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Outbreak definition by change point
analysis: a tool for public health decision?
Gaëtan Texier1,2* , Magnim Farouh3, Liliane Pellegrin4, Michael L. Jackson5, Jean-Baptiste Meynard4,
Xavier Deparis2,4 and Hervé Chaudet2,4

Abstract

Background: Most studies of epidemic detection focus on their start and rarely on the whole signal or the
end of the epidemic. In some cases, it may be necessary to retrospectively identify outbreak signals from
surveillance data. Our study aims at evaluating the ability of change point analysis (CPA) methods to locate
the whole disease outbreak signal. We will compare our approach with the results coming from experts’
signal inspections, considered as the gold standard method.

Methods: We simulated 840 time series, each of which includes an epidemic-free baseline (7 options) and a type of
epidemic (4 options). We tested the ability of 4 CPA methods (Max-likelihood, Kruskall-Wallis, Kernel, Bayesian) methods
and expert inspection to identify the simulated outbreaks. We evaluated the performances using metrics including
delay, accuracy, bias, sensitivity, specificity and Bayesian probability of correct classification (PCC).

Results: A minimum of 15 h was required for experts for analyzing the 840 curves and a maximum of 25 min
for a CPA algorithm. The Kernel algorithm was the most effective overall in terms of accuracy, bias and
global decision (PCC = 0.904), compared to PCC of 0.848 for human expert review.

Conclusions: For the aim of retrospectively identifying the start and end of a disease outbreak, in the
absence of human resources available to do this work, we recommend using the Kernel change point model.
And in case of experts’ availability, we also suggest to supplement the Human expertise with a CPA,
especially when the signal noise difference is below 0.

Keywords: Outbreak identification, Change point analysis, Expert, Evaluation, Disease surveillance

Introduction
The US Centers for Disease Control and Prevention
(CDC) define an epidemic as "the occurrence of more
cases of disease than expected in a given area or among
a specific group of people over a particular period of
time"[1]. Because the course of many epidemics can be
altered through early public health action, considerable
research has been directed towards early detection of ep-
idemics using public health surveillance data [2–4].
Nearly all of this work has focused on detecting the start
of the epidemic, in order to initiate a timely response.
However, identifying the full time course of an epidemic
is useful for several reasons. First, identifying the end of

the epidemic helps public health officials know the when
response activities can cease. Second, defining the end of
an epidemic in disease surveillance helps determine
whether new cases are part of a known or a new out-
break. The notion of end of epidemic underlies also a
large literature on disease elimination or eradication [5–8]
and (re-) emerging pathogens. From an economical point
of view, declaring the end of an epidemic impacts trade
and tourism. INSEE (France's National Institute of Statis-
tics and Economic Studies) evaluated the consequences
on tourism of the Chikungunya outbreak that occurred in
La Reunion Island in 2006. The result was a decrease of
130 000 visitors compared with 2005, a general increase of
8 % of unemployment in tourism activities, growing to
25 % for the only hostel trade. The total cost of the public
aid for 2006 was evaluated to 20 millions euros for this ac-
tivity [9]. Finally, detecting the full extent of past
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outbreaks in surveillance data can improve future out-
break identification. When undetected prior outbreaks are
included in surveillance baseline data, the surveillance
baselines are biased upward, and future outbreaks will be
more difficult to detect [10, 11].
Our study aims at evaluating the ability of change

point analysis (CPA) methods to identify the beginning
and ending dates of a disease outbreak from weekly
counts. We will compare our approach with the results
coming from experts’ signal inspections, considered by
many as the gold standard method.

Background
Human signal inspection
Historically, identifying a whole outbreak signal in sur-
veillance data has relied more on human judgment, for
example through review by a committee of experts [12],
than on signal processing as for the prospective detec-
tion of outbreak starts. This visual inspection of the time
series is still considered by many authors as the gold
standard approach. But the difficulty to find available ex-
perts for this task, the evidence of variability in opinion
among the experts, and the poor knowledge about the
factors influencing this variability (Watkins 2006 [13])
lead us to say with Buckeridge [14] that this method can
be considered as a “time-consuming procedure whose
reliability is unknown”. All these reasons raise the inter-
est for a statistical approach.

Change point analysis
Epidemics as state changes in surveillance series
Following several authors [15–19], we consider that the
weekly count of an infectious disease is a time series
resulting from a model combining two endemic and epi-
demic components. If no outbreak occurs, the endemic
component is alone. A complete time series can be then
seen as a succession of model regimes corresponding to
the alternation of no outbreak (endemic) and outbreak
(epidemic) state. The identification of a regime change
associated with its time in the series is known as the
“change point problem”. Indeed, considering a time
series {x1, x2,…, xn} measured with an index of time τ ∈
{1, 2,…,n}, a change point is a time index where a struc-
ture change occurs in data.
As all previous authors working on use of CPA in the

context of surveillance data of infectious disease counts
[15–19], we will assume that the endemic or epidemic
component of the process is driven by parameter (as
mean and/or variance incidence) which were considered
as piecewise constant. The epidemic change point prob-
lem is a special multiple change point problem devel-
oped in Chen 2011 [20]. Identifying an epidemic regime
requires to identify the endemic states that come before
and after this epidemic segment. In this context, we

need to identify pre-epidemic period (endemic state),
epidemic period (epidemic state) and post-epidemic
period (endemic state) building a free state model.

Outbreak change point problem formulation
A change point model is a model assuming the existence
of at least one change point (at the time index τ when
the signal has changed) and partitioning the data into
disjoint segments (with parameters similar within each
segment and different without). This analysis is recur-
sively repeated for each segment, allowing the detection
of multiple changes.
Usually the state change occurs at an unknown time

index τ. It is the reason why the problem is formulated
using a change point detection (detection formulation:
“How many changes during the time series?”) and a
change point estimation (locations formulation: “When
do they occur within the time series?”)
Let {x1, x2,…, xn} a time series of independent random

variables and θi, i = 1,…, n the corresponding structure
parameters. The change-point analysis of the time series
consists in the following two steps:

1) Decide between

H0 : θ1 =⋯ = θk =⋯ = θτ =⋯ = θn No change point
and
H1 : θ1 =⋯ = θk = α ≠ θk + 1 =⋯ = θτ = β ≠ θτ + 1 =⋯ =
θn = γ Change points

where 1 < k < τ < n, and α, β, γ are unknown, k and τ
representing the start and end dates of the outbreak.
A change point is detected when H0 is rejected.
The next step of change point estimation is carried

out only when the null hypothesis of no change point is
rejected. The number of change points and their
respective unknown positions has to be estimated.

2) Estimate k and τ from the sample {x1, x2,…, xn}, if
H1 is true.

Depending on the underlying model used to solve the
change point problem, we may distinguish parametric
(based on Maximum Likelihood) non-parametric (Kernel,
Kruskall-Wallis) and Bayesian change point model.

Methods
All the experiments were performed using R 3.1.1 [21].
To evaluate precisely the ability of change point ana-

lysis methods to identify a whole outbreak time curve,
we need to build a gold standard by controlling perfectly
when the outbreak starts in time series and when it
ends. In the absence of a consensual gold standard
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defined in real world, only simulated data allow this
evaluation.

Outbreak generation
For the realism of the generated outbreak curve, as pro-
posed by Jackson [22], we used an Inverse Transform
Sampling Method algorithm (ITSM) to simulate the signal
from a real outbreak of Norovirus already published [23].
According to these outbreaks, we generated 100 curves
for each outbreak magnitude (10, 30, 50, 100 cases) while
conserving the original number of day (n = 12). Due to the
use of a probabilistic process to generate this curve, the
resulting duration of the simulated outbreak can be
shorter than the original one, in particular for outbreak
with small number of cases (n = 10).

Baseline generation
Seven levels of baselines were generated, corresponding
to the expected daily incidences of 0, 1, 3, 5, 10, 20, 30,
with 0, 0.25, 2.25, 5, 15, 50, 100 as associated variances.
The baseline durations were 72 days for the Norovirus.
For each incidence level we randomly generated 200
baselines according to a Gaussian law.

Evaluation data sets
With an objective of result reproducibility, we choose to
build, for each combination of outbreak magnitude and
baseline level of daily incidence, a data set of 30 times
series. Each time series was created by adding a ran-
domly selected outbreak among the 100 to a randomly
selected baseline among the 200. For fully controlling
the beginning and ending dates of the outbreak within
the time series, we systematically added the outbreak
after the first 30 days of baseline and kept 30 days after
the outbreak end. Finally, 840 time series (4 level of
curves x 7 level of baseline x 30 replicates) in 28 data
sets were produced for evaluating the algorithms.
The building process was slightly different concerning

the human experts. For avoiding a process of learning,
we have chosen to randomly place the epidemic period
in each series, with the constraint of keeping at least
10 days of baseline before the outbreak beginning and
10 days of baseline after the outbreak ending. Taking in
account the workload, we built 28 data sets of 2 time
series only. However, we have randomly reordered the
56 resulting time series presented to each expert for
controlling a possible ordering effect.

Expert evaluation
We enlisted 15 experts who have at least 1 year’s experi-
ence in daily disease surveillance. To allow comparison
with the algorithms, we gave the experts the information
that one and only one outbreak was present in each time
series. Each expert independently evaluated 56 time

series. The time series were presented in both graphical
and numerical format (see Figure S1 in Additional file
1). Experts were asked to visually identify the beginning
and ending dates of the simulated outbreaks without the
aid of calculators, spreadsheets, or other tools. Results
from all the experts were pooled to treat the expert
review as a single unique “algorithm” analyzing a total of
840 times series.

CPA models
Maximum likelihood CPA model
As proposed by Chen 2011 [20], an efficient strategy to
identify change-points is to select the partition of the
time series sample {x1, x2,…, xn} that yields a maximum
of heterogeneity between segments. This method tries to
cut the time series {x1, x2,…, xn} by maximizing the like-
lihood in 3 continuous states {x1, x2,…, xτ1}; {xτ1+1, xτ1
+2,…, xτ2} and {xτ2+1, xτ2+2,…, xn} described previously. If
this 3 states are confirmed, and if we consider that the
time series is organized into 2 endemic periods encirc-
ling a epidemic period, τ1 and τ2 correspond to interest-
ing change points: the start and end dates of the
outbreak. Because xτ are counting data (number of
cases), we can hypothesize that xτ follows a Poisson dis-
tribution. Even if infectious disease data are often over-
dispersed, this distribution hypothesis may be kept, as it
usually done in disease surveillance [19], and to ensure
evaluation fairness between algorithms. The detailed
method is presented in Additional file 1.

Kernel CPA model
This CPA is detailed in Harchaoui et al. [24].
Let {x1, x2,…, xn} a time series of independent random

variables. We can define a Kernel function K as:

yi ¼ K xið Þ ∀ i ∈ 1; 2;…; nf g

In a second time we can define a Kernel Fisher dis-
criminant ratio (KFDR), which measures the heterogen-
eity between the successive segments S1, S2, S3

S1 = {x1, x2,…, xi} with i observations,: pre-epidemic
S2 = {xτ1+1, xτ1+2,…, xj} with (j-i) observations,: epidemic
S3 = {xτ2+1, xτ2+2,…, xn} with (n-j) observations.: post-
epidemic

A kernel function is required to calculate this KFDR. In
literature, many functions exist (Gaussian, Laplace…) for
k, but we choose for this work a simple linear kernel func-
tion: k(x,y) = xy that amounts calculating a Fisher test stat-
istic to compare the heterogeneity between S1, S2, S3. The
detailed method is presented in Additional file 1.
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Kruskal-Wallis model
Tests against the epidemic alternative H1: ”a change oc-
curs in the baseline“ with a non-parametric technique
are proposed in Yao (1993) [25] and Emad-Eldin (1996)
[16]. Adapted to our hypothesis, let L1 the law of the
random variable X on the first segment (pre-epidemic),
L2 the law on the second segment (epidemic) and L3 the
law on the last segment (post-epidemic). The Kruskal-
Wallis test is used to check the following hypotheses:

H0: L1 = L2 = L3.
H1: Laws L1, L2, and L3 are not identical.

The detailed method is presented in Additional file 1.

Bayesian model
The Bayesian model used here is the one introduced in
1998 by Siddhartha Chib [26]. Chib proposes to intro-
duce a latent variable (St) that takes discrete values from
1 to the total number of hidden regimes (m) in the
series. Each discrete value indicates the kind of data-
generating regime at each time unit (τ). This approach
allows reproducing the epidemic and non epidemic la-
tent regimes that generate the disease surveillance time
series Xn = {x1,x2,…,xn}, with n observations. This Bayes-
ian approach ensures some flexibility by using a limited
number of dependent variables, while keeping the cap-
acity of managing multiple change points [27].
Let xt the number of events at time t and m a hid-

den state (or regime) at t. The xt distribution accord-
ing Xt-1 = {x1,x2,…,xt-1} depends on the transition
parameters (transition kernel) ξt, which values
{θ1,θ2,…,θm} change at unknown dates {τ1, τ2,…,τm-1}.
In Chib’s model, the transition of hidden states is
constrained to move forward by a non-ergodic
Markov chain that makes the regime changes irrevers-
ible. Discrete variable St is modeled by a Markov chain
process with probability matrix P, without possibility to
return back to a previous state. The detailed method is
presented in Additional file 1.
Data analysis was done with the MCMCpoissonChange

function provided by MCMCpack [28].

Evaluation metrics and signal noise difference
We evaluated the algorithms using several metrics.
The beginning detection delay (d1), measured in days, is

equal to the absolute value of the difference between the
start date according the algorithm and the real start date.
The ending detection delay (d2), measured in days,

is equal to the absolute value of the difference be-
tween the end date according the algorithm and the
real end date.

As a general measure of accuracy we used an overall
detection error, measured in days, defined as the sum of
all the delays considering d1 and d2 with the same
importance:

Error ¼ d1j j þ d2j j
The specificity (Sp) expresses the capability to consider

a day as non-epidemic while it is really not epidemic.
The sensitivity (Se) expresses the capability to consider

a day as an outbreak day while it is really epidemic.
For the last metric we selected the Bayesian probability

of correct classification. Our detection problem consists
in deciding which is the true binary state of a day in the
time series (baseline or outbreak), given the binary result
of the algorithm for this day. If the 2 possible realiza-
tions for a day are noted H0 (non epidemic day) and H1

(epidemic day), their prior probabilities are P0 and P1.
The Bayesian risk associated with this binary detection
problem is then:

Bayesian Risk ¼ C00:P0:P H0=H0ð Þ
þ C01:P1:P H0=H1ð Þ
þ C10:P0:P H1=H0ð Þ
þ C11:P1:P H1=H1ð Þ

where C.. are the costs associated to each possibility and
P(H./H.) are the conditional probabilities for each
realization.
If C00 = C11 = 1 and C01 = C10 = 0, the Bayesian risk is

the binary Bayesian probability of correct classification
(PCC), or the probability of exact decision.
To account for the influence of the outbreak and base-

line sizes in the evaluation results we have used the dif-
ference between the signal (outbreak) and the noise
(baseline), and not the signal to noise ratio as usual. This
was required because of the existence of null baselines
in the datasets. This signal to noise difference (SND) is
defined as:

SND ¼ sum of outbreak cases signalð Þ
– sum of baseline cases during the outbreak period noiseð Þ

A positive SND corresponds to a higher number of
cases in the outbreak than in the baseline during the
outbreak period, and a negative one to the opposite.

Results
Accuracy Evaluation
Overall evaluations
Across all algorithms, the baseline and outbreak sizes
affect accuracy and dispersion (Table 1). Larger out-
breaks are associated with lower d1 and d2, while the in-
verse is true for larger mean baseline counts. Delay d1
(d2) goes from 13.4 to 2.4 days (11.7 to 2.8 days) when
the outbreak size grows from 10 to 100 cases, and from
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0.5 to 20.9 days (0.5 to 21.1 days) when the baseline level
grows from 0 to 30. The precision of the dates increases
with the outbreak size (16.5 to 1.1) and decreases when
the baseline level grows (16.3 to 0.4).
The Kernel algorithm provides the more precise

and unbiased global results according to d1 (σ =7.0,
mean =4.9) and d2 (σ =6.9, mean = 5.4).
Figure 1 illustrates the influence of the baseline level

and outbreak size on the combined d1 and d2 errors across
the 840 time series. No point is below the first diagonal
with a 4-days offset (the minimal outbreak duration) be-
cause this area corresponds to the impossible case of an
outbreak beginning after its ending. The maximum likeli-
hood and the kernel algorithms show their results mainly
along this diagonal. This reveals that these algorithms try
to find the shortest outbreak possible while exploring the
time series. In contrast, the experts’ results are mainly
grouped around the true values and do not show a specific
alignment along the first diagonal.
The top left quadrant in each figure corresponds to

the situations where all the real outbreak is included
by excess within the detected outbreak, meaning that
algorithm make an error not only for d1 but also for
d2. It is most frequent for the Kruskal Wallis (26 %
of the results) and Bayes (18 %) algorithms, and less
frequent for the kernel (12,5 %) and the Max-
Likelihood (16 %) algorithms, and least frequent for
the experts (10 %).
The Kernel algorithm has the lower overall detection

error (considering with the same importance d1 and d2
errors), whatever the outbreak size and the baseline level
(Fig. 2).

Influence of baseline fluctuations
We focused on the CPA results with an error equal or
greater than 2 days and then 4 days. Suspecting an effect
of the random fluctuations of the baseline, we applied
the algorithms on the only baselines and compared the
results with the corresponding complete time series. The
dates were the same in 34.8 % of the series with an error
equal or greater than 2 days and 58.5 % of the series
with an error equal or greater than 4 days.

Signal-noise influence
All algorithms show an important decrease in their cap-
acity to identify d1, d2 when the SND goes under 0
(when the outbreak size is lower than the cumulated
baseline during the outbreak period) (Fig. 3). The loss of
accuracy starts before this threshold for the Bayes and
Kruskall-Wallis algorithms and for the experts. There is
a general tendency to delay the detection of the outbreak
beginning and to anticipate the detection of its ending.
Additional file 1: Table S1 supplements these results,
showing that kernel and max-likelihood algorithms are
the less biased and dispersed.
The cumulative standard deviation (used as a proxy of

the cumulative dispersion of the date detection) accord-
ing to SND shows that the accuracy decreases with SND
(Fig. 4), the slope being the accuracy loss rate. The
curves clearly show 2 regimes with a slow increase of
the dispersion when the number of cases in the outbreak
is equal or higher than in the baseline during the out-
break period. It is possible to rank the algorithms and to
define 3 groups: Kernel and Max-likehood, Human and

Table 1 Algorithm accuracies according to the outbreak sizes and baseline levels

Max- likelihood K- Wallis Kernel Bayes Expert

d1 d2 d1 d2 d1 d2 d1 d2 d1 d2

Outbreak sizes

10 9.8 (10.4)a 10.0 (10.1) 9.8 (9.9) 10.1 (10.0) 8.1 (9.3) 8.5 (9.3) 18.8 (12.6) 18.4 (12.9) 13.4 (16.5) 11.7 (14.5)

30 6.2 (8.6) 6.6 (8.5) 8.0 (9.9) 8.1 (10.1) 5.4 (8.2) 6.0 (8.0) 13.6 (12.9) 14.4 (13.7) 7.3 (11.3) 7.1(11.2)

50 4.0 (6.2) 4.3 (5.9) 4.8 (7.2) 4.9 (7.2) 3.5 (4.9) 3.9 (4.7) 9.9 (11.9) 10.3 (12.4) 5.4 (9.3) 4.5 (8.1)

100 2.4 (1.2) 2.8 (1.2) 3.2 (4.9) 3.1 (4.8) 2.6 (1.1) 3.2 (1.0) 5.3 (8.4) 5.3 (8.3) 3.9 (7.5) 3.2 (4.5)

Baseline levels

0 1.5 (0.9) 1.6 (1.0) 1.1 (0.5) 1.1 (0.4) 1.9 (1.1) 2.5 (1.4) 1.5 (0.9) 1.5 (1.0) 0.5 (1.1) 0.5 (1.2)

1 1.7 (1.0) 2.1 (1.2) 1.8 (2.0) 1.6 (1.8) 1.9 (1.2) 2.4 (1.3) 5.7 (9.9) 5.2 (8.4) 2.5 (6.4) 1.6 (1.6)

3 3.9 (6.6) 4.3 (6.7) 4.6 (7.5) 4.6 (7.4) 3.1 (5.1) 3.7 (5.3) 9.7 (12.6) 10.0 (13.0) 4.3 (8.0) 4.6 (9.0)

5 4.5 (6.8) 4.9 (6.4) 6.0 (7.7) 6.1 (8.0) 3.5 (5.2) 4.0 (5.0) 11.9 (12.7) 12.2 (12.5) 7.7 (12.4) 6.8 (10.9)

10 6.6 (8.6) 6.9 (8.2) 8.8 (9.9) 9.0 (9.6) 5.5 (7.7) 5.9 (7.5) 15.8 (12.0) 17.0 (12.9) 9.8 (12.5) 8.8 (11.6)

20 10.0 (9.9) 10.3 (9.6) 10.7 (10.1) 10.2(9.8) 7.9 (8.8) 8.4 (8.4) 17.5 (12.1) 17.5 (12.7) 12.5 (13.5) 11.7 (12.5)

30 10.9 (9.6) 11.3 (9.3) 12.2 (9.7) 13.2(10.3) 10.3 (9.6) 10.9 (9.5) 20.9 (11.1) 21.1 (12.2) 15.4 (16.3) 12.5 (13.7)

Overall 5.6 (7.9) 5.9 (7.7) 6.5 (8.6) 6.5 (8.8) 4.9 (7.0) 5.4 (6.9) 11.9 (12.6) 12.1 (12.9) 7.5 (12.2) 6.6 (10.8)
aabsolute mean (standard deviation).δ1 = Beginning date difference/δ2 = end date difference
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Fig. 1 Algorithms (Maximum Likelihood, Kernel, Kruskall-Wallis, Bayesian, Expert) accuracy for 840 evaluations according to the outbreak size (a)
and baseline level (b)
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Kruskall-Wallis, and Bayes. This decrease of accuracy is
less important for the Kernel algorithm than for the
other ones.

Global detection performance
Sensitivity and specificity
The algorithm sensitivity and specificity are highly influ-
enced by the outbreak size and the baseline level
(Additional file 1: Figure S2), but the Kernel and
Maximum likelihood algorithms have the best results in
term of specificity (resp. 0.957 and 0.949) and the
Kruskall-Wallis algorithm in term of sensitivity (0.675).
Only the Bayes algorithm and some experts have some-
time considered all the time series as the signal to detect
(null specificity). This situation has been encountered
with small outbreak sizes and high baseline levels. How-
ever, the CPA algorithms show global results character-
ized by high specificity associated with low sensitivity. In
this sense these algorithms can be seen as conservative.

Probability of correct classification
The probability of correct classification (PCC) can be
considered as a probability for an algorithm to provide
the good decision (according the real days status: en-
demic or epidemic) for all days in a time series. A PCC
equal to 1 correspond to perfect status identification for
the whole time series. Kernel perform globally better
(with a PCC = 0.904) than Max-Likelihood (PCC =
0.903), Kruskall-Wallis (PCC = 0.884), Bayes (PCC =
0.862) and Human (PCC = 0.848). Detailed results are
presented in Fig. 5. We noticed that Experts outperform
algorithms for time series with low-level baseline, such
as 0 (Experts PCC = 0.985, Kernel PCC = 0.94) or 1
(Experts PCC = 0.944, Kernel PCC = 0.94).

Time
On average, an expert could process 56 curves per hour
(range, 36 to 105). An average of 15 h is then required
to manually process all the 840 curves. In contrast, the
slowest algorithm handles the whole set in 24 mn 37 s
(Kruskall-Wallis), with a minimum of 3 mn 18 s for the
Max-Likelihood algorithm.

Discussion
Buckeridge [14] wrote that Experts can be considered as
a “time-consuming procedure whose reliability is un-
known” to identify epidemics. And if we agree with the
fact that expert should be considered as a weakness for
this purpose, the issue is to find an alternative and to
evaluate its practicability.
Concerning the time-consuming aspect, a recent study

[29] by Debin et al. assessed the capacity of experts to
identify the starts and ends of influenza outbreaks with a
web-based Delphi survey. The time required to mobilize
the experts (n = 69 recruited among 288 eligible), to as-
sess 34 times series, and to obtain a consensus was ap-
proximately 3 months (without including the time
needed for recruiting the experts).
Although data-processing time is hardware configur-

ation dependent we notice, only for comparison purpose,
that expert need at least 15 h to assess 840 curves, in
contrast with the maximum of 25 min and minimum of
3 mm 18 s of processing time for the CPA models. Tak-
ing in account the workload, the small number of skilled
experts, and the probable volunteer fatigue as a result of
solicitation increase, it is clear that considering expert
review can be only an occasional solution for research
purpose and is unusable in a routine context (surveil-
lance and public health context).
Considering the reliability of the different methods

(human and statistics), we tried to identify their limits.
Our approach was to control the characteristics of the
time series submitted to the different methods of out-
break identification by injecting controlled signals com-
ing from real outbreaks within well-known baselines.
Among the factors most influencing the evaluation re-
sults, we showed that the excess of case in the time
series linked to the epidemics, represented by the SND,
is the most pertinent factor and emphasizes the inter-
action between the outbreak size and the baseline level.
Concerning accuracy, a drop out point, which is associ-
ated with an important accuracy decrease and dispersion
increase and which is easy to materialize by the cumula-
tive dispersion, can characterize each algorithm. Experts
outperform the algorithms in term of PCC for low level
of baseline but this ability quickly declines when SND

Fig. 2 Algorithms accuracy evaluations (total error in days) according number of cases in the outbreak and level of baseline
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Fig. 3 Impact of SND (signal noise difference) on algorithms (Maximum Likelihood, Kernel, Kruskall-Wallis, Bayesian, Human) accuracy measured
by the difference with the real date (a d1 = Beginning date difference. b d2 = end date difference)
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Fig. 4 Impact of SND (signal noise difference) on algorithms (Maximum Likelihood, Kernel, Kruskall-Wallis, Bayesian, Human) error cumulated
accuracy measured by cumulated standard deviation (a d1 = Beginning date difference. b d2 = end date difference)

Texier et al. BMC Medical Informatics and Decision Making  (2016) 16:33 Page 9 of 12



decreases. Kernel and Maximum-Likelihood are the
most accurate and less biased algorithms when the SND
decreases under 0. All other algorithms loss their capaci-
ties as soon as SND reach 10. Kernel and Maximum-
Likelihood can be considered, whatever the baseline
level and outbreak size, as the best algorithms for pro-
viding a correct classification of the days in the time
series according to their real status. For all algorithms,
we observed a disposition to delay the detection of the
first outbreak day and to anticipate the detection of the
last outbreak day, probably in association with the slope
of the outbreak curve.
Among the differences observed between Experts and

algorithms, we noticed that when an Expert doesn’t find
the outbreak signal he has a propensity to include the
whole time series as the outbreak signal (increasing his
sensitivity). Another individual variability observed in
the Expert population, and increasing the result disper-
sion, is the way the instructions are understood and as-
similated. In example, considering the instruction “End
date for the outbreak is the last day always included in
the epidemic signal but before a return to a normal situ-
ation” and the 0-level baseline, some Experts included in
the outbreak signal the first baseline days (0 case) after
the ending day, while in the same time considering out-
break cases occurring ahead of time as baseline noise
and excluding them from the outbreak. As suggested by
Wagner [4], this phenomenon may be explained by a
possible mixing of detection and intervention objectives
in the Experts’ cognitive processes. The need to have the
same experimental condition for Experts and algorithms
drove us to give the Experts the only time series without
contextual information (as the agent or the target popu-
lation) and to force them to give a result, even if they
did not precisely identify the outbreaks. In reality, we be-
lieve the Experts are able to increase their performance
in using information about the context and simple tools
during a situational diagnosis (i.e. using the nature of
the agent for inferring a plausible outbreak duration or
size).
We also observed some limitations of both expert and

CPA when the outbreak starts during a low level of the

baseline fluctuation, making impossible the identification
of the true beginning date.
Our study shows that nonparametric and parametric

methods are more accurate and less biased than Bayes-
ian CPA. Kass-Hout et al found the same result [30] and
presumed it was because Bayesian CPA makes the as-
sumption of a normal distribution of the time-series
data, adopting non-informative priors on the model pa-
rameters. But in reason of the nature of disease surveil-
lance data, the normality assumption may interfere with
the estimation of the posterior distribution and the re-
sults obtained by the Bayesian CPA. Kernel algorithm
has the most effective overall features in term of accur-
acy, bias and global decision concerning the outbreak
day identification.
All this work has been done on detrended signals,

without seasonality or autocorrelation. However, using a
3 states model, we integrate already the possibility of
trend existence, as this allows the baseline to have differ-
ent levels before and after the outbreak. Taylor [31] con-
siders that only high levels of autocorrelation can
influence the CPA results. In a same way, Zou wrote that
if CPA remains useful in disease surveillance it is prob-
ably because most outbreaks are not strongly correlated
in a limited time period. See Kass-Hout et al [30] for a
larger discussion on influence of autocorrelation and
trend on CPA model results in disease surveillance.
Despite the numerous advantages of the CPA algo-

rithms, three main problems can be raised. Firstly, they
are unable to detect unique aberrations in time series, as
a single peak outbreak (not evaluated here), which are
still easy to identify by an expert and usually best de-
tected by usual time aberration detection methods. It's a
reason why we recommend that CPA models should be
compared to threshold-based methods in future studies
as for example the Moving Epidemic Method [32]. Sec-
ondly, they cannot be considered as monitoring tools (i.e
a prospective detection method) but only as retrospect-
ive technics allowing the analysis of historical time
series. Thirdly, because CPA algorithms are able to iden-
tify subtle changes [31], they may be confused by some
particular sequences within the baseline, considering

Fig. 5 Probability of correct classification associated with each algorithm (Maximum Likelihood, Kernel, Kruskall-Wallis, Bayesian, Human) according
the number of cases in the outbreak and the level of baseline
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them as change points (see 4.1.2 above). If the first im-
portant change they detect in the time series is a de-
crease they may even consider erroneously this low level
of the baseline as the signal to detect. This blind change
detection is an inaccuracy that cannot be observed when
the series are processed by Experts, because they know
they have to identify only changes corresponding to in-
creases of the number of cases. This erroneous CPA be-
havior could be avoided if it would be possible to add a
knowledge defining the state to detect (i.e. number of
cases during the epidemic state greater than the baseline
state). This work explores the results of each algorithm
but it should be interesting, first to confirm our results
by evaluating algorithms with real data (probably more
complex to analyse), and second, with the goal of im-
proving the result accuracy, to combine the results of
two or several algorithms, taking in account their spe-
cific skills.

Conclusions
In conclusion, for the aim of retrospectively identifying
the start and end of a disease outbreak, in the absence of
human resources available to do this work, we recom-
mend using the Kernel change point model. And in case
of experts’ availability, we also suggest to supplement the
Human expertise with this kind of technics, especially
when the SND is below 0 (in practice when the signal is
considered as difficult to identify by the experts).
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