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Motivation 

 cMUTs are nonlinear devices : 
distortion and asymmetry,… 

 Output waveform depends on the 
input waveform: frequency, amplitude, 
shape, … 

 Considerable mean displacement 
amplitude in a large frequency range   

 

-80 -60 -40 -20 0 20 40 60 80
0

20

40

60

-80 -60 -40 -20 0 20 40 60 80
-20

0

20

40

60

-80 -60 -40 -20 0 20 40 60 80
0

20

40

60

Voltage (Volt) 

D
is

p
la

c
e
m

e
n
t 
(n

m
) 

0.5 MHz 

2 MHz 

6 MHz 

Membrane displacement vs input voltage 

Simulated configuration  

 

2D periodic array with a pitch of 25 µm 

Cells   :  20×20 µm2 

Gap    : 200 nm 

Vc   : 120 V 

F0            :            6 MHz 

Excitation : CW 

Amplitude : 0.5 Vc 
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Motivation 

• The challenge : to take advantage of the wide cMUT bandwidth and to control the 
output waveforms , input waveforms with complex shape are required 

• Objectives : development of an automatic procedure to generate the optimal 
desired output waveform. This implies : 
 Methods for producing new non-standard input waveforms, 

 Implementation of an iterative optimization procedure in order to match the output waveform 
with the targeted output waveform 

 

cMUT Probe 
Complex  

Input Waveform 

Targeted output 

waveform 

Optimization 



4 12h International Workshop on Micromachined Ultrasonic Transducers 

 

OUTLINE 

• Motivation 

• Previous literature 

• Complex waveform generation with non linear filtering 

• Iterative optimization procedure 

• Theoretical results : application to the linearization 

• Experimental results : application to the linearization 

• Summary & conclusions 
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Previous literature 

• Previous works : Optimal command of cMUT to linearize the output waveform 

• High order harmonic components are added to the input sinus waveform 

• Amplitude and phase are tuned in order to cancel out the 2nd harmonic component of the output 
waveform 

• Limitations : 
– Mainly done in low frequency bandwidth : application to harmonic imaging 

– Minimization error criterion is defined by the harmonic to fundamental components ratio 

 

cMUT Probe A cos (2 f0 t) Output waveform 

Optimization 

+ 
 

B cos (2 2f0 t+f1)  

+  

C cos (2 3f0 t+f2) 

+ 

….  
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Complex waveform generation 

cMUT Probe 
Non linear  

filtering 

Targeted output 

waveform 

Optimization 

Input  

waveform 

• Our approach is an extension of previous works but it is applicable to waveform with any shape 

• a non linear filter is used to modify the input waveform shape 

• Parameters of the non linear filter are tuned with a simplex algorithm 

• Non linear filtering models: Hammerstein, Volterra, Wiener… 

• Applications : linearisation of loudspeakers, µbubbles driving, all field of physic requiring non linear 
modelling 
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Complex waveform generation 

Non Linear Filtering : principle with Hammerstein filter  
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 x(t) is transformed into a polynomial series 

 Each n order component xn(t) corresponds to the input signal raised to power n and filtered with its 

own specific linear filter hn(t)  

 The polynome order P defines the highest frequency harmonic component (we fix P=3) 
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 Volterra filtering is preferred : a generalisation of Hammerstein filtering 

 Each n order component is replaced by a n-D convolution of x(t) with hn(t) filter 

(dimension n) : this increases the number of DOF and ensures best convergence 

Complex waveform generation 

Volterr a Filtering : numerical implementation 

Input  
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Complex waveform generation 

Volterr a Filtering : numerical implementation 

 n-Dimension convolution with n-Dimension hn(t) filter 

 h1, 2, 3(t) are three numerical Finite Impulse Response Filters with a memory length of 

M=3 : 19 parameters have to be determined  
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Optimization procedure 

cMUT Probe 
Non linear  

filtering 

Targeted output 
waveform 

Optimization 

Input  

waveform 

 Optimization procedure is done with the simplex algorithm defined by Nelder-Mead 
 Cost function : the relative error between the targetted signal and the output signal 
 The 19 parameters of the non linear filter are set to minimize cost function 
 Initialization of iterative procedure  

The input waveform shape is similar to the targetted output waveform shape. 
 Amplitudes of the input waveform are fixed after a first experiment or with a-priori knowledge of 
the device 
Filter Parameters ≈ arbitrary very low values , typ. 1% 
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Theoretical results 
Model Experiments 

kstifness 
x 

• hgap= 200 nm -  Vc = 110 V 

• f0 = 5.5 MHz 

• Vbias = 65 V = 0.7 Vc 

• Output waveform : mechanical displacement 

• Two targetted signals  
– a burst with 5 periods at 1 MHz  : BW-6dB (%)  30 % 

– a chirp at 1 MHz  : BW-6dB (%)  100 % 
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• Assessment of the procedure performed 

with theoretical model before 

experiments 

• Simple mass spring-model with losses to 

Note:  input voltage >0 : the membrane is stretched 

           input voltage <0 : the membrane is released 
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Theoretical results 
1 MHz toneburst with 5 periods 

• Final relative error    0.5 % with 400 iterations 

 0.1 % with 800 iterations 

 

• The output signal matches very well with the targetted signal 

(temporal waveform and spectrum) 

 

• The input waveform signal is similar with results published in 

the previous literature 

 

• Strong dimininution of the 2nd and 3rd harmonic 
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Theoretical results 
 1 MHz CHIRP signal with 100% BW-6dB 

• Basic test signal for coded imaging techniques 

 

• 100 % Bandwidth signal : the output signal matches very 

well with the targetted signal (temporal waveform and 

spectrum) 

 

• Final relative error    0.5 % with 200 iterations 

 0.1 % with 500 iterations 

 

• Higher convergence speed ! The desired signal shows 

less distortion ? 
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Experimental results 
Experiment : displacement 

measurement Device 

• Surface micromachining process 

• 128 elts probe 

• Pitch 200 µm 

• Cells : 35×35 µm2 

• Hgap : 200 nm 

• Vcollapse = 70 V 

• f0  2.8 MHz 

• Array covered with a 500 µm silicone layer 

• A mylar film is stuck onto the silicone layer 

to reflect light beam 

• For all experiments : Vbias  70% Vc – 50 V 

 

• Array was loaded with water 

• 30 µm laser spot size 

• Input signal generation : arbitrary waveform 

generator drived with a PC computer  

• RF amplifier : 150A100B, Amplifier Research 

• Output signal : mechanical displacement in front 

of the excited emitter 

Note:  input voltage >0 : the membrane is stretched 

           input voltage <0 : the membrane is released 
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Experimental results 
1 MHz toneburst with 5 periods 

•The output signal matches very well with the targetted signal 

(temporal waveform and spectrum) 

 

• 2nd harmonic component is « cancelled out » : 
 without creating 3rd harmonic component - main risk 

 without reducing the output displacement amplitude  

 

• Final relative error   3 % with less than 10 iterations  : High 

convergence speed ! 

 

• Optimal input signal reaches maximum amplitude when 

membrane is released and not streched -> there is less 

distortion 
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Experimental results 
1 MHz toneburst with 5 periods : impact of the phase inversion 

•A basic technique to increase contrast in ultrasonic imaging 

 

• the 180° output signal is not the inversion of the 

0°phase signal : when the input signal reaches the 

maximum  voltage the membrane is stretched and not 

released 

 

• 2nd harmonic level : +5 dB - a reduction of 15 dB for a loss 

of 1 nm on the displacement (not significant) 

 

• Output signal matches with the target signal : relative error 

of 5 % (10 iterations). 

 

• Note the shape of the optimal solution 
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Experimental results 
1 MHz CHIRP signal with 100% BW-6dB 

 

• Output signal matches with the target signal : 

relative error of 5 % (10 iterations). 

  

• Distorsion level : a reduction of 10 dB (spectrum) 

for a loss of 1 nm on the peak-to-peak displacement 

 

• Note the shape of the optimal solution 
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Conclusion & prospects 
• Efficiency of optimal command method to control the cMUT output 

was demonstrated (experiments) 

 

• Optimisation of the temporal waveform : 
– Previous literature focused on minimisation of the second harmonic level 
– The method can be applied to a large range of waveforms and so to coded imaging 
– Other shapes are actually under test 

 

• The procedure is automatic and shows high convergence speed :  
applicable to industrial devices 

 

• Prospects  - application to therapy 
– How these techniques could be used to increase the volume of fluid swept by the 

membrane without collapsing ?  
– Implementation of non linear filtering models taking into account the collapse event 

(similar with the modelling of gate function used in electronic) 
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QUESTIONS ? 

•Vermon SA for the fabrication of the cMUT array 


