where k1 and l1 are Lamé viscos-
ity coefficients. The pressure p1 depends on the liquid density. The
notation _u1i in D1ij means time derivative of u1i the component of
the particle displacement vector. The stress tensor r2ij in the elastic
medium depends on the strain tensor e2ij ¼ ðu2i;j þ u2j;iÞ=2 through
the relation

r2ij ¼ k2e2kkdij þ 2l2e2ij; ð3Þ

where k2 and l2 are the Lamé elasticity coefficients. The boundary
conditions at the viscous liquid- flat elastic interface are generally
expressed by assuming the continuity of the displacement vector
and that of the traction vector T ¼ r:z ¼ ðrxz;rzzÞ for the normal
direction across the interface located at z ¼ þH=2, which mean:

u1x ¼ u2x;

u1z ¼ u2z;

r1xz ¼ r2xz;

r1zz ¼ r2zz:

8

>

>

>

<

>

>

>

:

ð4Þ

When the liquid is in contact with a corrugated surface, and in the
hypothesis of acoustic waves with sufficiently large wavelengths
incorporating several periods of corrugation, there exists a very thin
region (located around the mean position z ¼ þH=2 in Fig. 1) which

Fig. 1. The rheological model.
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presents complicated frictions between viscous liquid and elastic
solid. A simple way of accounting for the effects of this interfacial
region may be to consider the Voigt rheological model, for which
a distribution of springs in parallel with viscous elements (dash-
pots) connects the displacements in the liquid and in the solid to
the corresponding stresses. Similar to the Voigt model, Jones and
Whittier [24] introduced a uniform distribution of longitudinal
and shear springs, with respective complex stiffness, named KL in
the normal direction (Oz) and KT in the tangent direction (Ox).

Hence, we write the boundary conditions between the viscous
liquid and the solid as:

KTðu2x � u1xÞ ¼ r2xz;

KLðu2z � u1zÞ ¼ r2zz;

r1xz ¼ r2xz;

r1zz ¼ r2zz:

8

>

>

>

<

>

>

>

:

ð5Þ

In this set of equations, the components of the displacement and
the components of the strain tensor are considered usually as func-
tions of position and time [24] and the two stiffnesses of the springs
are considered to be real valued. In order to solve the equation, a
harmonic dependence on time expð�ixtÞ is considered. In Ref.
[17], a three-layer structure has been studied and the problem of
two plates bonded by an adhesive layer was addressed with the
same set of equations. Rheological models have been used to ana-
lyze the bonding: the stiffness coefficients of the springs are the
parameters of the adhesion. When studying the cut-off frequencies
of the modes propagating in the three-layered structure and the
same structure with the rheological model, it has been shown that
it is possible to obtain identical results by the two approaches, with

stiffness depending on frequency. Strictly speaking, this evolution
with the frequency, means that the position and time problem in
(5) has to be substituted by a convolution problem and that the val-
ues for the spring stiffness are time dependent. As we are interested
in guided waves, the set of Eq. (5) has to be understood as a Fourier
transform of the time problem and consequently all the physical
parameters shown in (5) are complex valued and functions both
of position and frequency. In the following, the two stiffness values
will be considered as complex parameters.

Next, the only way of agreeing with the case of a perfect liquid
(i.e. k1 ¼ l1 ¼ 0) in slip contact with the corrugated interface,
when the design of the considered roughness is ‘‘soft” or that
anfractuosities of the roughness are not deep with slopes remain-
ing small, is to assume that shear springs do not exist, i.e., KT � 0.
Consequently, the boundary conditions used for our computations
reduce to

KLðu2z � u1zÞ ¼ r2zz;

0 ¼ r2xz;

�p1 ¼ r2zz:

8

>

<

>

:

ð6Þ

It is readily seen that when jKLj ! 1, the continuity of normal dis-
placement u2z ¼ u1z is recovered. Thus, the boundary conditions for
the corrugated interface become similar to those for a flat interface,
a situation that occurs at z ¼ �H=2 where the boundary conditions
can then be written

u3z ¼ u2z;

0 ¼ r2xz;

�p3 ¼ r2zz:

8

>

<

>

:

: ð7Þ

One recognizes the well-known slip boundary conditions at a
liquid-solid interface.

2.2. Angular resonances

Let us assume a monochromatic plane wave

pInc: ¼ p0 exp½ iðkInc: � r �xtÞ� ð8Þ

impinging onto the immersed plate, under of the incidence angle h,
(Fig. 1). Here, kInc: ¼ ðkx; k1zÞ ¼ ðk1 sin h;�k1 cos hÞ denotes the wave
vector, r a position vector, x the angular frequency, t the time,
k1 ¼ x=c1 the wavenumber in the liquid and p0 the amplitude of
the pressure. A dimensionless quantity is defined
�kx ¼ kx=k1 ¼ sin h, which will be used in subsequent sections. From
the boundary conditions, Eqs. (6) and (7), one can find the expres-
sion of each of the two reflection coefficients r1 and r2, and that
of the transmission coefficient t1, such as given in Appendix A. In
Eqs. (A1)–(A3) and subsequent, the index a (s, resp.) indicates a
quantity related to the antisymmetric (symmetric, resp.) modes of
the flat plate. The coefficients r1, r2 and t1 depend on the angular
frequency x and on the angle of incidence h. They depend on the

corrugation, through the quantities C
� that tend to one as jKLj

becomes infinite (flat plate limit).
Let us briefly present here the simplest cases of a free flat plate

and of a flat plate loaded by a ‘‘light” liquid. The guided waves of
the free flat plate, also called Lambwaves, are determinedby solving
the equations Ca ¼ 0 (Cs ¼ 0, resp.); each kind of wave (a or s) prop-
agates independent from each other. The solutions of these equa-

tions are the dimensionless wave numbers �kx ¼ �kx;p;a (resp.
�kx ¼ �kx;p;s) which depend on the frequency, the integer p being the
order of the mode. When the flat plate is symmetrically loaded by
a light liquid on the two faces, one speaks of ‘‘generalized” Lamb
waves.When a ‘‘generalized” Lambwave is generated, it is said that
a resonance is excited. If h is fixed whereasx varies, the plot of the
reflection coefficient jr1;flat j (the transmission coefficient jt1;flatj,
respectively) exhibits dips (peaks, respectively) called frequency
resonances and characterized by both the values of the frequency
at the maxima (minima, respectively) and the half-width [14]. If
x is held fixed whereas h varies, dips in jr1;flatj (peaks in jt1;flatj,
respectively) describe angular resonances characterized by both
the values of the angle at themaxima h�flat and the half-width. In this

last case, the perturbation brought to the solutions which were
obtained in absence of liquid loading, is accounted for via an addi-

tional imaginary part, i.e., �kx ¼ �kx;p;a þ i
2 cp;a or

�kx ¼ �kx;p;s þ i
2 cp;s where

cp;a;s is a real valued quantity defined below and �kx;p;a;s ¼ sin h�flat .

Since the corrugation is small relative to the plate thickness, we
will keep the same definition, i.e., ‘‘generalized” Lamb waves for
the liquid loaded corrugated plate and examine only the angular
resonances hereafter. Note that the presence of corrugation implies
that A and S waves are normally coupled. This fact is explicit in Eqs.
(A1)–(A3). But the expansion in resonant from obscures this point
at the first order considered here. Therefore, the A and S modes
continue to evolve independently from each other. When x is held
fixed whereas h varies, dips appearing in jr1j or jr2j (peaks in jt1j,
respectively) describe angular resonances characterized by both
the values of the angle at the maxima (minima, respectively) which
do not change which respect to the flat plate, that is to say, h� ¼ h�flat

and the half-width. Let us assume, as in the Resonant Scattering
Theory (FMU) [14] that the dips of interest in jr1j and jr2j (or the
peaks in jt1j) are well separated, that is to say, no overlapping
occurs. At the neighborhood of an angle of resonance such that
�kx;p;a;s ¼ sin h�flat , the coefficients r1, r2 and t1 can be expanded each

in a form that borrows to the FMU theory, i.e.

r1;p;a;s ¼
C
þ
p;a;s

C
�
p;a;s

�kx � �kx;p;a;s þ i
4 ðc

þ
p;a;s � cp;a;sÞ

�kx � �kx;p;a;s � i
4 ðc

�
p;a;s þ cp;a;sÞ

; ð9Þ

r2;p;a;s ¼
�kx � �kx;p;a;s � i

4 ðc
�
p;a;s � cp;a;sÞ

�kx � �kx;p;a;s � i
4 ðc

�
p;a;s þ cp;a;sÞ

; ð10Þ
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t1;p;a;s ¼
1

ðC�
p;a;sÞ

1=2

� i
2 ðcp;a;sc

�
p;a;sÞ

1=2

�kx � �kx;p;a;s � i
4 ðcp;a;s þ c�p;a;sÞ

; ð11Þ

where cp;a ¼ �2sp;a=C
0
að
�kx;p;aÞ, cp;s ¼ 2sp;s=C

0
sð
�kx;p;sÞ,

c�p;a ¼ �2s�p;a=C
0
að
�kx;p;aÞ, c�p;s ¼ 2s�p;s=C

0
sð
�kx;p;sÞ with sp;a;s ¼ sð�kx;p;a;sÞ,

s�p;a;s ¼ s�ð�kx;p;a;sÞ. The quantities C0
a;sð

�kx;p;a;sÞ are the values of the

derivatives of Ca;s with respect to the variable �kx, considered at
�kx ¼ �kx;p;a;s. Here, C

�
p;a;s ¼ C

�ð�kx;p;a;sÞ with C
� defined in Appendix A.

The quantity cp;a;s corresponds to the absence of roughness and

the sum Cp;a;s ¼ cp;a;s þ c�p;a;s to the width at half of the dips or peaks.

It is also the width of jt1j at �3dB off the maximum. The quantities
cp;a;sand c

�
p;a;s are often called the partial widths of the resonances. It

should be noted that Cp;a;s specifies the state of each interface. In the

absence of roughness, since KL is infinite, one obtains c�p;a;s ¼ cp;a;s
from which it follows that jr1;p;a;sj ¼ jr2;p;a;sj ¼ 0 and jt1;p;a;sj ¼ 1.

Returning to Eqs. (9)–(11), it is straightforward that when
�kx ¼ �kx;p;a;s

r1;p;a;s ¼
C
þ
p;a;s

C
�
p;a;s

ð1� C
þ
p;a;sÞ

ð1þ C
�
p;a;sÞ

; ð12Þ

r2;p;a;s ¼
ð1� C

�
p;a;sÞ

ð1þ C
�
p;a;sÞ

; ð13Þ

t1;p;a;s ¼
2

1þ C
�
p;a;s

: ð14Þ

The modulus of Eqs. (12)–(14) shows that a given resonance occurs
with various strength in the three quantities r1;p;a;s, r2;p;a;s and t1;p;a;s .

2.3. Analysis of the transmission coefficient

Eqs. (11) may be written alternatively as

t1;p;a;s ¼
� i

2 cp;a;s=C
�
p;a;s

½�kx � �kx;p;a;s � i
2 cp;a;s� þ

i
4 cp;a;sð1� 1=C�

p;a;sÞ
; ð15Þ

where at the denominator, the term between the brackets ½� corre-
sponds to the flat plate and the remaining, to a perturbation
brought to the case of the flat plate by the corrugated face. Let us
consider the assumption of a complex valued quantity KL such as

discussed above, i.e., KL ¼ K 0
Lð1þ ibÞ where b < 1. Then, from Eq.

(A4),

1�
1

C
�
p;a;s

� �b
KL0;p;a;s

K 0
L

� i
KL0;p;a;s

K 0
L

: ð16Þ

By substituting Eq. (16) in the denominator of the transmission
coefficient while keeping the exact form of C�

p;a;s at the numerator,

one obtains the rough approximation

t1;p;a;s ¼
� i

2 cp;a;s=C
�
p;a;s

�kx � �k0x;p;a;s �
i
2
~Cp;a;s

h i ; ð17Þ

where �k0x;p;a;s ¼
�kx;p;a;s � cp;a;sKL0;p;a;s=4K

0
L and

~Cp;a;s ¼ cp;a;sð1þ bKL0;p;a;s=2K
0
LÞ are real valued quantities. The inter-

pretation of Eq. (17) in the context of the resonance formalism is
then that with respect to the flat plate, the rheological model adds:

(a) a shift in position from �kx;p;a;s to �k0x;p;a;s, (b) a broadening of width

from cp;a;s to ~Cp;a;s and (c) a diminishing of amplitude from 1 to

jcp;a;s=C
�
p;a;s

~Cp;a;sj. Eq. (17) will serve in the comparisons with the

results obtained by FEM.

In the following, the transmission coefficients will be analyzed
for a corrugated plate and the resonances will be characterized
thanks to two ratios:

gh ¼
�kx;p;a;s � �k0x;p;a;s

�kx;p;a;s
¼

�cp;a;s
4�kx;p;a;s

KL0;p;a;s

K 0
L

ð18Þ

and

gc ¼
cp;a;s �

~Cp;a;s

cp;a;s
¼

�b

2
KL0;p;a;s

K 0
L

; ð19Þ

which measure the sensitivity of the angular position and of the res-
onance width, respectively, to various surface corrugation parame-
ters. The values of gh and gc will be computed at first with FEM and

then used to obtain the values of K 0
L and b. This aspect is developed

below.

3. Simulation of the acoustic scattering by an immersed

corrugated plate

The corrugation is assumed periodic and the repeated corruga-
tion geometry is triangular [12]. In fact, real surface roughness
obtained from various machining technologies, can be measured
with a profilometer and the ‘‘power spectrum” of the profilometer
measurements proves in most cases that the roughness is not ran-
domly distributed and moreover, only one or a few wavelengths
are dominant [23]. Basically, this can be assumed as a first har-
monic approximation. The RMS derived from Eq. (1) for the
function

hrðxÞ ¼
ð�x=aþ 1Þhr 0 < x < a

ðx=aþ 1Þhr �a < x < 0

�

ð20Þ

is

Rq ¼ hr

ffiffiffiffiffiffiffi

2a
3Lx

s

; ð21Þ

where 2a=Lx is defined as the filling fraction. The height hr (Fig. 2a)
of the triangular corrugation is considered as one of the parameters,
and lies between 0 and 0.2 mm, which is very small compared to
the average thickness (H ¼ 5 mm) of the plate.

Thus, the corrugation is a small disturbance as defined in previ-
ous studies [25,26]. The length of the periodic cell is Lx ¼ 8 mm, a
value comparable with the wavelength of the Lamb wave propa-
gating in the flat plate in the selected frequency range. Thus no
band gaps or similar effects are to be expected. The base of the tri-
angle 2a = 6 mm (both values of Lx and a given here are for the ref-
erence case). A two-dimensional plane strain problem is
considered. The plate is made of stainless steel, of density
qs = 7800 kg/m3, longitudinal and transversal wave speeds
cL ¼ 6020 m=s and cT ¼ 3220 m=s respectively. Water density

and speed of sound are 1000 kg=m3 and c1 ¼ 1500 m=s, respec-
tively. For all corrugations (hr–0), the average thickness of the
plate, determined as H ¼ hp � ahr=Lx; is kept constant as the other
parameters of the corrugation are changed. This is consistent with
the definition of roughness parameters relative to the average
thickness, as indicated in the introduction.

3.1. Dispersion curves and resonance peaks for the immersed flat plate

A harmonic progressive plane wave similar to that given by Eq.
(9) impinges the plate on the corrugation side under the incidence
angle h as shown on Fig. 1. For the immersed flat plate, the cancel-
lation of the denominator of the reflection or transmission coeffi-
cients yields the dispersion equations Ca þ is ¼ 0 and Cs � is ¼ 0.
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The solutions of physical interest �kxðxÞ of these equations are com-
plex in general and can be written

�kx ¼ k
0
x þ i k

00
x ; ð22Þ

in which both k
0
x and k

00
x are real valued. The link with the angle of

incidence h and the width c introduced in Section 2 is achieved
by setting:

k
0
x ¼ sin h�flat ¼

�kx;p;a;s; k
00
x ¼

1
2
cp;a;s: ð23Þ

The curves of sin h are shown in Fig. 3a versus the frequency in the
range 60–900 kHz where the symmetric modes S0, S1, S2 as well as
the anti-symmetric modes A0, A1 exist. For a fixed frequency, as the
angle of incidence h crosses a particular value h�flat , the transmission

coefficient of the plate exhibits one peak of total transmission (its
maximum amplitude, which is equal to one, is reached for
h ¼ h�flat). For example in Fig. 3b, the modulus of the transmission

coefficient t1 when plotted versus sin h at the frequency
f ¼ 600 kHz, shows that four different values h�flat have been crossed,

allowing the identification of the four guided Lamb modes: S1
(�kx;p;s ¼ 0:216), A1 (�kx;p;a ¼ 0:240), S0 (�kx;p;s ¼ 0:436) and A0

(�kx;p;a ¼ 0:521). An optimal frequency range (around 600 kHz in this
case) can be determined for any plate, requiring that the two trans-
mission peaks of modes A1 and S1 are well separated.

3.2. Behavior of the resonance peaks of the corrugated plate using FEM

The numerical study, in presence of small corrugations such as
those considered here, is carried out using rectangular finite ele-
ments implemented in a commercially available software [27].

The possible choice of triangular finite elements has no influence
on the computation accuracy, but the computation time increases.

A FEM mesh on the bounded domain of interest (a unit cell of
length Lx) is shown in Fig. 2b. The maximum size of rectangle sides
is 0.2 mm. It is considered that the total pressure p(x,z) = pi(x,z)

+ ps(x,z) is periodic: pð0; zÞ ¼ pðLx; zÞeikxLx , in the two liquid sub-
domains, in which pi and ps are the incident (null on the lower liq-
uid domain) and reflected/transmitted pressure respectively.

The same periodicity is imposed on the displacement fields for
the elastic sub-domain. It is assumed that this periodicity, which is
exact in the absence of corrugation, remains valid in the case of
small geometrical perturbations. The boundary conditions applied
at each liquid-elastic body interfaces are (i) continuity of normal
accelerations, (ii) continuity between pressure and normal compo-
nent of traction. The two liquid domains are normally of infinite
extent. In order to avoid spurious reflections, the fluid domains
are extended by two Perfectly Matched Layers (PML) [28].

In order to ensure consistent assessment of the viability of the
FEM, one considers at first a flat plate having the characteristics
described at paragraph 3. All the results obtained with the FEM
model agree very well with those presented in Fig. 3(a) and (b).
The procedure is then applied to the plate with a corrugated sur-
face. Small amplitude diffracted waves on the corrugated side have
been determined; but developments about this aspect is not the
purpose of this paper. For the selected small corrugations, the
energy balance is verified with 2.5% maximum error. Moreover,
we use the transmitted pressure field in all computations, which
is less affected by the diffraction produced on the insonified side.

It has been seen, Eq. (21), that the three parameters hr, a and Lx
are contained in the RMS Rq. Their influences on the transmission
peak of the anti-symmetric mode A1 are presented below. The val-
ues of reference are h = 0 mm, a = 3 mm and Lx ¼ 8 mm. Four cases

Fig. 2. Geometry of the immersed corrugated plate (a) and FEM mesh detail (b).

Fig. 3. (a) The first modes of the flat plate (corrugation height h ¼ 0) obtained by solving the dispersion equations and then plotting sin h ¼ Reð�kxÞ vs. the frequency f. (b) The
four first modes at the frequency f = 600 kHz obtained by plotting the modulus of the transmission coefficient jt1j vs. sinh.
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are successively analyzed. In the first three cases, the RMS repre-
sented by Eq. (21) increases. In the last case, the RMS is kept
constant.

3.2.1. Effect of the corrugation height

The triangle height hr increases (a = 3 mm and Lx ¼ 8 mm are
fixed) from 0 to 0.2 mm, in agreement with the assumption of
small corrugations. As shown in Fig. 4(a) for the A1 mode at
600 kHz, both the amplitude and the width of the peak of the
transmission coefficient are modified. The shift of the peak to the
left indicates that the angle corresponding to the maximum in
transmission, diminishes with the corrugation height. The dimin-
ishing of the amplitude is monotonic as hr increases. The curve
being smooth, it is not difficult to compute the width of the peaks
at �3 dB of the maximum. The influence of an increase of hr on the
width is however weak.

3.2.2. Effect of triangle size vs. length of unit cell

In this case, is the base 2a of the triangle which increases
(hr = 0.12 mm and Lx ¼ 8 mm are fixed), meaning that the corruga-
tion occupies more and more space of the 8 mmwidth cell. In Fig. 4
(b), the transmission coefficient is presented for several values of a
ranging from 0 mm (plane plate) to 3.6 mm. As in Section 3.2.1, the
peak of the transmission coefficient shifts towards lower angles.
Thus, the increase of the Rq, which results from the variations of
the parameters a, leads to an evolution of the transmission coeffi-
cient similar to Fig. 4(a).

The increasing occupation of the unit cell by the triangle, influ-
ences only slightly the amplitude and the width of the Lamb mode
A1, in comparison with influence of height of the corrugation.

3.2.3. Effect of the distance between triangles

In this case, the width Lx of the unit cell of the corrugation
decreases (hr = 0.12 mm and a = 3 mm are fixed). In Fig. 4(c), are
shown the effects of a decrease of Lx from 11 mm to 0 mm (this last
value, because of the constraint a < Lx, and Lx = 0, then a = 0 and
Rq = 0, which corresponds to the case without corrugation, exactly
as if Lx was infinite). Depending on the value of Lx, the peak of the
transmission coefficient shifts towards either higher or lower
angles in an irregular manner (the computational results show that
a shift on the left occurred for Lx = 7 mm and 9 mm and a shift on
the right for Lx = 10 mm and 11 mm) whereas the width is sub-
jected to small variations. As can be seen, the increase of the Rq

caused by the variations of each of the parameters hr, a or Lx does
not necessary lead to similar evolutions of the transmission coeffi-
cients: in Figs. 4(a) and (b) the amplitude of the transmission coef-
ficient diminishes monotonically with the considered parameter
(hr or a) whereas in Fig. 4(c) its amplitude together with its shift
are irregularly depending on Lx.

3.2.4. Keeping a constant Rq

Fig. 4(d) shows the evolution of the transmission coefficient at
constant Rq. The parameter Lx is fixed and equal to 8 mm while a

and hr have opposite variations. In Fig. 4(d), the base a of the trian-
gle diminishes while at the same time its height hr increases: this
amounts to considering the case of Section 3.2.2. devoted to the
occupation by the triangle of the unit cell. The increasing of hr leads
to a behavior of the peak similar to that observed in Fig. 4(a), i.e., a
shift of the initial position of the maximum toward small angles.

The conclusion to be drawn from the analysis of Section 3.2 is
that the increase of the height of the corrugation is accompanied
by a diminishing of the amplitude of the transmission coefficient
and a shift of the maximum toward smaller resonance angles. This

Fig. 4. Transmission coefficients jt1j of the corrugated plate vs. sin h at the frequency f ¼ 600 kHz for the A1 mode as a function of: (a) hr for a = 3 mm and Lx = 8 mm; (b) of a
for hr = 0.12 mm and Lx = 8 mm; (c) of Lx for a = 3 mm and hr = 0.12 mm (for the flat plate); (d) of hr and a with Lx fixed for preserving a constant Rq.
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seems rather logical concerning the amplitude, since the corruga-
tion at the insonated face increases the amount of scattered
energy.

4. Comparisons between rheological and FEM models.

Discussions

The next objective is to show that the two models, one based on
the simulation of a real corrugated interface and the other one
based on the use of a simple rheological model lead to comparable
results. In order to obtain a link between the two approaches, it is
interesting to quantitatively compare the evolution of the shape of
the resonance width with hr by FEM and the evolution of the imag-
inary part of the wave number with the complex stiffness KL (rhe-
ological model).

Using the FEM model results, the determination of the width of
the resonance and of the angle of excitation is done by the least
squares fitting procedure, in the vicinity of the selected maximum.
By restricting the domain where the identification is carried out,
the hypothesis of the isolated resonance is respected. The correla-
tion coefficient between the computed data and the values of T

obtained from Eq. (17) is at least 0.99 for all the computations.
The resonances of the A1 and S1 modes have been characterized

for five values of the height hr. For the A1 mode (S1 mode, respec-

tively), the values of the wavenumber �k0x;p;a and of the width ~Cp;a

(�k0x;p;s and
~Cp;s, respectively) are plotted versus hr. In order to decide

which of the real part or of the imaginary part is more sensitive to
the corrugation height, it seemed relevant to compute the relative
values gh and gc given by Eqs. (18) and (19). Results from FEM sim-

ulations are presented on Fig. 5(a) and (b). Next, the stiffness K 0
L

and b can be estimated straightforwardly for each mode from the
values of gh and gc just obtained by using the following formulas

derived from Eqs. (18) and (19):

K 0
L ¼ �

cp;a;sKL0;p;a;s

4gh
�kx;p;a;s

ð24Þ

and

b ¼ �
2gcK

0
L

KL0;p;a;s
ð25Þ

Values corresponding to the case of the A1 mode, are consigned in
Table 1. The stiffness decreases when the height of the corrugation
hr increases and its order of magnitude agrees well with our finding

that for KL > 1014 Nm�3, the complex solutions of the dispersion
equation are the same as those of a flat immersed plate with classi-
cal boundary conditions at each face given by Eq. (7).

On Fig. 6(a) is shown the continuous variation of the computed
stiffness, whereas on Fig. 6(b) the coefficient b is plotted for a wide
range of the roughness parameters Rq.

It is remarkable that for small corrugation heights (<50 lm)

which are more difficult to measure, the stiffness K 0
L has an almost

linear variation, simplifying the correlation with the roughness Rq

values. The b coefficient which depends on K 0
L, is almost linearly

decreasing with increasing Rq for even larger ranges of the corruga-
tion heights.

However, the relation between the two quantities is not linear

(b is proportional to ðK 0
LÞ

2
and they tend asymptotically to a con-

stant value as the Rq roughness parameter increases.
We made the comparisons for two heights (hr = 0.1 mm and

0.2 mm, see Fig. 4(a)). The results are shown in Fig. 7. The solid
lines represent the FEM simulations, the solid line with circles or
squares the Breit-Wigner approximations.

A better fit is obtained for hr = 0.1 mm than for hr = 0.2 mm. In
this last case, both the height and the half width of the peak of
the Breit-Wigner curve disagree with the FEM model but only in
a very limited extent. The factors behind these discrepancies can
be the order of approximation at which the Breit-Wigner terms
were expressed. Nevertheless, at the order of the approximations
considered here, it can be observed that for the rheological model,
as well as for the numerical simulations, the peaks shift more and
more to lower frequencies when hr increases.

5. Conclusions

The results provided by FEM simulations and by a rheological
model have been compared for transmission coefficient of the A1

Lamb mode of a corrugated plate immersed in water. The rough-
ness studied here is made of periodically spaced identical small tri-
angles on one face of the plate. The choice of this mode and the test
frequency is motivated by the optimal results, obtainable for any
plate. We showed that by fitting these two approaches, it becomes
possible to predict the effect of the roughness, by using a simple
spring interface model, but with a complex valued stiffness. The
approach investigated here shows, as in previous works [22,26],
that it is the variation of the resonance widths, which indicate
clearly the presence of surface corrugations and quantitative infor-
mation about these corrugations.

For an increasing roughness, a shift of the resonance peak is
observed in the simulations and in the reported rheological model
used in the paper. The advantage of the present model which pro-
poses a complex valued stiffness for the solid-liquid interface is the
capacity to include the simultaneous influence of two geometrical
parameters which are correctly describing the corrugation. From
the determined parameters, the roughness Rq parameter can be
obtained. Moreover, in practical applications using a narrow ultra-
sonic beam, information on the immersed surface local imperfec-
tions, can thus be obtained faster than by using a profilometer.

Appendix A.

Let the index a (s, resp.) indicate the quantity related to the
antisymmetric (symmetric, resp.) vibrations of the flat plate. The
reflection coefficients r1 (at the rough interface) and r2 (at the flat
interface) together with the transmission coefficient t1 by the

Fig. 5. Relative variations: (a) of gh and (b) of gc vs. hr for A1 and S1 mode at 600 kHz
(a ¼ 3 mm, Lx = 8 mm).
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plate, on account of the boundary conditions applied to identical
fluid on the two faces, Eqs. (6) and (7), can be written

r1 ¼
C
þ

C
� �

ðCa � isþÞðCs � isÞ þ ðCa þ isÞðCs þ isþÞ
ðCa þ is�ÞðCs � isÞ þ ðCa þ isÞðCs � is�Þ

; ðA1Þ

r2 ¼
ðCa � is�ÞðCs � isÞ þ ðCa þ isÞðCs þ is�Þ
ðCa þ is�ÞðCs � isÞ þ ðCa þ isÞðCs � is�Þ

ðA2Þ

t1 ¼
1
C
� �

2isðCa þ CsÞ

ðCa þ is�ÞðCs � isÞ þ ðCa þ isÞðCs � is�Þ
; ðA3Þ

where

C
� ¼ 1� i

KL0

KL

; KL0 ¼
q1c1x
�kz1

; ðA4Þ

s ¼
q1

qs

n4
T

�kzL
�kz1

; s� ¼
s

C
� ; ðA5Þ

Ca ¼ ð2�k2x � n2
TÞ

2
tan

�kzLk1h

2

 !

þ 4�k2x
�kzL�kzT tan

�kzTk1h

2

 !

; ðA6Þ

and

Cs ¼ ð2�k2x � n2
TÞ

2
cot

�kzLk1h

2

 !

þ 4�k2x
�kzL�kzT cot

�kzTk1h

2

 !

: ðA7Þ

with

�kx ¼ sin h; �kz1 ¼ ð1� k
2
x Þ

1=2
> 0 for 0 6 h < 90	; and nL; T

¼
c1
cL; T

: ðA8Þ

Since nL < nT < 1, and since emphasis is on angular domain I where
�kx < nL, we have �kzL; T ¼ ðn2

L; T �
�k2x Þ

1=2
> 0: both L and T waves

propagate.
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