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Current and emerging strategies for organophosphate
decontamination: special focus on hyperstable enzymes

Pauline Jacquet1 , David Daudé2 , Janek Bzdrenga1 , Patrick Masson3 , Mikael Elias4 , Eric Chabrière1

Abstract Organophosphorus chemicals are highly toxic mol-
ecules mainly used as pesticides. Some of them are banned
warfare nerve agents. These compounds are covalent inhibi-
tors of acetylcholinesterase, a key enzyme in central and pe-
ripheral nervous systems. Numerous approaches, including
chemical, physical, and biological decontamination, have
been considered for developing decontamination methods
against organophosphates (OPs). This work is an overview
of both validated and emerging strategies for the protection
against OP pollution with special attention to the use of
decontaminating enzymes. Considerable efforts have been
dedicated during the past decades to the development of effi-
cient OP degrading biocatalysts. Among these, the promising
biocatalyst SsoPox isolated from the archaeon Sulfolobus

solfataricus is emphasized in the light of recently published
results. This hyperthermostable enzyme appears to be partic-
ularly attractive for external decontamination purposes with
regard to both its catalytic and stability properties.
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Introduction

Man-made organophosphorus compounds (OPs) are highly-
toxic chemicals that were produced as chemical warfare nerve
agents (CWNAs) to harm, kill, or neutralize the opponent in a
war strategy. The first massive production of OPs was devel-
oped by German scientists before and during the 2nd world
war, with several molecules, dubbed agents G (for Germany),
such as tabun (in 1936), sarin (in 1937), and soman (in 1944;
Szinicz 2005). After the 2nd world war, other toxic molecules,
dubbed agents V (for Victory, Venomous, or Viscuous), were
developed by other nations, such as VX (USA), RVX
(Russia), or CVX (China; Fig. 1). Massive stocks of these
compounds had been accumulated during the cold war
(Gupta 2009). In 1993, the international convention, signed
by some 200 countries, called for the arrested development of
these chemical weapons, and planned for the destruction of
existing stocks before 2007 (Organisation for the Prohibition
of Chemical Weapons 2005; Gupta 2009). Large stocks, how-
ever, still exist today, partly because of the lack of low-cost,
rapid, environmental friendly and safe solutions to destroy
these chemicals. Additionally, such nerve agents (e.g., sarin)
have been used during terrorist attacks in Matsumoto and
Tokyo subway (Japan) in 1994 and 1995. Furthermore,
organophosphate-based pesticides also constitute a seri-
ous threat as they are both highly toxic and widespread
and could be fraudulently used for terrorist attacks or
asymmetric conflicts.

OP compounds, and particularly V-agent derivatives,
were also commercialized as insecticides, during the
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1950s. They progressively replaced the insecticide
Dichlorodiphenyltrichloroethane (DDT), an organochlorine
banned in the 1970s. Being less persistent in the environment
than DDT, the use of OPs have, nevertheless, been restricted in
Europe and USA. However, they remain massively used in other
parts of the world in intensive agriculture. The most commonly
used OP insecticides are malathion, ethyl- or methylparathion,
and chlorpyrifos (Fig. 1). OPs comprise major environmental
(soils and water) pollutants (Jaipieam et al. 2009), and their use
is estimated to lead to 3million intoxications, yielding to 300,000
deaths in the world every year, the main part of these being
ascribable to suicides due to deliberate ingestion of pesticides
(Gunnell et al. 2007; Patel et al. 2012).

The extreme toxicity of OPs stems from their ability to
irreversibly inhibit acetylcholinesterase (AChE), a key en-
zyme in the nervous system. Indeed, AChE terminates the
degradation of the neurotransmitter acetylcholine in synaptic
clefts and neuromuscular junctions. When AChE is inhibited,
acetylcholine accumulates and saturates the cholinergic recep-
tors. Acute intoxication by OPs results in apparition of various
symptoms, abbreviated SLUDGEM, for salivation, lacrima-
tion, urination, diaphoresis, gastrointestinal upset, emesis, and
miosis (Zwiener and Ginsburg 1988; Lessenger and Reese
1999). Mechanistically, OPs react with the catalytic serine
(Ser 200) of Human AChE, via phosphylation, forming a co-
valent phosphoenzyme (Beauregard et al. 1981). This OP-

AChE intermediate can subsequently, depending on the OP
nature, undergo an aging process (i.e., dealkylation occurs on
the adduct). This process prevents reactivation of the
phosphoenzyme. The aging kinetics is a very important pa-
rameter to account for while treating OP poisoning.

Due to the health threat presented by OPs both from acute
and chronic intoxications, special attention has been dedicated
to the development of decontamination strategies. Ideally, a
decontamination solution would offer high efficiency, broad
spectrum of action, smooth utilization compatible with skin or
material treatment, no environmental impact, no secondary
contamination, and low price. Hereafter is presented an over-
view of both current and emerging decontamination methods
either physical, chemical, or biological. Their respective char-
acteristics are summarized, and further developments and fu-
ture perspectives are discussed.

Existing methods for decontamination of OP

intoxications

Current methods of decontaminating pesticides and CWNAs
can be separated into three categories:

(i) Physical decontamination: It encompasses all passive
methods aimed at removing the contaminating agent
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from any given surface, be it biotic or abiotic. It relies on
mechanical action to absorb, remove, or flush the agent
away, but does not usually destroy it.

(ii) Chemical decontamination: It refers to any given method
that allows neutralization of the agent by chemical reac-
tions, such as: hydrolysis, oxidation, or reduction.

(iii) Enzymatic decontamination: This method relates to the
use of enzymes that are capable of hydrolyzing pesti-
cides or CWNAs.

A possibly ideal decontamination device would use several
methods that belong to the aforementioned categories,
allowing for a surface cleaning combined with a rapid, effi-
cient neutralization and/or destruction of the contaminating
agent, thus, maximizing the effects and reducing the health
and environmental hazards.

Large-scale decontamination

Large-scale decontamination is performed on surfaces after a
massive OP exposure. The objectives are both to eliminate the
contamination in situ as well as to reduce the potential of cross
contamination, for example between the victim and the
treating personnel. Currently available techniques are well
suited for material decontamination; however, they often are
aggressive and lack the ability to be fully safe for treating the
victims. The solutions presented here are a non-exhaustive
panel of available solutions.

– Hypochlorite

Decontamination with a sodium hypochlorite solution
may be used at the concentration of 0.5 % for personnel
and 5 % for equipment (Tuorinsky et al. 2009). This
solution proves to be useful both at removing the nerve
agent from the surface and neutralizing it by oxidation.
Be it for material and personnel, this method is still quite
aggressive, due to its strong corroding potential towards
eyes, skin, open wounds, and materials.

– Sodium hydroxide

Sodium hydroxide is used to perform alkaline hydrolysis
of OPs by a nucleophilic attack of the hydroxide ion on
the phosphorus atom of OPs. It allows for the degradation
of large amounts of nerve agents into their corresponding,
non-toxic phosphonic acid.
Combination of both aforementioned products, called su-
per tropical bleach with 93 % calcium hypochlorite and
7 % sodium hydroxide, is used with high efficiency for
material decontamination, with hypochlorite ion acting as
a catalyst in the hydrolysis reaction (Singh et al. 2010).
However, this method is highly corrosive and may

neither be used for sensitive material nor personnel
decontamination.

– DS2

DS2 or BDecontamination solution 2^ is used for material
decontamination. It contains 70 % diethylenetriamine
(DETA), 28 % 2-methoxyethanol, and 2 % sodium hy-
droxide. The active ingredient, 2-methoxyethanol, is
highly effective against sulfur mustard and acts by elim-
ination reaction, thus, forming divinyl sulfide. The mode
of action against CWNAs is somewhat different as 2-
methoxyethanol acts as a nucleophile and reacts with G-
and V-agents (Singh et al. 2010). However, it is toxic and
aggressive to treated surfaces as it even tends to degrade
paints (Fielding 1964; Firmin 2003).

– BX-24 and BX-29

These decontamination solutions, used in NATO forces,
act by oxidation and hydrolysis. Personnel decontamina-
tion solution is composed of amphoteric compounds, am-
ides, and a surfactant. It is advertised to be a safe decon-
tamination solution. The BX-24 is a non-corrosive prod-
uct designed for material decontamination.

– Decontamination formulation DF-200

This product is used as foam in order to decontaminate
toxic chemical warfare material. An enhancement over
the previous DF-100 product, DF-200 is composed of
nucleophilic compounds and oxidizing products, a
bleaching activator, a sorbent, and an inorganic base, dis-
solved in water. It is in three distinct parts to be mixed
together prior to use, with part one being a proprietary
mix of quaternary ammonium compounds and surfac-
tants, part two is composed of 8 % hydrogen peroxide,
and part three is composed of glycerol diacetate, which
catalyzes the oxidation process (Tucker and Comstock
2004; Tucker and Engler 2005; Tucker 2014). It is active
against G- and V-agents with a 99 % decontamination of
the treated surface after 30 min (Tucker 2014). The fact
that this product is divided into three parts might cause
logistical difficulties on the onset of a massive event.

Personal-scale decontamination

The kinetics of nerve agent penetration in the body is so fast
that decontamination and treatment have to be performed on
site and as soon as possible, at the individual level. Indeed,
transportation time to proper medical facilities without prior
application of topical solutions would greatly reduce the
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chances of a patient’s survival and would threaten medical
personnel by spreading secondary contaminations. Currently
available methods dealing with nerve agent exposure rely on
external decontamination followed by medical treatment of
the personnel exposed.

Ready-to-use kits for personal decontamination are primar-
ily used by armies around the world. They have to comply
with operational requirements and find the best trade-off in
terms of size, weight, easiness of use, and of course efficiency.

– M291 SDK (Skin Decontamination Kit)

Adopted by USArmy in 1989, theM291 SDK is a ready-
to-use, non-woven fiber pad, filled with an absorbent and
a resin. The absorbent is a high-contact surface carbona-
ceous compound, in order to remove the agent from the
skin. The resin itself is composed of two ion exchange
resins, an anionic and a cationic one, able to neutralize the
contaminant through hydrolysis (Khan et al. 2013). This
technology was in use by the US Army until its progres-
sive replacement by the Reactive Skin Decontamination
Lotion (RSDL) around 2007. Its efficacy is very low on
VX and very limited against soman as compared to other
decontamination methods, such as 1 % soapy water and
0.5 % bleach (Braue Jr. et al. 2010a, b). It is not suitable
for eye and wound decontamination.

– RSDL (Reactive Skin Decontamination Lotion)

The RSDL is the current solution provided to soldiers and
civilian security personnel in order to deal with topical
exposure to OPs. It consists of an individually packed
sponge, impregnated with a solution containing
Diacetylmonoxime (DAM) and Dekon 139—a proprie-
tary mix—dissolved in polyethylene glycol monomethyl
ether (Bannard et al. 1991). This formulation allows for
desorption of the agent from the skin and its chemical
degradation via a nucleophilic reaction. The time required
to achieve decontamination is less than 3 min for G- and
V-agents (Elsinghorst et al. 2015). Its efficacy outper-
forms the one of M291 towards agents such as VX and
soman (Braue Jr. et al. 2010a, b). The protective ratio
(defined as the ratio between the LD50 of treated
versus untreated group) of RSDL on guinea pigs
is about 60 times higher than the one of M291
against VX (66.4 and 1.1, respectively; Braue Jr.
et al. 2010a). Regarding soman, the protective ratio
of RSDL still is five times better than the one of
M291 (14 and 2.7, respectively; Braue Jr. et al.
2010b). The RSDL is efficient at decontaminating
the skin as long as it is applied within minutes
post-exposure. Like the M291 SDK, RSDL is not
compatible with eye and wound cleaning.

– Fuller’s earth

Used by several NATO countries, pads impregnated with
Fuller’s earth purely rely on a physical and passive absor-
bance of the contaminating OP. It is mainly composed of
fine aluminum silicate powder that confers a high-surface
area, allowing for a good topical absorbance of contam-
inants (Taysse et al. 2007). The major drawback of using
such a pad comes from the generation of contaminated
dusts presenting an inhalation hazard.
There is a current lack of non-corrosive solutions that
would prove to be adequate both for sensitive material
and personnel decontamination. Indeed, oxidative and
corrosive solutions for decontamination are harmful and
destructive to most military and civilian equipment and
basic supplies. They may eliminate the threat of CWNAs
but will leave behind a chemical contamination that is
disastrous. Moreover, it should be noted that personnel
decontamination using surfactant containing solutions
(i.e., soapy water) represents a risk of spreading the agent
over a wider skin surface. Even though it helps solubilize
the chemicals, it may negatively affect the very aim of
decontamination. It is, thus, of uttermost importance to
opt for methods enabling sequestration and/or swift de-
struction of said nerve agents.

Stockpile destruction

In order to comply the Chemical Weapon Convention, the
means of disposal were studied that could lead to destruction
of stockpiles without harmful effect on environment and as-
sociated health hazards, as previous dumping at sea and bury-
ing method were problematic (US National Research Council
1996). It encompasses large hydrolysis systems and incinera-
tion used by western countries. Russia uses another method
for destruction of G-agents, relying on neutralization followed
by bitumination (Pearson and Magee 2002).

– Incineration

The destruction by two-stage incineration is a process in
use since the 1980s for the destruction of CWNA ammu-
nitions, bulk agents, effluents, and equipment associated
with stockpile disposal (US National Research Council
1994). First stage allows for the pulverization of the liq-
uid agents and their heating to 1,480 °C. The subsequent
gases serve as a fuel for processing by the second stage,
an afterburner maintained at a lower, 1,100 °C tempera-
ture (English II 1974; Pearson and Magee 2002). The
incinerator is equippedwith a pollution abatement system
that mixes the gases with sodium hydroxide and water to
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remove acid gases and particles to reach safe standards
(Pearson and Magee 2002).

– Hydrolysis

OPs are hydrolyzed using sodium hydroxide. However,
the way hydrolysis is performed depends on the nature of
the agent. While G-agents can be hydrolyzed safely at
ambient temperature, VX hydrolysis has to be performed
at 90 °C, temperature at which P–S hydrolysis is favored
over P–O bond (Yang 1999; Pearson and Magee 2002;
Kim et al. 2011).

– Neutralization–bitumination

Mainly used by Russia, neutralization–bitumination is a
two-stage method that allows for the destruction of G-
nerve agents. CWNAs are first mixed with 80 %
monoethanolamine for 1 h at 110 °C (neutralization),
followed by a reaction with bitumen and calcium hydrox-
ide for 1 h at 200 °C (bitumination). Russian VX (RVX)
is disposed of by a reaction with potassium isobutylate
dissolved in isobutanol and N-methylpyrrolidinone. This
solution is heated at 95 °C for 30 min before being added
in bitumen (Pearson and Magee 2002).

Emerging chemical and physical alternatives for OPs

decontamination

Cyclodextrins (CDs)

CDs are cyclic oligosaccharides composed of six to eight D-
glucopyranoside units. They form a hydrophobic cavity able
to host hydrophobic and apolar molecules (Sambrook and
Notman 2013). This biomimetic catalysis capacity allows
CDs to scavenge OPs.

Native CDs (α-CD, β-CD, and γ-CD) were first demon-
strated to inactivate CWNAs. Among these,β-CDwas shown
to be the most efficient (Désiré and Saint-André 1986; Désiré
and Saint-André 1987). Then, starting from β-CD as a pre-
cursor, substituted CDs such as iodosobenzoate-β-CD
(IBA-β-CD) were developed and showed the ability to hydro-
lyze pesticides and CWNAs (Hoskin et al. 1999). The impor-
tance of the presence of an α-nucleophile such as IBA was
underlined (Masurier et al. 2005; Wille et al. 2009; Müller
et al. 2011; Rougier et al. 2011). Other derivatives were syn-
thesized such as O-benzyl-β-CD, fully methylated β and α-
CD (TRIMEB and TRIMEA, respectively), partially methyl-
atedβ-CD (DIMEB), depicting a better solubility in water and
organic solvents. CDs are promising compounds which could
be used for skin, mucosa, wound, and also for material

decontamination (Letort et al. 2015). Notwithstanding these
benefits, some limitations have to be pointed out that circum-
vent the use of CDs, as a high-molecular weight (1,
134 g.mol−1 for β-CD) and a low turnover. Additionally, none
of the current CDs are able to degrade VX and possibly any
OP containing a P–S bond due to the remarkable stability of
such a linkage (Wille et al. 2009; Kalakuntla et al. 2013).
Furthermore, p-nitrophenol (degradation product of paraox-
on) inhibits the degradation process efficiency of paraoxon
by β-CD (Masurier et al. 2005; Estour et al. 2013).
Presumably, other OPs degradation products could lead to
the same effect. Moreover, CDs rate for P–F degradation is
very low (Hoskin et al. 1999).

Photochemical methods

Photochemical methods are based on light radiation to
degrade OPs and organic substances in general. These
methodologies have been well-reviewed elsewhere by
Reddy and Kim (2015). Photochemical methods are part
of advanced oxidation processes (AOPs), which use the
high reactivity of HO radicals to degrade pollutants
(Hossain et al. 2013). Briefly, photochemical-based tech-
niques include five classes used for OPs degradation in
soil, water, or air:

– Photolysis

Photolytic degradation of targeted compound consists in
the absorption of radiation in both direct and indirect
ways, leading to the destruction of the compound.
Several examples of OP photolysis (diazinon,
methylparathion, or quinalphos) have been reported to
date in both direct (Wan et al. 1994; Sinderhauf and
Schwack 2003; Gonçalves et al. 2006; Segal-
Rosenheimer and Dubowski 2010; Muñoz et al. 2011)
and indirect manner (Lam et al. 2003; Garbin et al. 2007).

– Photolysis with an oxidant

The association of classical photolysis with chemical ox-
idants like H2O2 and O3 enhances the efficiency of the
process and seems to prevent formation of unfavorable
products (Wu and Linden 2010).

– Photo-Fenton method

This method involves photo-Fenton process, relying on
the photoreduction of dissolved Fe(III) complexes into
Fe(II) ions, followed by the Fenton reaction and the oxi-
dation of organic compounds (Kim and Vogelpohl 1998;
Ikehata and El-Din 2006).
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– Photocatalysis

It refers to the photo-excitation of a semiconductor such
as titanium dioxide (TiO2), zinc oxide (ZnO), or tungsten
trioxide (WO3). Semiconductors are intermediates to re-
duction or oxidation of the OPs. This technique shows
certain limits like electronic recombination (Balkaya
1999; Konstantinou et al. 2001; Jonidi-Jafari et al.
2004; Li et al. 2005; Evgenidou et al. 2006; Chen et al.
2011).

– Photosensitized-induced process

This process uses sensitizers able to absorb light radia-
tion, then transfering the excess energy to a targeted com-
pound. This technique is useful for OPs with a low ab-
sorption efficiency (Kamiya and Kameyama 2001;
Nowakowska et al. 2005).
Photochemical methods have been mainly used for water
decontamination (Reddy and Kim 2015). A few studies on
air and solid surface decontamination of CWNAs have been
reported to date (Zuo et al. 2007; Kim et al. 2007).
Photochemical methods are easy to handle and rather inex-
pensive. However, the efficiency of those methods depends
on numerous variables such as effluent flow rate, types, and
concentrations of contaminants (like inorganic ions).

Others

Other techniques for OP decontamination exist. These
methods remain marginal and would require further develop-
ment. Hereafter is a non-exhaustive list of these techniques.

– Metal–Organic Framework (MOF)

MOFs are crystalline materials, composed of metal ions
or clusters linked together by polydentate organic linkers.
Based on metal nodes, MOF could be tailored to work as
an artificial enzyme (Lee et al. 2009). For example, it
could be used for CWNAs degradation through hydroly-
sis by adsorbed water using Cu-BTC (HKUST-1,
Cu3 (C9H3O6 )2 ) or NU-1000 (Zr6 (μ3 -O)4 (μ3 -
OH)4(H2O)4(OH)4) (DeCoste and Peterson 2014;
Mondloch et al. 2015).

– Degradation by non-thermal plasma (NTP)

NTP (also called dielectric barrier discharge plasma) is
able to destroy a broad spectrum of OPs as well as other
chemicals and biological pathogens (Kim et al. 2007).
When OPs are exposed to plasma, their chemical bonds
are effectively broken; subsequently, generated products

seem harmless (Bai et al. 2010). This technique is mainly
used for wastewater decontamination (Hu et al. 2013).

– Gamma irradiation process

Gamma irradiation process is used for degradation of
numerous pollutants. It is also part of AOPs such as pho-
tochemical methods. Gamma irradiation is used to de-
grade OPs such as chlorpyrifos, diazinon, or malathion
in water. This technique is mainly used for water decon-
tamination (Basfar et al. 2007; Mohamed et al. 2009;
Hossain et al. 2013).

Organophosphate neutralizing enzymes

Organophosphate hydrolase (OPH)

OPHs belong to the aryltriphosphate dialkylphosphohydrolase
(EC 3.1.8.1) and are part of the amidohydrolase superfamily
(Schomburg and Stephan 1998; Seibert and Raushel 2005).
They are encoded by the OP degradation (opd) genes and have
been initially found in Brevundimonas diminutaMG (previously
Pseudomonas diminuta) and Sphingobium fuliginis ATCC
27551 (previously Flavobacterium sp.; Sethunathan and
Yoshida 1973; Serdar et al. 1982; Mulbry et al. 1986; Harper
et al. 1988). Another enzyme, encoded by a gene closely related
to opd, namely opdA, was isolated from Agrobacterium

radiobacter P230 (Horne et al. 2002; Horne et al. 2003).
Extensive efforts have been devoted to the characterization and
engineering of these enzymes (Theriot andGrunden 2010;Wales
and Reeves 2012). Relevant works are summarized hereafter.

– OPH from Brevundimonas diminuta

B. diminuta carrying the plasmid pCMS1 was found to hy-
drolyze the pesticide parathion (Serdar et al. 1982). From this
plasmid, the gene opd coding for a 35-kDa phosphotriesterase
was cloned and sequenced (McDaniel et al. 1988). This enzyme
was purified and characterized against a wide panel of OP-based
insecticides (Dumas et al. 1989). The catalytic efficiency (kcat/
KM) against paraoxon was found to be particularly high:
4.0×107 M−1 s−1. Efficacy against sarin and soman was further
highlighted, albeit with lower kcat/KM values as compared to
paraoxon, 8.0×104 M−1 s−1 and 9.3 x 103 M−1 s−1, respectively
(Dumas et al. 1990). The 3D-structure of the apoenzyme was
shown to consist of an (β/α)8 fold (Benning et al. 1994). The
holoenzyme reconstituted with cadmium and a complex with the
substrate analog diethyl 4-methylbenzylphosphate were also ob-
tained (Benning et al. 1995; Vanhooke et al. 1996). Protein en-
gineering strategies were further considered to increase OPH
activity (Iyer and Iken 2015). Variants at positions W131,
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F132, and F306 with enhanced act iv i ty agains t
diisopropylfluorophosphate (DFP) were obtained demonstrating
for the first time that mutagenesis was relevant to increase the
hydrolysis of P–F linkages (Watkins et al. 1997). Three hydro-
phobic binding pockets were identified in the structure and 14
residues forming these subsites were targeted for mutagenesis
purposes (Chen-Goodspeed et al. 2001a). The role of G60 resi-
due on stereoselectivity was emphasized as G60A substitution
drastically altered RP-enantiomers recognition leading to a
13000-fold greater kcat/KM in favor of methyl phenyl p-nitrophe-
nyl phosphate SP- compared to RP-enantiomer. Substitution
H257Y was then associated with a reversal of chiral specificity
with an increase by up to 500-fold regarding RP-enantiomers for
a variant harboring 4 substitutions I106G/F132G/H257Y/S308G
(Chen-Goodspeed et al. 2001b). DNA shuffling coupled with a
bacterial cell surface display based screening, led to the isolation
of variant 22A11 (A14T/A80V/K185R/H257Y/I274N) and a
25-fold increase in methylparathion hydrolysis (Cho et al.
2002). A similar strategy led to the variant B3561 (A14T/
L17P/A80V/V116I/K185R/A203T/I274N/P342S) that exhibit-
ed a 725-fold increase in kcat/KM for chlorpyrifos and a 39-fold
improvement in paraoxon hydrolysis (Cho et al. 2004). K185R
and I274N substitutions were shown to increase overall hydro-
lysis rate by being involved in the formation of hydrogen bonds
with surrounding residues leading to beneficial structural changes
(Cho et al. 2006). Directed evolution of the phosphotriesterase
from B. diminuta was also investigated and resulted in the selec-
tion of variant S5 (K185R/D208G/R319S) with a 20-fold en-
hancement in functional expression in E. coli (Roodveldt and
Tawfik 2005). The degradation of V-type nerve agents was re-
cently investigated through computationally focused library
screening and two-site mutagenesis (Cherny et al. 2013; Bigley
et al. 2013). The first study led to various improved variants,
among these C23 (K77A/A80V/F132E/T173N/G208D/
H254G/I274N) was particularly relevant with a kcat/KM value
for the toxic Sp isomer of VX of 8.3 x 104 M−1 s−1 (Cherny
et al. 2013). In the second study, 12 active-site residues were
targeted and led to a 26-fold improvement for the hydrolysis of
the VX analogue DEVX as compared to the wild-type protein
and a 230-fold improvement for the racemic nerve agent VX
with catalytic efficiency up to 7 x 104 M−1 s−1 (Bigley et al.
2013). Very recently, PTE was engineered into a functional tri-
mer showing enhanced activity when displayed onto semicon-
ductor quantumdot (Breger et al. 2015). Altogether, these results
underline that phosphotriesterase from B. diminuta is a good
candidate for catalytic decontamination of organophosphorus
chemicals that can be enhanced with enzyme engineering
strategies.

– OPH from Sphingobium fuliginis.

S. fuliginis (ATCC 27551) was isolated from paddy water
and shown to degrade both diazinon and parathion

(Sethunathan and Yoshida 1973). An enzymatic extract partial-
ly purified from S. fuliginis was further shown to possess a
phosphotriesterase activity for the degradation of various OPs
(Brown 1980). The production of parathion hydrolase in
S. fuliginis strain ATCC 2751 was associated to a 43-kb plas-
mid harboring a gene closely related with the opd sequence
from B. diminuta (Mulbry et al. 1986), the encoded proteins
sharing 99 % sequence identity. The recombinant expression of
OPH from S. fuliginis was investigated (Rowland et al. 1991).
Streptomyces lividans was targeted for this purpose as it ex-
presses the enzyme as a secreted soluble enzyme at a milligram
scale (Steiert et al. 1989). The production yield was further
optimized by investigating the effect of signal sequences
(Rowland et al. 1992). Preparation of OP-decontaminating so-
lutions were considered and the enzyme was found to be stable
for long term storage after freeze-drying in the presence of
trehalose and its activity was enhanced with 0.01% sodium
carboxyl polyoxyethylene tridecylether (Sode and Nakamura
1997). The influence of cobalt and zinc on both activity and
expression of the enzymewas evaluated using opd-lacZ fusions
(Manavathi et al. 2005).

The capacity of the native enzyme to discriminate enantio-
mers was considered using various OPs and found to be lim-
ited (Ohuchi et al. 1997). Protein engineering was thus con-
sidered to enhance its efficiency (Iyer and Iken 2015). Variant
H254G/H257W/L303Twas able to catalyze the hydrolysis of
a chromogenic analogue of the most toxic stereoisomer of
soman nearly 3 orders of magnitude faster than the native
enzyme (Hill et al. 2003). Further mutagenesis enhanced the
hydrolysis of VX and pesticides (Gopal et al. 2000). Variant
L136Y displayed a 33% increase in VX hydrolysis rate. Rate
hydrolysis of mutants W131F and F132Ywas enhanced by 4-
fold and 5.8-fold with demeton-S methyl and DFP respective-
ly. Further optimization lead to 25-fold increased in kcat/KM

compared to the wild-type with demeton-S methyl for variant
with nine mutations (A80V/I106V/F132D/K185R/D208G/
H257W/I274N/S308L/R319S) and up to 18-fold increase
against malathion for variant harboring 10 amino-acid substi-
tutions (G60V/A80V/I106V/F132D/K185R/D208G/H257W/
I274N/F306V/R319S) (Schofield and DiNovo 2010). Protein
engineering was also considered for enhancing CWNAs deg-
radation. Position 254 was proved to be crucial for VX hydro-
lysis (Nakayama et al. 2014), and catalytic efficiency of var-
iant L271/Y309A was enhanced up to 150-fold compared to
the wild-type enzyme (Jeong et al. 2014).

– OPH from Agrobacterium radiobacter (OpdA)

The bacterial strain Agrobacterium radiobacter P230 was
found capable of hydrolyzing OP-based pesticides. The gene,
namely opdA, involved in OP hydrolysis was thus cloned and
sequenced and was found closely related to the opd gene from
Flavobacterium sp. strain ATCC 27551 (Horne et al. 2002).
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OpdA shares 91% identity with OPH from Flavobacterium sp.
strain ATCC 27551. The structure of OpdA was solved and
complexes with ethylene glycol and dimethyl thiophosphate re-
vealed similarities between OpdA mechanism and other previ-
ously reported metallophosphoesterases (Jackson et al. 2005).
This enzyme showed 10-fold enhancement compared to homol-
ogous phosphotriesterase from Flavobacterium sp. strain ATCC
27551 for the degradation of dimethyl organophosphate based
insecticides. Substitutions Y257H and F272L were mainly re-
sponsible for this difference (Horne et al. 2006).

Protein engineering was used to enhance the degradation of
OP-based pesticides. Rational design enabled to identify two
successive residues, namely F131 and W132, involved in ste-
reospecificity. Variant W131H/F132A displayed 480-fold and
8-fold enhancement in catalytic efficiency for stereoisomers Z
and E of chlorfenvinphos respectively (Jackson et al. 2009).
Combinatorial active site mutagenesis was also applied to
OpdA and led to the selection of variant S308L/Y309A
resulting in a 5000-fold increase in kcat/KM for the hydrolysis
of malathion (Naqvi et al. 2014).

The potential of OpdA for degrading CWNAs was also con-
sidered. The hydrolysis of both G- and V-type nerve agents by
OpdAwas investigated. The enzyme hydrolyzed cyclosarin and
soman with catalytic efficiencies of 3.9 x 102 M−1 s−1 and 5.8 x
102 M−1 s−1, respectively. The activities towards V-agents were
lower by two orders of magnitude when compared to agents
from G-series. Regarding VX, a kcat/KM value of 4.5 M−1 s−1

was measured (Wille et al. 2012). Three OpdA variants were
investigated and shown kcat/KM values up to 1.7 x 105 M−1 s−1

for tabun. Conversely, soman was poorly hydrolyzed (Dawson
et al. 2008).

– Examples of applications of OPH for OP decontamination

Insofar as OPH are efficient biocatalysts for OP hydrolysis,
they have been considered for decontamination purposes. In
order to promote the use of these enzymes and to address their
stability limitations, immobilization strategies were envis-
aged. Trityl agarose was used for the immobilization of a
phosphotriesterase in a fixed bed reactor maintaining its abil-
ity to hydrolyze organophosphate pesticides (Caldwell and
Raushel 1991a). The thermostability of the immobilized en-
zyme was moreover enhanced compared to the free form with
a 6-fold increase in half-life at 55°C. A process for the immo-
bilization onto nylon was also described (Caldwell and
Raushel 1991b). The KM was increased by 5-6 times com-
pared to the soluble enzyme but reduced the maximum rate
against paraoxon to less than 10%. Long term storage was also
enhanced for the immobilized enzyme. The enzyme was
immobilized into a decontaminating sponge (Havens and
Rase 1993), and covalently linked within polyurethane foams
(LeJeune and Russell 1996). The stability of the enzyme was
tremendously enhanced and enzymatic foams became

attractive for large scale nerve agents decontamination
(LeJeune et al. 1997; LeJeune et al. 1998; LeJeune and
Russell 1999). However, limitations of the technology were
due to insufficient activity of OPH for the most toxic organo-
phosphorus chemicals (Donarski et al. 1989). Surface-
expression coupled with immobilization was further consid-
ered to develop low-cost decontamination systems (Richins
et al. 1997; Chen et al. 2000; Richins et al. 2000; Cho et al.
2002; Mansee et al. 2005). Recently, covalent immobilization
of OpdA onto polyester textiles was reported offering various
perspectives for environmental decontamination (Gao et al.
2014). Other examples of OPH immobilization on amyloid
fibril nanoscaffold or amphiphilic block copolymer were also
described (Raynes et al. 2011; Suthiwangcharoen and
Nagarajan 2014) as well as an original approach consisting
in the immobilization of OPH onto carbon nanotube paper
(Mechrez et al. 2014).

DFPase from Loligo vulgaris

A special attention was raised to the Diisopropylfluorophosphate
fluorohydrolase (DFPase, EC 3.1.8.2) from Loligo vulgaris. This
squid-type enzyme was initally found to efficiently hydrolyze
DFP and tabun (Hoskin 1971; Hoskin and Roush 1982). Its
catalytic mechanism was considered and the 3D-structure was
solved and described as a 6-foldβ propeller (Scharff et al. 2001a;
Scharff et al. 2001b). Kinetics studies and site-directed mutagen-
esis were performed to decipher the reaction mechanism of the
enzyme and identify the essential residues in the active site
(Hartleib and Rüterjans 2001a; Scharff et al. 2001a; Scharff
et al. 2001b; Katsemi et al. 2005). Residue H287 was shown to
act as a general base catalyst whereas two other histidine resi-
dues, namely H181 and H274, appeared to have a stabilizing
effect. Roles of the two high-affinity Ca2+-binding sites were also
described as being strongly involved in the overall stabilization
of the DFPase structure and probably in the catalysis (Hartleib
et al. 2001). The heterelogous production of the enzyme was
considered using an E. coli expression system and yielded to
large amounts of active and soluble protein that could be further
purified using an His-tag and appeared to be stable for 1 year at
4 °C (Hartleib and Rüterjans 2001b).

Organophosphate acid anhydrolase (OPAA) and related

prolidases

A moderately halophilic bacterial isolate identified as a spe-
cies of Alteromonas was found able to degrade several OPs
(DeFrank and Cheng 1991). From this extract, the main en-
zyme, OPAA-2, was purified to homogeneity and found to be
a 60-kDa polypeptide. This enzyme was shown to hydrolyze
DFP ( k c a t /KM = 7 .7 x 10 4 M − 1 s − 1 ) a s we l l a s
phosphofluoridate nerve agents including sarin (kcat/
KM=2.8 x 105 M−1 s−1), soman (kcat/KM=6.1×104 M−1 s−1)
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or cyclosarin (kcat/KM=9.6 x 105 M−1 s−1) and was poorly
active with paraoxon (Cheng et al. 1996; Theriot and
Grunden 2010). A special attention was thus paid to
Alteromonas strains that were screened for their OP-
hydrolyzing activity (DeFrank et al. 1993; Cheng et al.
1993). Many genes encoding OPAAs were reported and the
enzymes were shown to be closely related to prolidases (EC
3.4.13.9). Their promiscuous ability to hydrolyze dipeptides
with C-terminal proline (Xaa-Pro) was then underlined
(Cheng et al. 1996; Cheng et al. 1997). Nevertheless,
OPAAs are particularly efficient for hydrolyzing OP com-
pounds and are also able to degrade G-type CWNAs. Their
large-scale production has moreover been demonstrated
(Cheng et al. 1998; Cheng et al. 1999; Cheng and Defrank
2000). Both substrate and stereochemical specificity of OPAA
from Alteromonas sp. JDS6.5 were analyzed and a preference
for Sp enantiomers was demonstrated (Hill et al. 2000). The X-
ray structure of the enzyme revealed two distinct domains, N-
and C-terminus. The C-terminus domain contains Mn2+ diva-
lent cations and displayed a Bpita-bread^ fold (Vyas et al.
2010). This work highlighted relationships between prolidases
and OPAAs that were completed by the 3D structure of OPAA
from the marine bacterium Alteromonas macleodii

(Štěpánková et al. 2013). Prolidases from hyperthermophilic
sources were also attractive and Pyrococcus sp. strains were
investigated. Enzymes from Pyrococcus furiosus or
Pyrococcus horikoshii (Maher et al. 2004; Theriot et al.
2009; Theriot et al. 2010), appeared to be good candidates
for the development of decontamination solutions and were
further considered for random mutagenesis investigations.
Improved variants against nerve agents and Xaa-Pro dipep-
tides over a broad range of temperature were described
(Theriot et al. 2010; Theriot et al. 2011). The dual activity
prolidase/OPAA was also observed with prolidase from hu-
man origin (Wang et al. 2004; Wang et al. 2006; diTargiani
et al. 2010; Costante et al. 2012). This is particularly interest-
ing as human enzymes are really appealing for the develop-
ment of catalytic bioscavengers.

Paraoxonase

Another class of enzyme from human origin, namely paraoxo-
nase (PON, EC 3.1.8.1.), has found considerable interest. Since
the earliest report describing the ability of a mammalian serum
esterase to degrade paraoxon (Aldridge 1953) and nerve agents
(Broomfield and Ford 1991; Davies et al. 1996), numerous data
were collected regarding the potential of PON for OP
bioscavenging (Rochu et al. 2007). PON is capable of hydrolyz-
ing a wide spectrum of OP pesticides (Mackness et al. 1991;
Furlong et al. 1991; Li et al. 1995). PON from rabbit and human
serum were purified to homogeneity and were shown to be sim-
ilar, though differing in the amino terminus sequence (Gan et al.
1991; Furlong et al. 1991). However, human PON remains

difficult to purify from plasma or heterologously express in high
yield. Baculovirus and adenovirus infections of Trichoplusia ni

larvae allowed to produce large quantities of functional recombi-
nant HuPON1 (Otto et al. 2010; Hodgins et al. 2013). Enzyme
engineering was deeply investigated to generate improved vari-
ants. Site-directed mutagenesis and group-selective labeling
modifications were applied to decipher the role of molecular
determinants of catalysis (Josse et al. 1999a; Josse et al.
1999b). Supplementary essential residues were also identified
with a DFPase-like homology model (Yeung et al. 2004).
Complete description of PON1’s active site was achieved by
solving the 3D structure of a recombinant PON1 variant
(rePON1-G2E6) expressed in E. coli and obtained through di-
rected evolution (Harel et al. 2004; Aharoni et al. 2004).
Mammalian paraoxonase PON1 was found to be more efficient
for the detoxification of soman and cyclosarin than OPH from
P. diminuta and DFPase from Lolio vulgaris. Variants obtained
from PON1 were further improved by about 10-fold against
cyclosarin and soman as well as DFP, parathiol, or
chlorpyrifios-oxon with up to 380-fold increase (Amitai et al.
2006). An engineered recombinant human PON1
(rHuPON1K192) was also generated and highly purified. The
stereospecificity of both recombinant and wild-type PON1 were
evaluated using fluorogenic surrogates of nerve agents and were
shown to be in favor of Rp isomers (Ashani et al. 2010). Directed
evolution experiments were, thus, utilized to increase the effi-
ciency of PON1 towards G-agents (Gupta et al. 2011). Rational
and random mutagenesis were combined using a high-
throughput methodology based on the utilization of fluorogenic
analogs in emulsion compartments and a low-throughput plate
screening. The activity against the coumarin analog of Sp
cyclosarin was enhanced by ≈105-fold for variant 4E9 (L69G/
S111T/H115W/H134R/F222S/T332) as compared to the wild-
type like variant rePON1-G3C9 reaching catalytic efficiency
>105 M−1 s−1. Another work led to the isolation of significantly
improved variants for degrading G-Agents (Goldsmith et al.
2012). Among these, variant VIID2 (L55I/L69V/H115A/
H134R/H197/R/F222M/I291L/T332S) was of special interest.
Although significant enhancements for the decontamination of
G-agents have been achieved, the hydrolysis of V-type agents
still remains critical. Computational experiments were applied to
understand the way PONs hydrolyze VX and drew new perspec-
tives for their engineering (Peterson et al. 2011). Double-
substituted variants of human PON1 (H115W/Y71A and
H115W/F347W) were constructed and showed up to 2-fold in-
crease in catalytic efficiency as compared to the wild-type en-
zyme (Kirby et al. 2013). Noteworthy, PON were also deeply
studied for evolutionary biology considerations. Original strate-
gies including back-to-ancestor/consensus mutations or neutral-
genetic drift were employed to evolve PON in non-conventional
manners (Amitai et al. 2007; Khersonsky et al. 2009; Alcolombri
et al. 2011; Bar-Rogovsky et al. 2013). Although rarely investi-
gated, PON3 paraoxonase was also purified (Draganov et al.
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2000; Reddy et al. 2001) and considered for directed evolution
purposes. The catalytic efficiency of recombinant variants of
PON3 against paraoxon was enhanced by up to 240-fold
(Aharoni et al. 2004). Both activity and stability of PON3 were
shown to be tunable through combination of family shuffling and
phylogeny-basedmutagenesis (Khersonsky et al. 2009). Of note,
another enzyme, namely, the Senescence marker protein 30
(SMP30), has been showed to display a 3D structure closely
related to PON1, although containing a single metal-binding site.
SMP30 is a lactonase able to hydrolyze various aldolactones and
is also promiscuous towards OPs sush as DFP (Kondo et al.
2004; Scott and Bahnson 2011).

Methylparathion hydrolase

Methylparathion hydrolase (MPH, EC 3.1.8.1) is an
aryldialkylphosphatase belonging tometallo-β-lactamase family.
Gene mpd coding for MPH was first identified in Plesiomonas

sp. strain M6 (Zhongli et al. 2001). The gene mpd was then
sequenced, effectively expressed in E. coli and further purified
as a monomer (Fu et al. 2004). Another closely related gene was
identified in Pseudomonas sp. strain WBC-3 (Liu et al. 2005).
The encoded enzyme was purified and crystallized and the 3D
structure revealed a dimeric enzyme each subunit containing a
mixed hybrid binuclear zinc center in which the more solvent-
exposed β-metal cation was replaced by cadmium (Dong et al.
2005). Interestingly,MPHwas shown to be homologous to other
metallo-β-lactamases but did not display any similarity with
phosphotriesterases. Recombinant MPH expressed in E. coli

was characterized and was shown to be active on
methylparathion as well as other OP pesticides including mala-
thion or dichlorvos (Yang et al. 2008). Another MPH, dubbed
OPHC2, was identified in Pseudomonas pseudoalcaligenes

strain C2-1 (Ningfeng et al. 2004) and Stenotrophomonas sp.
strain SMSP-1 (Shen et al. 2010). The former was characterized
and its 3D structure was solved (Gotthard et al. 2013a; Gotthard
et al. 2013b). Recently, an OPHC2 analogue, namely PoOPH
from Pseudomonas oleovorans, was discovered (Luo et al.
2014). This enzyme displays lactonase and arylesterase activities
as well as a promiscuous OPH activity. Variant PoOPHM2

(H250I/I263W) was designed and found improved by 6,962-
and 106-fold against methylparathion and ethylparaoxon, respec-
tively. Randommutagenesis ofMPH fromPseudomonas stutzeri

further led to a 5-fold increase in the hydrolysis of chlorpyrifos
(Xie et al. 2014). Additionalmpd genes harbored by seven strains
isolated from methylparathion contaminated sites were
subcloned and expressed in E. coli (Zhang et al. 2006).
Phylogenetic analysis supported by GC-content comparisons be-
tween mpd genes and respective host’s chromosome suggested
that horizontal gene transfer may have occurred, playing an im-
portant role for bacterial adaptation to methylparathion
contamination.

Phosphotriesterase-Like Lactonase

Among the enzymes able to degrade OPs, phosphotriesterase-
like lactonases (PLLs) constitute a promising protein family
closely related to bacterial phosphotriesterases (Afriat et al.
2006; Draganov 2010). PLLs are natural lactonases catalyzing
the hydrolysis of N-acyl-homoserine lactones (AHLs) involved
in the quorum sensing system of bacterial species, and addition-
ally, exhibit a promiscuous OPH activity. Regarding both the
predominant metabolic role of lactones in bacterial communica-
tion and the relatively recent occurrence of OPs, widely used as
pesticides during the last decades, it has been assumed that the
phosphotriesterase activity of PLL has emerged from a lactonase
template harboring a promiscuous activity for OP hydrolysis.
Interestingly, modern phosphotriesterase have probably evolved
from a lactonase ancestor that lost its capacity to hydrolyze AHL
to the benefit of higher OP-degradation rates. Natural evolution
has led to the selection of enzymes with phosphotriesterase ac-
tivity close to catalytic perfection to the detriment of the natural
lactonase activity. Afriat-Jurnou and coworkers have, for exam-
ple, demonstrated that ancestral reconstruction, starting from
OPH from B. diminuta restore its lactonase catalytic ability, pro-
viding an experimental evidence of the evolutionary linkage be-
tween these enzymatic activities (Afriat-Jurnou et al. 2012).
PLLs have been isolated from various hosts including hyperther-
mophile bacteria (Xiang et al. 2009; Zhang et al. 2012), or ar-
chaea (Merone et al. 2005; Hiblot et al. 2012a; Gotthard et al.
2013b; Bzdrenga et al. 2014;Kallnik et al. 2014). These enzymes
display remarkable stability to temperature, pH, detergent, sol-
vent, or storage, offering good perspectives for utilizations in
external decontamination of OPs. The enzyme SsoPox from
the archeon Sulfolobus solfataricus is particularly interesting
and is one of the most promising PLL for OP countermeasures.
Major results and perspectives are detailed hereafter.

SsoPox: a highly stable, OP-degrading capable

enzyme

An archaeon-sourced enzyme with tremendous stability

The archea Sulfolobus solfataricus was discovered within the
Vesuvio’s sulfatare and found to possess a gene homologous
to the B. diminuta PTE. The encoded enzyme was expressed
and its phosphotriesterase ability, albeit low, was highlighted.
Among the hydrolyzed substrates was paraoxon, hence, was it
called SsoPox: Sulfolobus solftataricus Paraoxonase (Merone
et al. 2005). It was also found to efficiently hydrolyze various
lactones, including N-acyl homoserine lactones, known to be
involved in bacterial communication (quorum sensing).
Actually, the lactonase activity of SsoPox was found to be
two orders of magnitude higher than its phosphotriesterase
activity, underlining that it is most probably a natural
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lactonase, whose capacity to hydrolyze OPs chemicals
stemmed from a promiscuous enzymatic template.

Due to its hypertermophilic origin the enzyme exhibits an
incredible stability to temperature, being active from 10 to
100 °C, with an impressive denaturation temperature of
106 °C as well as a tremendous resistance to the denaturing
effect of urea. Furthermore, SsoPox was active from pH 5.0 to
pH 9.0 confirming the unusual properties of this enzyme.
SsoPox was crystallized and its 3D structure was solved in
both apo and complex forms (Elias et al. 2007; Elias et al.
2008). The structure was reported as a distorted (β/α)8 barrel-
fold and was found to be close to mesophilic OPH from both
B. diminuta and A. radiobacter.

The major structural discrepancies between SsoPox and
OPHs consist in the shortening of loop 7 as well as both extrem-
ities of the polypeptide chain. The arrangement of loop 8 is also
variable between the structures and extra loops are observed
within SsoPox structure (Fig. 2). These conformational changes
are probably involved in the overall enzyme stability by either
rigidifying the structure or favoring dimer formation. An inves-
tigation of the structural determinants of SsoPox as compared to
its mesophilic counterparts was also performed (Vecchio et al.
2009). Surface salt bridge network and a tight quaternary struc-
ture were shown to be involved in complex networks and opti-
mization of dimer subunit interfaces, respectively. From this ob-
servation came the idea to benefit from the outstanding structural
stability of this enzyme, in order to transfer the efficient
B. diminuta PTE active site within SsoPox scaffold.

Engineering SsoPox to enhance promiscuous

phosphotriesterase activity

Thus, protein engineering strategies have been considered in
order to increase its potential for bioremediation. Indeed, pro-
tein stability has been proved to promote evolvability by min-
imizing the effect of destabilizing mutations and buffering
their deleterious damages (Tokuriki and Tawfik 2009).
Hyperthermophile scaffolds are usually good candidates for
evolutionary considerations as their tremendous stability may
confer an enhanced tolerance to mutation-induced stability
changes. Protein polymorphism may thus be generated with-
out drastic effect on protein fitness. Moreover, substrate pro-
miscuity has been identified as a potential origin of functional
divergences that could be used as starting point in evolution-
ary trajectories (Khersonsky et al. 2006).

The rationale was that mesophilic phosphotriesterases proba-
bly emerged from PLLs, so their respective sequences and struc-
tures were compared and led to the identification of residues
probably involved in the enhancement of OP-degradation.
Mutational databases listing potential beneficial substitutions
for phosphotriesterase activity were designed (Chabriere et al.
2014; Chabriere et al. 2015). These databases combined with
in silico analyses were used as starting point for engineering

SsoPox toward OP based pesticide degradation (Fig. 3).
Variants with up to 2000-fold increased activity against certain
pesticides and enlarged substrate scope were obtained (unpub-
lished results). Mutations R223H and Y97Wwere first shown to
impact phosphotriesterase activity (Elias et al. 2008). Residue
W263 was also deeply investigated (Hiblot et al. 2012b). This
residue is located in the active site and was shown to be involved
in enzyme conformational flexibility, mediating substrate pro-
miscuity. Saturation mutagenesis was performed at this position
using NNS-degenerated primers. Two subsets of mutations were
distinguished as regard to either their lactonase or
phosphotriesterase activity. Within this latter, variants W263F,
W263L and W263M were particularly attractive. Catalytic pa-
rameters of SsoPox variants towards OPs are reported in Table 1.
SsoPox and its variants were shown to be active on a wide range
of OPs including pesticides (e.g. paraoxon, parathion, malathion)
and chemical warfare agent analogs (IMP-, PinP-, and CMP-
coumarin). The stimulation of SsoPox activity by anionic deter-
gent at ambient temperature was also demonstrated and is of
prime interest for external decontamination purpose as it could
help spreading the enzyme on soiled surfaces (Hiblot et al.
2012b). Future engineering experiments on SsoPox are in prog-
ress in order to provide a stable, proficient catalyst capable of
detoxifying a broad spectrum of toxic OPs.

Concluding remarks

Decontamination methods against OP poisoning have been
exhaustively studied during the past decades. Efficient
physico-chemical methods including hypochlorite and

Fig. 2 Overall 3D structure of SsoPox in complex with fensulfothion
(PDB ID: 3uf9). Protein backbone is showed as cartoon; N- and C-ter
are highlighted in purple and green, respectively. Loop-7 and loop-8 that
govern substrate promiscuity are emphasized in yellow and red. Divalent
active-site cations are shown as spheres
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Table 1 Catalytic parameters of
SsoPox wild-type and variants
towards organophosphate
pesticides and nerve agents with
respective reactions conditions
(Elias et al. 2008; Hiblot et al.
2012b; Hiblot et al. 2013)

Substrate Enzyme Condition kcat (s
−1) KM (μM) kcat/KM (M−1s−1)

Ethylparaoxon WT 70 °C 3.98 3,270 1.22 × 103

25 °C 12.59 24,250 5.19 × 102

SDS 0.1 %, 25 °C 40.72 12,340 3.30 × 103

SDS 0.01%, 25 °C 24.59 3,830 6.42 × 103

DOC 0.1 %, 25 °C 6.30 570 1.10 × 104

DOC 0.05 %, 25 °C 4.72 270 1.22 × 103

DOC 0.01 %, 25 °C 10.51 730 1.72 × 104

W263F 25 °C 8.47 700 1.21 × 104

SDS 0.1 %, 25 °C 117.70 2,462 4.78 × 104

SDS 0.01 %, 25 °C 85.85 1,168 7.35 × 104

W263M 25 °C 6.82 931 7.33 × 103

W263L 25 °C ND ND 2.37 × 103

W263I 25 °C ND ND 1.21 × 103

W263V 25 °C ND ND 8.83 × 103

W263T 25 °C ND ND 1.06 × 103

Methylparaoxon WT 25 °C 2.71 2,142 1.27 × 103

Methylparathion WT 25 °C 1.1 × 10−3 121 9.09

Malathion WT 25 °C 8.9 × 10−4 160 5.56

CMP-coumarin WT 25 °C ND ND 8.13 × 103

WT SDS 0.01 %, 25 °C 25.47 137 1.86 × 105

W263F 25 °C 9.41 114 8.23 × 104

W263F SDS 0.01 %, 25 °C 8.64 60 1.44 × 105

IMP-coumarin WT 25 °C ND ND 1.67 × 103

W263F 25 °C 8.39 95 8.85 × 104

PinP-coumarin W263F 25 °C 0.11 16 7.08 × 103

Fig. 3 Molecular docking of paraoxon to SsoPox structure. The docking
of paraoxon (ground state, GS; green sticks; a) and of its corresponding
putative oxyanionic pentavalent hydrolytic transition state (TS; cyan
sticks; b) was performed in SsoPox (PDB ID: 2vc5). Metal cations and
active-site water molecules (in red) are shown as spheres. Distances are
indicated in Ångstroms. Briefly, the molecular docking was performed
using torsion and charge parameters generated using ADT 4.2 (http://
autodock.scripps.edu/resources/adt) and the Gasteiger method. A
single-negative charge was attributed to the oxyanion atom of the penta-
valent paraoxon hydrolysis intermediate. Hydrogen atom positions and

the atomic partial charges (Gasteiger method) of the receptor protein
models were added using ADT 4.2. A +2 charge was attributed to the
two-cation ions that comprise the active site of SsoPox. The docking
simulations were performed using Autodock 4.0 (Morris et al. 1998;
Huey et al. 2007) and the Lamarckian genetic algorithm. Forty runs of
genetic algorithm were performed for each couple ligand-receptor pair
using the default parameters. The output ligand configurations were clus-
tered and selected by their binding energy scores and their chemical
relevance
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sodium hydroxide have emerged for the efficient external de-
contamination of OPs or stockpile elimination and have al-
ready been used for this purpose. These methods usually in-
volve harsh chemical conditions and are not compatible with
the decontamination of personnel or sensitive materials. Other
methods were developed such as RSDL or Fuller’s earth.
Whereas RSDL is efficient at decontaminating the skin, it is
not compatible with eye and wound cleaning and would be
hardly adaptable to a large number of contaminated people.
Fuller’s earth shows good topical absorbance of contaminants
but do not degrade OPs, possibly resulting in large amounts of
secondary pollution. Moreover, toxic dusts are generated dur-
ing the decontamination process, complicating the use of the
method at a large scale. Alternatively, photochemical methods
are under development for the mineralization of OP chemical
in environmental media but would not be relevant for people
decontamination. Methods that can be used for both material
and personel are under intensive investigations. CDs were
proved to be efficient bioscavengers but because of their stoi-
chiometric action, they may not be cost-effective in a case of
large scale pollution. Investigations also focus on another
promising solution, the use of OP-degrading enzymes.
Indeed, the use of enzymes is appealing because they offer a
non-corrosive, safe and catalytic way for decontaminating
OPs. Protein engineering has been deeply applied for increas-
ing the catalytic efficiencies of recombinant enzymes.
Whereas the stability and the production costs of enzymes
may be an issue, the discovery of highly thermostable OPs-
degrading enzymes such as SsoPox, and their engineering for
higher activity is expected to turn them into competitive and
economically-attractive OP-biodecontaminants.
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