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Abstract: More than two thirds of emerging viruses are of zoonotic origin, and among them RNA
viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several
viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also
vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually
feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to
humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting
midges using next-generation sequencing techniques as a preliminary step toward the identification
of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the
presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel
viruses were detected, including a novel Thogotovirus species, related but genetically distant from
previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly
constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to
the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic
haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the
emergence and circulation of zoonoses and epizooties using their arthropod vectors.
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1. Introduction

There are more than 200 viral species that are known to be able to infect humans. Since the
discovery of the yellow fever virus in 1901, three to four new species have been discovered every
year [1]. There is, however, a substantial pool of unknown human viral species which are yet to be
discovered, and the development and democratisation of Next-Generation Sequencing techniques
(NGS) has enabled the identification of many new viruses, for which the potential risk to humans
remains mostly unknown. More than two-thirds of viral species infecting humans are of zoonotic
origin, and RNA viruses represent more than 70% of these [1,2], resulting in the recent increase in
studies of viral communities of wild and domestic animals [3]. However, and despite the fact that
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haematophagous arthropods usually act as vectors of transmission between animals and humans, few
studies have analysed viral communities of arthropods [3]. The studies that have been previously
conducted have focused on mosquito viromes [4–8] and have reported the discovery of novel viruses,
including bunyaviruses, rhabdoviruses, reoviruses, and flaviviruses. More recently, two studies
described the composition of viral communities of hard ticks [9,10] and reported the identification
of novel viruses belonging to the Nairovirus, Phlebovirus, and Flavivirus genera, highlighting, as for
mosquitoes, potential new zoonotic risks to humans.

Ceratopogonidae, and particularly the genus Culicoides, are small (1–3 mm) and highly diverse
midges, with more than 1300 species around the world [11,12]. Of these, 96% are haematophagous
and only the females require blood meal for egg fertilisation. Biting midges are well-known vectors of
several parasites (such as Mansonella sp.) [13,14] and viruses infecting animals (i.e., bluetongue virus,
African horse sickness virus, epizootic haemorrhagic disease virus, Schmallenberg virus, etc.) [15].
The Oropouche virus is the only human virus known to be transmitted by biting midges in Latin and
South America [16].

We report here the first comprehensive analysis of viral communities from Senegalese Culicoides
biting midges and the identification of several novel viruses, including a novel thogotovirus and a
novel rhabdovirus.

2. Materials and Methods

2.1. Sample Collection

Biting midges were collected using a modified Centers for Disease Control (CDC) light trap in the
villages of Dielmo and Ndiop in the Sine-Saloum region of Senegal, in November 2013. Traps were
placed near places where cattle rested and were left overnight. Morphological identification of the
arthropods was conducted the following morning. Three types of pools of arthropods were created:
STE0043 (more than 200 adult Culicoides sp., with no distinction between male and female, or engorged
status); STE0044 (N = 15 engorged female Culicoides imicola) and STE0045 (N = 100 non-engorged male
and female Culicoides imicola).

2.2. Virome Preparation

The three pools of arthropods were crushed with two 3 mm tungsten beads and a TissueLyser at
25 Hz for two minutes (Qiagen, Courtaboeuf, France). The clarified supernatant was subsequently used
as a template for virome preparation, as previously described [17]. Briefly, the clarified supernatant was
filtered through a 0.45 µm filter (Millipore, Molsheim, France), and free nucleic acids were digested
with a cocktail of nucleases. Finally, the digested supernatant was purified onto a discontinuous
66%–30% sucrose gradient and ultracentrifuged at 130,000 g for two hours at + 4 ˝C on a MLS-50
rotor (Beckman-Coulter, Villepinte, France). The viral fraction was harvested at the interphase
between the 66% and 30% sucrose layers. Total RNAs were extracted from the purified viral fraction
with Trizol LS® reagent (Life Technologies, Saint Aubin, France), according to the manufacturer’s
recommendations. Random amplification was performed using the Froussard [18] random RT-PCR.
and amplification products were purified with Agencourt AMPure Beads (Beckman-Coulter, Villepinte,
France) according to the manufacturer’s protocol, eluted to a final volume of 15 µL and sequenced
using MiSeq Technology using paired-end and barcode strategies according to a Nextera XT library kit
in a 2 ˆ 300 bp format (Illumina Inc., San Diego, CA, USA).

2.3. Bioinformatic Analyses of Viromes

Raw reads were imported in pairs into the CLC Genomics Workbench 6.0.1 programme (CLC Bio,
Aarhus, Denmark) and trimmed according to their quality score, the presence of ambiguities, and their
length (reads which were shorter than 50 nt were discarded). The pre-processed viral metagenomes are
publicly available on the Metavir server [19] under the “Arthrovirome” project and on the MG-RAST
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server [20,21] with the identifiers 4604249.3, 4604250.3, and 4604251.3 for the STE0043, STE0044 and
STE0045 RNA viromes, respectively.

Cleaned paired reads were assembled into contigs using the CLC Genomics programme and
the following parameters: word size of 20 nt, minimum contig length of 200 nt, mismatch cost of
2, insertion/deletion cost of 3, length fraction of 0.5 and similarity fraction of 0.8. Contigs and
non-assembled reads were compared to the NCBI nucleotide database using the BlastN algorithm,
with a minimum coverage of 50%, minimum identity of 50% and E-value < 10´5. Sequences having
no significant hits according to the criteria described above were classified as “unknown”. Contigs
were then compared to the NCBI viral database using the BlastX program with a minimum coverage
of 50%, minimum identity of 50% and E-value < 10´5. Finally, to confirm the specificity of the BlastX
result, contigs were compared to the NCBI non-redundant nucleotide database using the same criteria.
The taxonomic assignation of contigs was conducted by selecting the best BlastX score result between
the two Blast run for each contig. Figure S1 presents the pipeline for bioinformatic analyses.

Principal Component Analysis (PCA) was used to compare data in the MG-RAST server [21]
with a maximum E-value of 10´5, a minimum identity of 60%, and a minimum alignment length of 15
amino-acids for protein and 15 bp for RNA databases. Data were normalised to values between 0 and
1, and distances were measured using the Bray-Curtis distance matrix.

2.4. Phylogenetic Analyses

Contigs with a significant hit for viruses were translated, and predicted open reading frames
(ORFs) were aligned with other amino-acid sequences retrieved from the GenBank database using
MUSCLE aligner [22] implemented through MEGA6 [23]. The amino-acid substitutions models
that best fitted the data were performed on MEGA6 and were considered for all phylogenetic
analyses. The best substitution model was selected using the corrected Akaike information criterion.
Phylogenetic trees were constructed using Maximum Likelihood (ML) implemented through the
MEGA6 package software, according to the selected substitution model. Nodal support was
evaluated using 1000 bootstrap replicates. Bayesian phylogenetic inference (BI) was carried out using
MrBayes [24] with two independent runs of four incrementally-heated, Metropolis-coupled Markov
chain Monte Carlo (MCMC) starting from a random tree. The MCMC were run for 106 iterations
and associated model parameters were sampled every 500 generations. The initial 2000 trees in each
run were discarded as burning samples and the harmonic mean of the likelihood was calculated by
combining the two independent runs.

Molecular evolutionary distances between sequences were calculated using MEGA6 [23].
For analysis of evolutionary distances between thogotoviruses, individual sequences available in
GenBank and the p-distances algorithm were used. For analysis of molecular evolutionary distances
between rhabdoviruses, sequences available in GenBank were grouped according to their recognised
or putative genus (defined by phylogenetic analyses) and distances were calculated (i) within genera
using the p-distance algorithm (ii) between genera using net distance calculations (i.e., MEGA6 takes
into account the mean distance within genera) and the p-distance algorithm.

2.5. Transmission Electron Microscopy (TEM)

Approximately 50 mg of STE0043 arthropod samples were washed in 70% ethanol and crushed
in 2 mL of sterile EMEM medium (Life Technologies). The supernatant was harvested after
low speed clarification and subsequently filtered through a 0.8-µm filter (Millipore) followed by
ultracentrifugation onto a discontinuous 66%–30% sucrose gradient at 130,000 g for two hours at + 4 ˝C.
The viral fraction was harvested at the interphase between the 66% and 30% sucrose layers and fixed
for one hour at + 4 ˝C with 2% final glutaraldehyde. The fixed viral fraction was then diluted to a
final volume of 4 mL in PBS and directly adsorbed onto formvar carbon films on 400 mesh nickel
grids (FCF400-Ni, EMS) by ultracentrifugation at 130,000 g for one hour at + 4 ˝C, as previously
described [25]. Grids were stained for 10 seconds with 1% molybdate solution in filtered water at room



Viruses 2016, 8, 77 4 of 18

temperature. Electron micrographs were obtained on a Tecnai G2 transmission electron microscope
(FEI) operated at 200 keV equipped with a 4096 ˆ 4096 pixel resolution Eagle camera (FEI).

3. Results

3.1. Diversity of Viral Communities in Haematophagous Biting Midges

RNA viromes of samples STE0043, STE0044 and STE0045 were sequenced using Illumina MiSeq
technology. Sequencing statistics are presented in Table 1.

Table 1. Virome dataset statistics.

STE0043 Culicoides sp. STE0044 C. imicola
Engorged ♀

STE0045 C. imicola
Non Engorged ♂♀

Raw reads 2,071,144 1,335,388 1,507,966
Cleaned reads including: 2,069,117 1,332,764 1,505,902
- Paired reads 2,067,394 1,330,424 1,504,072
- Single reads 1723 2340 1830
Raw read size (nt) 301 301 301
Cleaned read size (nt) 244 244 241
Contigs 1849 1139 1134
Average contig length (nt) 560 536 477
Singletons 48,173 31,804 35,630
MG-RAST no 4604249.3 4604250.3 4604251.3

The taxonomic assignment of reads identified only 5%–25% of sequences which had similarities
with known sequences (Figure 1A). Of these, eukaryotes represented the majority of sequences, with
72.52%, 62.10% and 83.95% of total known reads of the STE0043, STE0044 and STE0045 RNA viromes,
respectively (Figure 1A). Most eukaryotic reads were assigned to arthropods (>60% of total eukaryotic
reads), and they mainly consisted of arthropod ribosomal RNAs. Bacteria-related sequences ranged
from 9% to 37% depending on the sample (Figure 1A).

Virus-related sequences represented 0.73%–18.48% of total known reads. Of them, plant
viruses (i.e., Partitiviridae, Tymoviridae) composed 15.48%, 10.10% and 0.00% of total viral reads for
STE0043, STE0044 and STE0045 RNA viromes, respectively (Figure 1B). Insect viruses (i.e., Iflaviridae,
Mesoniviridae, Dicistroviridae, and non-classified insect viruses) represented the majority of viral
reads, with 55.51%, 76.23% and 33.66% of total viral reads for STE0043, STE0044 and STE0045 RNA
viromes, respectively. Several mammalian viruses were detected, such as Picobirnaviridae-related
viruses, but only in the STE0045 C. imicola male and non-engorged female virome, with a global
abundance of 33.73% of total viral reads. Animal-infecting arboviruses belonging to the Reoviridae
family were identified and represented 26.34%, 0.04% and 17.79% of total viral reads for STE0043,
STE0044 and STE0045 RNA viromes, respectively (Figure 1B). Finally, several reads were assigned to
Orthomyxoviridae (1.69% and 1.84% of total viral reads for STE0043 and STE0045 viromes, respectively)
and Rhabdoviridae (0.96% and 1.86% of total viral reads for STE0043 and STE0044 viromes, respectively)
but they presented a relatively low identity of 57%–62% in the RNA polymerase after BlastX
analysis (Figure 1B). Few DNA viruses were also identified in the RNA viromes (bacteriophages
and amoeba-infecting giant viruses, representing 0.02%, 5.24% and 12.97% of total viral reads for
STE0043, STE0044 and STE0045 RNA viromes, respectively), possibly due to residual contamination of
the RNA fraction by viral DNA (Figure 1B).

Electron microscopy images of the STE0043 Culicoides sp. purified viral fraction showed the
presence of virus-like particles (VLPs) with various diameters, morphologies, and contrasts (Figure 2).
Some VLPs presented a round structure with a distinct envelope, while others appeared with more
contrast. The diameters of the particles ranged from 100 nm to 600 nm (Figure 2).



Viruses 2016, 8, 77 5 of 18

Viruses 2016, 8, 77  5 of 18 

 

 

Figure  1.  Taxonomic  assignment  of  reads  (A)  BlastN  search  against  the  National  Center  for  Biotechnology  Information  (NCBI)  nucleotide  database   

(dashes correspond to the arthropod‐borne proportion of eukaryotic reads) (B) Relative abundance of viral families in biting midge metagenomes according to their 

target hosts (Green: plant viruses, Brown: insect viruses, Grey: bacteriophages, Red: arboviruses, Yellow: mammalian viruses, Blue: amoeba‐infecting giant viruses). 
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Figure 2. Repertory of transmission electron microscopy images of Culicoides sp. viral communities. 
Figure 2. Repertory of transmission electron microscopy images of Culicoides sp. viral communities.
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Principal component analysis (PCA) was used to compare viral communities of biting midges
with other haematophagous and non-haematophagous arthropod RNA viromes available in public
databases (Figure 3, Table S1). RNA viromes of biting midges clustered together, but the STE0043
Culicoides sp. virome was more distant than the STE0044 C. imicola engorged female and STE0045 C.
imicola male and non-engorged female viromes. In addition, biting midge viromes were closer to field
and artificially-infected mosquito metagenomes than to whitefly and butterfly viromes (Figure 3).
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Figure 3. Comparison between viromes of biting midges with available arthropod RNA metagenomes
based on a taxonomic classification of reads. Principal component analysis (PCA) was used to compare
data in MG-RAST server [21] with a maximum E-value of 10´5, a minimum identity of 60%, and
a minimum alignment length of 15 amino-acids for protein and 15 bp for RNA databases. Data
were normalised to values between 0 and 1 and distances were measured using the Bray-Curtis
distance matrix.

3.2. Orbiviruses Were Abundant in Senegalese Biting Midges

Within the viral reads, Reoviridae-related sequences represented 26.34%, 0.04% and 17.79% in
STE0043, STE0044 and STE0045 RNA viromes, respectively; with the presence of bluetongue-related
sequences in STE0043 (N = 3656 reads) and STE0045 (N = 678 reads) viromes while epizootic
haemorrhagic disease virus (EHDV) was detected in STE0043 (N = 5454 reads) and STE0044
(N = 5 reads) viromes. African horse sickness virus (AHSV) was only detected in the STE0043
Culicoides sp. RNA virome (N = 1647 reads).

Various segments of these 10-segmented double-stranded RNA (dsRNA) orbiviruses were
detected in the metagenomes. For example EHDV-related sequences matched with VP4 protein of
segment 4 in the STE0044 C. imicola engorged female virome. In the STE0045 sample, all reads matched
with segment 8 (NS2 protein) of the bluetongue virus (BTV). Within the STE0043 Culicoides sp. virome,
sequences related to segments 1-2-3-4-6-7-8 and 9 of AHSV were present, while NS1 (segment 5) and
NS3 (segment 10) were not detected. Segments 1-2-3-4-8 and 9 of BTV and segments 1-3-4-6 and 8 of
EHDV were detected, with a global coverage of the genome estimated after mapping at 37.27%, 34.58%
and 33.16% for AHSV, BTV and EHDV, respectively, in the STE0043 metagenome (data not shown).
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3.3. Novel Thogotovirus Species

Within the virome of the STE0043 Culicoides sp. and STE0045 C. imicola male and non-engorged
female samples, large contigs of 1903 nt and 1217 nt, respectively, matched with the viral RNA
polymerase PB1 segment of viruses belonging to the genus Thogotovirus (family Orthomyxoviridae),
with a nucleotide identity of 61.26% and 57.61%, respectively. Phylogenetic analyses enabled the
identification of a clade formed by the identified thogotovirus-like orthomyxovirus, tentatively named
“Dielmo orthomyxovirus” (DOV), with a high bootstrap value of 99.2 and a high posterior probability
of 1 (Figure 4A). The clade formed by DOV, placed at the root of the group formed by viruses belonging
to the Thogotovirus genus, is supported by high bootstrap value and posterior probability, suggesting
that DOV could constitute either a novel species within the Thogotovirus genus or a novel genus within
the Orthomyxoviridae family (Figure 4A). However, analyses of genetic distances between DOV and
other orthomyxoviruses supported the classification of DOV among the Thogotovirus genus rather than
a new genus since it presented similar distances with other thogotoviruses and distances in the same
range as those observed between other thogotoviruses and Influenzavirus genus (Figure 4B).
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Figure 4. Phylogenetic analyses of Dielmo orthomyxovirus compared to other Thogotovirus viruses.
(A) Phylogenetic analysis of a fragment of 358 amino-acids of PB1. ML analysis was used to fix tree
topology. ML analysis was performed on 1000 iterations and bootstrap values are represented in
bold. Bayesian posterior probabilities are underlined and represented in italics where nodes coincided
with ML. Substitutions models for ML and Bayesian analyses were determined as LG+I+G and
rtREV+I+G, respectively. Scale bar indicates the number of amino-acid substitutions per site; (B) Matrix
of genetic distances observed between PB1 amino-acid sequences of Dielmo orthomyxovirus and
other representative thogotoviruses. Diversity was calculated by the pairwise-distance algorithm
implemented through MEGA [23].
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3.4. Novel Rhabdoviridae Genus

Within the virome of the STE0043 Culicoides sp. and STE0044 C. imicola engorged female samples,
large contigs of 1397 nt and 1572 nt, respectively, matched with the viral RNA polymerase of
North Creek virus (NCV), a novel rhabdovirus detected in Australian mosquito metagenomes [26].
The new Senegalese rhabdovirus, tentatively named “Dielmo rhabdovirus” (DRV), was distant from
North Creek virus, with only 62.61% and 61.06% of nucleotide homologies, respectively. Nucleotide
and amino-acid sequences of STE0043 and STE0044 Dielmo rhabdovirus were 100% identical, while
they presented a genetic distance from Australian mosquito North Creek virus of 0.352 and 0.377 in
nucleotide and amino-acid sequences, respectively.

In order to identify whether DRV could either constitute a novel species or a novel genus within
the Rhabdoviridae family, we selected GenBank sequences according to the Walker et al. dataset [27] in
order to clearly identify recognised or putative Rhabdoviridae genera (Figure 5). Phylogenetic analysis
identified a clade (sub-clade I) formed by biting midge DRV and Australian mosquito NCV, with a
high bootstrap value of 99 and a high posterior probability of 1. Beaumont virus, another rhabdovirus
identified in Australian mosquito metagenomes [26] and Culex tritaeniorhynchus rhabdovirus (CTRV),
identified in Japanese mosquitoes [28] formed a sub-clade II at the root of sub-clade I (Figure 5,
Figure S2). This group, consisting of the two sub-clades, could constitute a novel genus within the
Rhabdoviridae family (Figure 5, Figure S2). This putative genus was tentatively named Dielmovirus
genus. Dielmoviruses belong to the Dimarhabdovirus supergroup (dipteran-mammal rhabdoviruses)
(Figure S2).
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Figure 5. Phylogenetic analysis of Dielmovirus genus compared to other Rhabdoviridae. Phylogenetic
analysis of a fragment of 463 amino-acids of the RNA-dependant RNA polymerase. Bayesian inference
(BI) analysis was used to fix tree topology. BI analysis was performed on 1,000,000 iterations and nodes
with a posterior probability above 0.80 are represented. ML analysis was performed on 1000 iterations
and nodes above 65 are represented, when nodes coincided with BI. Recognised or a putative genera
are defined as described in [27]. Substitutions models for ML and Bayesian analyses were determined
as LG+I+G and rtREV+I+G, respectively. Scale bar indicates the number of amino-acid substitutions
per site. Cytorhabdoviruses, Novirhabdoviruses and Nucleorhabdoviruses were excluded from the
analysis because sequences were too divergent.
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The genetic distances of Dielmovirus genus compared to other Rhabdoviridae genera, as defined
by Walker et al. [27], are presented in Figure 6. The mean genetic distance between viruses within the
Dielmovirus genus is higher than that observed within each recognised or putative genus (Figure 6A),
with the exception of Sigmaviruses, supporting the distinction of two sub-clades within the Dielmovirus
genus: one formed by NCV and DRV, and the other composed of Beaumont and CTR viruses.
In addition, the putative Dielmovirus genus presented a distribution of distances with other genera in
the same range than the global distribution of distances observed between other genera (Figure 6B).
Viruses belonging to the Dielmovirus genus diverge by approximately 15%–26% in the amino-acid
sequence of the RNA-dependant RNA polymerase from other Rhabdoviridae genera, which is globally
observed for all other genera with the exception of the Lyssavirus, Almendravirus, Bahiavirus and
Sawgravirus genera, which seemed to present a greater genetic distance (Figure 6B). Interestingly, these
four recognised and putative genera did not belong to the Dimarhabdovirus supergroup (Figure 6B,
Figure S2). The Sigmavirus genus presented the least distance with Dielmovirus, and Bahiavirus presented
the greatest distance, which is consistent with phylogenetic observations.
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Figure 6. Genetic distances of Dielmovirus genus compared to other Rhabdoviridae. (A) Mean
distances within recognised and putative Rhabdoviridae genera (putative genera, as reported in [27],
are indicated by a *). Diversity was calculated by the pairwise-distance algorithm implemented through
MEGA6 [23], and 1000 bootstrap replications; (B) Distribution of distances between recognised and
putative Rhabdoviridae genera (putative genera are indicated by a *). Diversity was calculated by the
pairwise-distance algorithm implemented through MEGA6 [23]
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3.5. Detection of Jingmen Tick Virus-Related Sequences

Within the virome of the STE0043 Culicoides sp. sample, one contig of 609 nt matched with the NS5
segment of Jingmen Tick virus (JTV), a novel chimerical virus isolated in Chinese ticks and composed
of four segments: two originating from a flavivirus (NS3 and NS5-like segments) and two with high
similarities with Toxocara canis nematode cDNA library [29]. The Senegalese biting midge Jingmen
Tick-like virus (JTV-like virus) presented a low nucleotide identity of 57.95% with the JTV NS5 segment.
Phylogenetic analysis of several representative flaviviruses, JTV and Mogiana tick virus (MTV, another
virus isolated in ticks which has similarities with flaviviruses [30]) performed in the NS5 gene revealed
that the Senegalese JTV-like virus was located at the root of a clade formed by these new flavi-like
viruses with a high bootstrap value of 97 and a high posterior probability of 1. This clade does not
belong to the Flavivirus genus (posterior probability of 1 for the node defining this clade apart from the
Flavivirus genus clade), but belongs to the Flaviviridae family (Figure 7).
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Figure 7. Phylogenetic analysis of Jingmen Tick-like virus. Phylogenetic analysis of a fragment of
319 amino-acids of the NS5 segment. ML analysis was used to fix tree topology. ML analysis was
performed on 1000 iterations. Bootstrap values above 60 and posterior probabilities above 0.5 are
indicated. Bayesian posterior probabilities are underlined and represented in italics where nodes
coincided with ML. Substitution models for ML and Bayesian analyses were determined as LG+G and
rtREV+ G, respectively. Scale bar indicates the number of amino-acid substitutions per site.

In addition, by re-analysing contigs with low identities and coverage that were previously
discarded, we detected one contig which matched the JTV NS3 segment with a homology percentage
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of 41.3% in nucleotide and an E-value of 10´9, and a contig which matched Toxocara canis ANT-5 with
an E-value of 10´59 and homology of 34.18%.

3.6. Presence of Endogenous Viral Elements?

To verify the presence of endogenous viral elements (EVE) within the major detected arboviruses,
we screened for the presence of possible integration sites within the viral contigs. Among the 31

portion of the JTV-like viral contig, only 23 nt did not match with a viral sequence but matched with
Ovis canadensis chromosome 25. We were not able to detect similar sequences in other viral contigs.

In addition, and due to reports of a rhabdoviral EVE in mosquitoes [31], we performed a Bayesian
inference phylogenetic analysis of the Dielmovirus rhabdovirus genus compared to other rhabdoviruses
and Rhabdoviridae-related EVEs, which confirmed that Dielmoviruses did not correspond to the
previously identified A. aegyti RNA-dependent RNA polymerase (RdRP)-related EVE (Figure S3).

Finally, the presence of EVEs in the glycoprotein gene of Orthomyxoviridae in the genome of Ixodes
scapularis ticks had previously been reported [32], but not among the PB1 segment of the RdRP detected
in our biting midge orthomyxovirus.

3.7. Other Viruses Present in Biting Midges

Sequencing the viral communities of Senegalese biting midges revealed the presence of viruses
infecting a wide variety of hosts, including mammals, insects, plants and bacteria.

Mammalian-infecting viruses were only detected in STE0045 C. imicola male and non-engorged
female RNA viromes and consisted of 33.73% of total viral reads (Figure 1B). The viral family which
was most represented was Picobirnaviridae (57.59% of all mammalian viral reads). Interestingly, the
Picobirnaviridae-related contig matched with a feline picobirnavirus with a nucleotide identity of 53.91%,
suggesting the presence of a possible new picobirnavirus either originating from Culicoides or from
animals on which arthropods feed.

Insect-specific viruses were also highly abundant in the viromes, representing 55.51%, 76.23% and
33.66% of total viral reads in the STE0043, STE0044 and STE0045 RNA viromes, respectively (Figure 1B).
Iflaviridae were abundant, but most insect-specific viral reads matched with novel viruses, currently
not recognised by the International Committee for Taxonomy of Viruses (ICTV). Indeed, sequences
matching the Loreto virus, Negev virus and Negev-like virus 174, Piura virus and Nora virus were
retrieved, with low nucleotide identities comprised between 50% and 56%, 50% and 60%, 63% and
74%, 51% and 63% and 67% and 69%, respectively.

Plant-infecting viruses belonging to the Partitiviridae and Tymoviridae families were detected in the
STE0043 and STE0044 viromes. Partitiviridae-related sequences from Alphapartitivirus, Betapartitivirus,
Gammapartitivirus genera and unclassified partitiviruses were detected in the STE0043 virome
whereas only unclassified partitiviruses were identified in the STE0044 virome. All sequences
displayed low nucleotide identities (53%–75%) suggesting the detection of potentially new viruses.
Tymoviridae-related sequences, again with low nucleotide identities (51%–64%), were also detected in
the STE0043 virome and were assigned to the Maculavirus and Marafivirus genera.

Several reads related to bacteriophages were also detected in the STE0044 and STE0045 samples,
and amoeba-infecting giant viral sequences were identified in the STE0045 virome, probably reflecting
a residual contamination of DNA in the RNA preparations (Figure 1B) or the carriage of mRNAs
within viral particles.

4. Discussion

We report in this study an extensive characterisation of the RNA viral communities of Senegalese
biting midges. Analysis of the taxonomic assignment of reads revealed a high proportion of unknown
sequences. This result, in the same range as those observed in tick [10] and mosquito [8] metagenomes,
again reflects the lack of data about RNA viruses in the databases, and highlights the potential pool of
unknown viruses yet to be discovered and which could represent future emerging viruses.
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The pattern of composition of RNA viral communities was highly divergent in terms of relative
abundance and of the composition of viruses within the three metagenomes, although arthropods were
collected at the same place during the same night in the same trap. This suggests that these differences
may result from intrinsic characteristics of the insects rather than the environment. However, the
three biting midge viromes clustered together in the principal component analysis when compared
to other haematophagous and non-haematophagous arthropods, suggesting the presence of a “core”
viral community shared by all biting midges, and “accessory” viral communities specific to a species,
gender or haematophagous status. Indeed, STE0043 Culicoides sp. was more distant than the STE0045
pool of C. imicola males and non-engorged females and the STE0044 pool of C. imicola engorged females,
despite the fact that they differ only by arthropod species composition. In addition, biting midge
viromes were closer to other haematophagous arthropods than to non-haematophagous arthropods,
potentially highlighting the influence of blood meal in the composition of viromes.

Orbivirus-related sequences were the most represented in the viromes. These Reoviridae are
livestock-restricted viruses which cause significant economic losses: AHSV causes malfunctions of
the circulatory and respiratory systems leading to the death of equines, while BTV and EHDV cause
significant decreases in milk production and death in ruminants [15,33–35]. In Europe and Africa,
the main vector of AHSV and BTV is C. imicola, while EHDV is transmitted by the C. schultzei group
in Africa [15]. In Senegal, several Culicoides species are present: the C. imicola, C. schultzei, C. milnei,
C. magnus and C. fulvithorax groups [36], which can represent a potential epizootic risk to livestock.
In 2007, Senegal reported a significant AHSV epidemic among equines and, since then, animals have
been vaccinated [37]. BTV also highly circulates among ruminants, as shown in sero-epidemiological
studies [38], although no recent epidemics have been reported. In addition, to our knowledge, no EHD
epidemic or study has been reported in Senegal, but the symptoms of BTV or EHDV infections are
very similar, resulting in a possible wrong diagnosis of an etiology as a bluetongue-like pathology [15].
In this study we reported the detection of sequences related to AHSV, BTV and EHDV Reoviridae
viruses. The STE0043 pool of Culicoides sp. presented the majority of Reoviridae reads, and within
them, AHSV, BTV and EHDV represented 15.3%, 34.0% and 50.7% of total Reoviridae-related sequences,
respectively. Interestingly, only a few BTV reads were detected in the STE0044 C. imicola engorged
female and STE0045 C. imicola males and non-engorged females despite the fact that C. imicola is
known to be the main vector of this virus in Africa. Despite the fact that this study constitutes a
snapshot of the composition of viral communities present in biting midges sampled at a given time
and location and may not reflect the composition of the viral communities of Senegalese Culicoides
through one year, this result may suggest that other midge species could be vectors of BTV in Senegal,
as demonstrated by the high prevalence of BTV in the STE0043 Culicoides sp. pool. Diarra et al.
completed in 2014 a one-year survey of Culicoides midge populations in Senegal [39]. They showed
that Culicoides oxystoma, followed by C. kingi and C. imicola, were the most prevalent species of biting
midges, and they could constitute alternative vectors of BTV. In addition, the authors showed that
C. imicola presented a globally constant abundance throughout the year lower than the ones observed
for C. oxystoma and C. kingi, while C. oxystoma peaked during August to November and C. kingi
during May to October, suggesting that possible other midges species may play the role of vectors of
BTV in Senegal, depending on the season. Further follow-up of circulating viruses in different midge
populations throughout the year would help clarify vector(s) and seasonality of BTV in Senegal. Finally,
the detection of EHDV-related reads matching nearly all of the viral segments suggests that the virus
is probably circulating among the vector populations and may precede the onset of an outbreak. Thus,
it highlights the importance of monitoring the emergence of epizooties by studying viral communities
of haematophagous arthropods [3].

In 2009, Peter Daszak noted that only 0.2% of the total estimated viral diversity possibly
infecting humans is currently known [40]. By allowing the identification of potential new viruses,
next-generation sequencing techniques allow reducing this gap. Indeed, in this study we reported
the description of new viruses in biting midge RNA viromes, including a novel thogotovirus. Dielmo
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Orthomyxovirus (DOV) was detected in the pool of Culicoides sp. and the pool of C. imicola males
and non-engorged females. Phylogenetic analyses and calculation of genetic distance resulted
in the identification of a new thogotovirus species, distinct from other known thogotoviruses.
Thogotoviruses are single-stranded RNA (ssRNA) negative-strand segmented viruses belonging
to the Orthomyxoviridae family. All isolated from hard ticks [41] (with the exception of the Batken virus,
which was also isolated from mosquitoes [42]), thogotoviruses are able to infect a wide variety of
vertebrate hosts, including birds, rodents, livestock and humans [43–49]. In humans, these viruses
cause fever and, in some cases, neurological symptoms such as meningitis or encephalitis [50,51].
Recently, a novel thogotovirus, tentatively named “Bourbon virus” was responsible for the death of an
individual who had previously been bitten by a tick, due to a decrease in blood platelets and white cells
but with no neurological symptoms [52]. The status of the newly described Dielmo Orthomyxovirus is
currently unknown, but the successful isolation of DOV should permit to (i) determine its phylogenetic
relationships with other thogotoviruses by sequencing its genome; (ii) review experiences of the
vector competence of Culicoides midges to transmit the virus and allow its possible classification as an
“arbovirus”; and (iii) develop an animal model of infection to determine its pathogenicity.

Novel Rhabdoviridae-related viral sequences were also detected. These sequences clustered
together in a monophyletic group with North Creek virus, a virus recently discovered in Culex sitiens
mosquitoes in Australia [26]. We propose that this sub-clade, in addition to another sub-clade formed
by the Beaumont virus [26] and Culex tritaeniorhynchus rhabdovirus [28], form a new genus within
the Rhabdoviridae family, tentatively named Dielmovirus. Dielmoviruses cluster with the Sigmavirus
genus, within which viruses were only isolated from Drosophila flies. Many rhabdoviruses were
previously isolated from biting midges [27]: for example, Fukuoka virus (a cattle virus), vesicular
stomatitis New Jersey virus (a cattle virus), Wongabel virus (a seabird virus), Ngaingan virus
(a cattle virus), Curionopolis virus (a primate virus) and Tibrogargan virus (a cattle virus). Nearly
all of them belong to the “arbovirus” group, with the exception of the Itacaiunas virus, which is
restricted to midges and which form a distinct clade. Dielmoviruses, such as the Sigmaviruses,
appear to be restricted to haematophagous (mosquitoes, biting midges) and non-haematophagous
(flies) Diptera, and phylogenetic analyses revealed that insect-specific rhabdoviruses form distinct
monophyletic groups, suggesting that stringent host specificity occurs for these viruses (Figure 5, [27]).
In contrast, arbo-rhabdoviruses, possibly due to significant host switching between vertebrate hosts
and arthropod vectors, appear to be more diverse. Indeed, higher genetic distances among recognised
or putative genera were observed for Sigmavirus and Dielmovirus, reinforcing the observation that
strong host specificity occurs among insect-specific rhabdoviruses. Vasilakis and Tesh recently noted
that insect-specific rhabdoviruses, as well as bunyaviruses and flaviviruses, are ancient and probably
evolved and diversified in parallel with their insect hosts [53], via vertical transmission or integration
within the host genome.

It is well-known that arthropod genomes, as well as vertebrate animals, contain integrated
fragments or entire genomes of viral RNA [31,32,54–58]. These regions, called EVE [32], can be
functional in the genomes of several hosts [58–60] and often derive from ancient viral infections for
which the integration was vertically transmitted and evolve in parallel with their eukaryotic host.
In our study, we demonstrated that the newly described Thogotovirus species and Rhabdoviridae genera
did not correspond to previously reported related EVEs [31,32], suggesting that these viruses could
constitute novel viral species and genus.

To conclude, this study reports the first description of viral communities of haematophagous
arthropods which have an impact on human and veterinary medicine: the Culicoides. We detected the
presence of several novel viruses, including a novel Thogotovirus species and a novel Rhabdoviridae
genus, which may constitute potential risks for human and animal health. This study thus highlights
the importance of characterising the viral communities of haematophagous arthropods as a first
step in the evaluation of the emergence of epizooties and/or zoonoses using next-generation
sequencing techniques.
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Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/8/3/77/s1,
Figure S1: Pipeline for bioinformatic analyses, Figure S2: Phylogenetic analysis of Dielmovirus genus compared to
other Rhabdoviridae. Figure S3. Phylogenetic analysis of Dielmovirus genus compared to other Rhabdoviridae and
the endogenous viral element A. aegypti. Table S1. Characteristics of metagenomes used for PCA analysis.
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