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f-BIHARMONIC SUBMANIFOLDS OF GENERALIZED SPACE FORMS

JULIEN ROTH AND ABHITOSH UPADHYAY

Abstract. We study f -biharmonic submanifolds in both generalized
complex and Sasakian space forms. We prove necessary and sufficient conditions for

f -biharmonicity in the general case and many particular cases. Some geometric estimates as

well as non-existence results are also obtained.

1. Introduction

Harmonic maps between two Riemannian manifolds (Mm, g) and (Nn, h) are critical points of
the energy functional

E(ψ) =
1

2

∫
M

|dψ|2dvg,

where ψ is a map from M to N and dvg denotes the volume element of g. The Euler-Lagrange
equation associated with E(ψ) is given by τ(ψ) = 0, where τ(ψ) = Trace∇dψ is the tension
field of ψ, which vanishes precisely for harmonic maps.

In 1983, Eells and Lemaire [12] suggested to consider biharmonic maps which are a natural
generalization of harmonic maps. A map ψ is called biharmonic if it is a critical point of the
bi-energy functional

E2(ψ) =
1

2

∫
M

|τ(ψ)|2dvg,

on the space of smooth maps between two Riemannian manifolds. In [17], Jiang studied the
first and second variation formulas of E2 for which critical points are biharmonic maps. The
Euler-Lagrange equation associated with this bi-energy functional is τ2(ψ) = 0, where τ2(ψ) is
the so-called bi-tension field given by

(1) bitensionfield τ2(ψ) = ∆τ(ψ)− tr
(
RN (dψ, τ(ψ))dψ

)
.

Here, ∆ is the rough Laplacian acting on the sections of ψ−1(TN) given by ∆V = tr(∇2V )
for any V ∈ Γ(ψ−1(TN)) and RN is the curvature tensor of the target manifold N defined as
RN (X,Y ) = [∇NX ,∇NY ]−∇N[X,Y ] for any X,Y ∈ Γ(TN).

Over the past years, many geometers studied biharmonic submanifolds and obtained a great
variety of results in this domain (see [3, 5, 6, 13, 14, 15, 16, 21, 23, 24, 27, 28, 31, 32, 34], for
instance). If the map ψ : (M, g)→ (N,h) is an isometric immersion from a manifold (M, g) into
an ambient manifold (N,h) then M is called biharmonic submanifold of N . Since it is obvious
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that any harmonic map is a biharmonic map, we will call proper biharmonic submanifolds the
biharmonic submanifolds which are not harmonic, that is, minimal.

The main problem concerning biharmonic submanifold is the Chen Conjecture [8]:

“the only biharmonic submanifolds of Euclidean spaces are the minimal ones.”

The Chen biharmonic conjecture is still an open problem, but lots of results on submanifolds of
Euclidean spaces provide affirmative partial solutions to the conjecture (see [7, 9] and references
therein for an overview). On the other hand, the generalized Chen’s conjecture replacing
Euclidean spaces by Riemannian manifolds of non-positive sectional curvature turns out to be
false (see [20, 26] for counter-examples). Nevertheless, this generalized conjecture is true in
various situations and obtaining non-existence results in non-positive sectional curvature is still
an interesting question. In [32], the authors gave two new contexts where such results hold.

In [22], Lu gave a natural generalization of biharmonic maps and introduced f -biharmonic maps.
He studied the first variation and calculated the f -biharmonic map equation as well as the
equation for the f -biharmonic conformal maps between the same dimensional manfolds. Ou also
studied f -biharmonic map and f -biharmonic submanifolds in [29], where he proved that an f -
biharmonic map from a compact Riemannian manifold into a non-positively curved manifold
with constant f -bienergy density is a harmonic map; any f -biharmonic function on a compact
manifold is constant, and that the inversion about Sm for m ≥ 3 are proper f -biharmonic
conformal diffeomorphisms. He also derived f -biharmonic submanifolds equation and proved that
a surface in a manifold (Nn, h) is an f -biharmonic surface if and only if it can be biharmonically
conformally immersed into (Nn, h). Further in [30], the author characterizes harmonic maps and
minimal submanifolds by using the concept of f -biharmonic maps and obtained an improved
equation for f -biharmonic hypersurfaces.

By definition, for a positive, well defined and C∞ differentiable function f : M → R,
f -biharmonic maps are critical points of the f -bienergy functional for maps ψ : (M, g)→ (N,h),
between Riemannian manifolds, i.e.,

E2,f (ψ) =
1

2

∫
M

f |τ(ψ)|2dvg.

Lu also obtained the corresponding Euler-Lagrange equation for f -biharmonic maps, i.e.,

(2) relationfbiharmonic τ2,f (ψ) = fτ2(ψ) + (∆f)τ(ψ) + 2∇ψgradfτ(ψ) = 0.

An f -biharmonic map is called a proper f -biharmonic map if it is neither a harmonic nor a bi-
harmonic map. Also, we will call proper f -biharmonic submanifolds a f -biharmonic submanifols
which is neither minimal nor biharmonic.

Very recently, Karaca and Özgür [18] studied f-biharmonic submanifolds in products sapce
and extended the results obtained by the first author [31] for biharmonic submanifolds. In the
present paper, we continue to explore f -biharmonic submanifolds. Precisely, we focus here on
f -biharmonic submanifolds of both (generalized) complex space forms and generalized Sasakian
space forms. After a section of basics about generalized complex and Sasakian space forms as
well as their submanifolds. we study of f -biharmonic submanifolds. For both classes of ambient
spaces, we first give the general necessary and sufficient condition for submanifolds to be
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f -biharmonic. Then, we focus of many particular cases and obtain some non-existence results
for spaces with holomorphic (or φ-holomorphic) sectional curvature bounded from above.

2. Preliminaries
?〈sec2〉?

2.1. Generalized complex space forms and their submanifolds. A Hermitian manifold
(N, g, J) with constant sectional holomorphic curvature 4c is called a complex space form. We
denote by Mn

C (4c) be the simply connected complex n-dimensional complex space form of
constant holomorphic sectional curvature 4c. The curvature tensor R of Mn

C (4c) is given by

RC(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(Z, JY )JX − g(Z, JX)JY + 2g(X, JY )JZ},

for X,Y, Z ∈ Γ(TMn
C (4c)), where < ·, · > is the Riemannian metric on Mn

C (4c) and J is the
canonical almost complex structure of Mn

C (4c). The complex space from Mn
C (4c) is the complex

projective space CPn(4c), the complex Euclidean space Cn or the complex hyperbolic space
CHn(4c) according to c > 0, c = 0 or c < 0.

Now, we consider a natural generalization of complex space forms, namely the generalized
complex space forms. After defining them, we will give some basic information about generalized
complex space forms and their submanifolds. Generalized complex space forms form a particular
class of Hermitian manifolds which has not been intensively studied. In 1981, Tricerri and
Vanhecke [33] introduced the following generalization of the complex space forms (Cn, CPn and
CHn). Let (N2n, g, J) be an almost Hermitian manifold. We denote the generalized curvature
tensors by R1 and R2 which is defined as

R1(X,Y )Z = g(Y, Z)X − g(X,Z)Y,

R2(X,Y )Z = g(JY, Z)JX − g(JX,Z)JY + 2g(JY,X)JZ, ∀ X,Y, Z ∈ Γ(TN).

The manifold (N, g, J) is called generalized complex space form if its curvature tensor R has the
following form

R = αR1 + βR2,

where α and β are smooth functions on N . The terminology comes obviously from the fact that
complex space forms satisfy this property with constants α = β .
In the same paper [33], Tricerri and Vanhecke showed that if N is of (real) dimension 2n ≥ 6,
then (N, g, J) is a complex space form. They also showed that α+β is necessarily constant. This
implies that α = β are constants in dimension 2n ≥ 6, but this is not the case in dimension 4.
Hence, the notion of generalized complex space form is of interest only in dimension 4. Further,
Olszak [25] constructed examples in dimension 4 with α and β non-constant. These examples
are obtained by conformal deformation of Bochner flat Kählerian manifolds of non constant
scalar curvature. Examples of Bochner flat Kählerian manifolds can be found in [10]. From now
on, we will denote by N(α, β) a (4-dimensional) generalized complex space form with curvature
given by R = αR1 + βR2. Note that these spaces are Einstein, with constant scalar curvature
equal to 12(α + β). Of course, they are not Kählerian because if they were, they would be
complex space forms.

Now, let M be a submanifold of the (generalized) complex space form Mn
C (4c) or N(α, β). The

almost complex structure J on Mn
C (4c) (or N(α, β)) induces the existence of four operators on

M , namely

j : TM −→ TM, k : TM −→ NM, l : NM −→ TM and m : NM −→ NM,
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defined for all X ∈ TM and all ξ ∈ NM by

JX = jX + kX and Jξ = lξ +mξ.(3) relationfhst

Since J is an almost complex structure, it satisfies J2 = −Id and for X,Y tangent to Mn
C (4c) (or

N(α, β)), we have g(JX, Y ) = −g(X,JY ). Then, we deduce that the operators j, k, l,m satisfy
the following relations

j2X + lkX = −X,(4) ?relation1.1?

m2ξ + klξ = −ξ,(5) ?relation1.2?

jlξ + lmξ = 0,(6) ?relation1.3?

kjX +mkX = 0,(7) ?relation1.4?

g(kX, ξ) = −g(X, lξ),(8) ?relation1.5?

for all X ∈ Γ(TM) and all ξ ∈ Γ(NM). Moreover j and m are skew-symmetric.

2.2. Generalized Sasakian space forms and their submanifolds. Now, we give some
recalls about almost contact metric manifolds and generalized Sasakian space forms. For more

details, one can refer to ([1, 4, 35]) for instance. A Riemannian manifold M̃ of odd dimension

is said almost contact if there exists globally over M̃ , a vector field ξ, a 1-form η and a field of
(1, 1)-tensor φ satisfying the following conditions:

(9) {?} η(ξ) = 1 and φ2 = −Id+ η ⊗ ξ.

Remark that this implies φξ = 0 and η ◦ φ = 0. The manifold M̃ can be endowed with a
Riemannian metric g̃ satisfying

(10) {?} g̃(φX, φY ) = g̃(X,Y )− η(X)η(Y ) and η(X) = g̃(X, ξ),

for any vector fields X,Y tangent to M̃ . Then, we say that (M̃, g̃, ξ, η, φ) is an almost contact
metric manifold. Three class of this family are of particular interest, namely, the Sasakian,
Kenmotsu and cosymplectic manifolds. We will give some recalls about them.

First, we introduce the fundamental 2-form (also called Sasaki 2-form) Ω defined for
X,Y ∈ Γ(TM) by

Ω(X,Y ) = g̃(X,φY ).

We consider also Nφ, the Nijenhuis tensor defined by

Nφ(X,Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2[X,Y ],

for any vector fields X,Y . An almost contact metric manifold is said normal if and only if the
Nijenhuis tensor Nφ satisfies

Nφ + 2dη ⊗ ξ = 0.

An almost contact metric manifold is said Sasakian manifold if and only if it is normal and
dη = Ω. This is equivalent to

(11) {?} (∇Xφ)Y = g̃(X,Y )ξ − η(Y )X, ∀ X,Y ∈ Γ(M̃).

It also implies that

(12) {?} ∇Xξ = −φ(X).

An almost contact metric manifold is said Kenmotsu manifold if and only if dη = 0 and dΩ =
2η ∧ Ω. Equivalently, this means

(13) {?} (∇Xφ)Y = −η(Y )φX − g(X,φY )ξ,
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for any X and Y . Hence, we also have

(14) {?} ∇Xξ = X − η(X)ξ.

Finally, an almost contact metric manifold is said cosymplectic manifold if and only if dη = 0
and dΩ = 0, or equivalently

(15) {?} ∇φ = 0,

and in this case, we have

(16) {?} ∇ξ = 0.

The φ-sectional curvature of an almost contact metric manifold is defined as the sectional
curvature on the 2-planes {X,φX}. When the φ-sectional curvature is constant, we say that
the manifold is a space form (Sasakian, Kenmotsu or cosymplectic in each of the three cases
above). It is well known that the φ-sectional curvature determines entirely the curvature of
the manifold. When the φ-sectional curvature is constant, the curvature tensor is expressed
explicitely. Let R?1, R?2 and R?3 be the generalized curvature tensors defined by

(17) {?} R?1(X,Y )Z = g̃(Y, Z)X − g̃(X,Z)Y,

(18) {?} R?2(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g̃(X,Z)η(Y )ξ − g̃(Y,Z)η(X)ξ

and

(19) {?} R?3(X,Y )Z = Ω(Z, Y )φX − Ω(Z,X)φY + 2Ω(X,Y )φZ.

For the three cases we are interested in, the curvature of a space form of constant φ-sectional
curvature c is given by

• Sasaki: R? = c+3
4 R?1 + c−1

4 R?2 + c−1
4 R?3.

• Kenmotsu: R? = c−3
4 R?1 + c+1

4 R?2 + c+1
4 R?3.

• Cosymplectic: R? = c
4R

?
1 + c

4R
?
2 + c

4R
?
3.

In the sequel, for more clarity, we will denote the Sasakian (resp. Kenmotsu, cosymplectic)

space form of constant φ-sectional curvature c by M̃S(c) (resp. M̃K(c), M̃C(c)). These space
forms appear as particular cases of the so-called generalized Sasakian space forms, introduced by

Alegre, Blair and Carriazo in [1]. A generalized Sasakian space form, denoted by M̃(f1, f2, f3),
is a contact metric manifold with curvature tensor of the form

(20) CurvatureGSasakian f1R
?
1 + f2R

?
2 + f3R

?
3,

where f1, f2 and f3 are real functions on the manifold. The most simple examples of generalized
Sasakian space forms are the warped products of the real line by a complex space form or
a generalized complex space forms. Their conformal deformations as well as their so-called
D-homothetic deformations are also generalized Sasakian space forms (see [1]). Other examples
can be found in [2].

Now, let (M, g) be a submanifold of an almost contact metric manifold (M̃, g̃, ξ, η, φ).
The field of tensors φ induces on M , the existence of the following four operators:

P : TM −→ TM, N : TM −→ NM, t : NM −→ TM and s : NM −→ NM,

defined for any X ∈ TM and ν ∈ NM . Now, we have

φX = PX +NX and φν = sν + tν,(21) relationfhst
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where PX and NX are tangential and normal components of φX, respectively, whereas tν and
sν are the tangential and normal components of φν, respectively. A submanifold M is said
invariant (resp. anti-invariant) if N (resp. P ) vanishes identically. In [19], Lotta shows that if
the vector field ξ is normal to M , then M is anti-invariant.

3. f-Biharmonic submanifolds of generalized complex space forms

?〈sec31〉?
At first, we will calculate necessary and sufficient condition of f -biharmonic submanifold of
generalized complex space forms and then we make a exposition about the results which could
characterize these type of submanifolds.

〈thm1〉
Theorem 3.1. Let Mp, p < 4 be a submanifold of the generalized complex space form N(α, β)
with second fundamental form B, shape operator A, mean curvature H and a positive C∞-
differentiable function f on M . Then M is f -biharmonic submanifold of N(α, β) if and only if
the following two equations are satisfied

(1)

−∆⊥H + tr (B(·, AH ·))− pαH + 3βklH +
∆f

f
H + 2∇⊥grad(ln f)H = 0,

(2)
p

2
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) + 6βjlH = 0.

Proof: It is a classic fact that the tension field of the isometric immersion ψ is given by

(22) tensionfield τ(ψ) = tr∇dψ = trB = pH.

Using equation (22) in equation (1), we have

(23) eqtau2 τ2(ψ) = p∆H − tr
(
RN (dψ, pH)dψ

)
.

Moreover, we recall that, by some classical and straightforward computations, we have

∆H =
p

2
grad|H|2 + tr (B(·, AH ·)) + 2tr (A∇⊥H(·)) + ∆⊥H.

Reporting this into (23), we get

(24) eqbiharmonicτ2(ψ) = −∆⊥H + tr (B(·, AH ·)) +
p

2
grad|H|2 + 2tr (A∇⊥H(·)) + 2tr

(
RN (·, H)·

)
.

Now, the curvature tensor of generalized complex space form, N(α, β), is given by

tr (R(·, H)·) = αtr (R1(·, H)·) + βtr (R2(·, H)·) .
Let {e1, · · · , ep} be a local orthonormal frame of TM . Then, we have

tr (R(·, H)·) = α

p∑
i=1

R1(ei, H)ei + β

p∑
i=1

R2(ei, H)ei

or,

tr (R(·, H)·) = α

p∑
i=1

[g(H, ei)ei − g(ei, ei)H]

+β

p∑
i=1

[g(JH, ei)Jei − g(Jei, ei)JH + 2g(JH, ei)Jei] .
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or,

tr (R(·, H)·) = α(−pH) + β(3jlH + 3klH).(25) curvfbiharm

From equation (2), M is f -biharmonic if and only if

fτ2(ψ) + ∆fτ(ψ) + 2∇ψgradfτ(ψ) = 0,

which is equivalent to

(26) fbiharmonicconditionτ2(ψ) + p
∆f

f
H + 2p(−AHgrad(ln f) +∇⊥grad(ln f)H) = 0.

Now, using equations (24) and (25) in equation (26) and considering that jlH is tangent and
klH is normal, we get the statement of the theorem by identification of tangent and normal
parts. �

We can easily obtain by the same computations an analogous result for f -biharmonic
submanifolds of complex space forms Mn

C (4c). Namely, we have
〈cor1〉

Corollary 3.2. Let Mp, p 6 2n, be a submanifold of the complex space form Mn
C (4c) of complex

dimension n and constant holomorphic sectional curvature 4c, with second fundamental form B,
shape operator A, mean curvature H and a positive C∞-differentiable function f on M . Then
M is f -biharmonic submanifold of Mn

C (4c) if and only if the following two equations are satisfied

(1)

−∆⊥H + tr (B(·, AH ·))− pcH + 3cklH +
∆f

f
H + 2∇⊥grad(ln f)H = 0,

(2)
p

2
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) + 6cjlH = 0.

Proof: For complex space forms the computations are essentially the same as for the generalized
complex space forms with the only differences that α = β = c and dimension is not necessarily
equal to 4. �

In the sequel, we will state many results for biharmonic subamnifolds of the generalized
complex space forms N(α, β). They have of course analogue for the complex space forms but
for a sake of briefness, we do not write then since the results are the same with α = β = c.
Assuming particular cases such as hypersurfaces, Lagrangian or complex surfaces and curves of
generalized complex space form N(α, β), we have the following conclusion.

〈cor2〉
Corollary 3.3. Let Mp, p < 4 be a submanifold of the generalized complex space form N(α, β)
with second fundamental form B, shape operator A, mean curvature H and a positive C∞-
differentiable function f on M .

(1) If M is a hypersurface then M is f -biharmonic if and only if

−∆⊥H +
∆f

f
H + 2∇⊥grad(ln f)H + tr (B(·, AH ·))− 3(α+ β)H = 0,

and
3

2
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.
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(2) If M is a complex surface then M is f -biharmonic if and only if

−∆⊥H +
∆f

f
H + 2∇⊥grad(ln f)H + tr (B(·, AH ·))− 2αH = 0,

and
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

(3) If M is a Lagrangian surface then M is f -biharmonic if and only if

−∆⊥H +
∆f

f
H + 2∇⊥grad(ln f)H + tr (B(·, AH ·))− 2αH − 3βH = 0,

and
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

(4) If M is a curve then M is f -biharmonic if and only if

−∆⊥H +
∆f

f
H + 2∇⊥grad(ln f)H + tr (B(·, AH ·))− αH − 3β(H +m2H) = 0,

and
1

2
grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

Proof: The proof is a consequence of Theorem 3.1 using the facts that

(1) if M is a hypersurface, then m = 0 and so jlH = 0, kjH = 0 and klH = −H,
(2) if M is a complex surface then k = 0 and l = 0,
(3) if M is a Lagrangian surface, then j = 0, m = 0,
(4) if M is a curve, then j = 0.

�

Remark 3.4. It is a well known fact that any complex submanifold of a Kähler manifold is
necessarily minimal. But as mentioned above, the generalized space forms N(α, β) are not
Kählerian unless there are the complex projective plane or the complex hyperbolic plane. Hence,
considering f -biharmonic surfaces into N(α, β) is of real interest, since they are not necessarily
minimal.

Similarly, if we assume mean curvature vector H as parallel vector then for curves and complex
or Lagranian surfaces, we obtain the following corollaries.

?〈corlag〉?
Corollary 3.5. Let Mp, p < 4 be a submanifold of the generalized complex space form N(α, β)
with second fundamental form B, shape operator A, mean curvature H and a positive C∞-
differentiable function f on M .

(1) If M be a Lagrangian surface of N(α, β) with parallel mean curvature then M is f -
biharmonic if and only if

tr (B(·, AH ·)) = 2αH + 3βH − ∆f
f H, and AHgradf = 0.

(2) If M be a complex surface of N(α, β) with parallel mean curvature then M is f -
biharmonic if and only if

tr (B(·, AH ·)) = 2αH − ∆f
f H and AHgradf = 0.

(3) If M is a curve in N(α, β) with parallel mean curvature then M is f -biharmonic if and
only if

tr (B(·, AH ·)) = αH + 3β(H +m2H)− ∆f
f H, and AHgradf = 0.
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Proof: Since M has parallel mean curvature so that the terms ∆⊥H, ∇⊥gradfH, grad|H|2 and

tr(A∇⊥· H·) vanish and we obtain immediately the result from the previous Corollary. �
Further, for constant mean curvature hypersurfaces in N(α, β), we have the following result.

〈propB〉
Proposition 3.6. (1) Let M3 be a hypersurface of the generalized complex space form N(α, β)
with second fundamental form B, non zero constant mean curvature H and f a positive C∞-
differentiable function on M . Then M is f biharmonic if and only if

|B|2 = 3(α+ β)− ∆f

f
and A gradf = 0

or equivalently, M is proper f -biharmonic if and only if the scalar curvature of M satisfies

ScalM = 3(α+ β) + 9H2 +
∆f

f
and A gradf = 0.

(2) There exists no proper f -biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature.

Proof: For the first point, since M is a hypersurface, by Corollary 3.2, M is f -biharmonic if
and only if 

−∆⊥H + ∆f
f H + 2∇⊥grad(ln f)H + tr (B(·, AH ·))− 3(α+ β)H = 0,

3
2grad|H|2 − 2AHgrad(ln f) + 2tr (A∇⊥H(·)) = 0.

Since M has constant mean curvature, the above equation reduces to
tr (B(·, AH ·)) = 3(α+ β)H − ∆f

f H,

AHgrad(ln f) = 0.

Using condition AH = HA for hypersurfaces, we get

tr
(
B(·, AH(·))

)
= Htr

(
B(·, A(·))

)
= H|B|2.

Reporting this result in first equation of the above condition and from the assumption that H
is a non-zero constant, we get the desired identity |B|2 = 3(α+ β)− ∆f

f .

For the second equivalence, by the Gauss equation, we have

ScalM =

3∑
i,j=1

g
(
RN (ei, ej)ej , ei

)
− |B|2 + 9H2,

where {e1, e2, e3} is a local orthonormal frame of M . From the expression of the curvature tensor
of N(α, β), we get

ScalM = 6(α+ β)− ||B||2 + 9H2.

Moreover, since grad(ln f) = 1
f gradf and AH = HA with H is a non-zero constant, then

AHgrad(ln f) = 0 reduces to A gradf = 0.

Hence, we deduce that M is proper f -biharmonic if and only if |B|2 = 3(α + β) − (∆f
f ) and

A gradf = 0, that is, if and only if ScalM = 3(α+ β) + 9H2 + ∆f
f and A gradf = 0.
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Now, for the second point, if M is a hypersurface with constant mean curvature and
constant scalar curvature, then by the first point, if M is f -biharmonic then

ScalM = 3(α+ β) + 9H2 +
∆f

f
.

As we have already mentioned, α+ β is constant, hence, since H and ScalM are constant, then
∆f
f is constant, that is, f is an eigenvalue of the Laplacian. But f is a positive function, so the

only possibility is that f is a positive constant and M is biharmonic. This concludes the proof
of the second point. �

Now, we give this proposition which give an estimate of the mean curvature for a f -biharmonic
Lagrangian surface.

〈proplag〉
Proposition 3.7. Let M2 be a Lagrangian surface of the generalized complex space form N(α, β)
with second fundamental form B, shape operator A, non-zero constant mean curvature H and a
positive C∞-differentiable function f on M .

(1) If infM

(
2α+ 3β − ∆f

f

)
is non-positive then M is not f -biharmonic.

(2) If infM

(
2α+ 3β − ∆f

f

)
is positive and M is proper f -biharmonic then

0 < |H|2 6 inf
M

(
2α+ 3β − ∆f

f

2

)
.

Proof: Assume that M is a f -biharmonic Lagrangian surface of N(α, β), considering third
assertion of Corollary 3.2, we have


−∆⊥H + ∆f

f H + 2
f∇
⊥
gradfH + tr (B(·, AH ·))− 2αH − 3βH = 0,

grad|H|2 − 2
fAHgradf + 2tr (A∇⊥H(·)) = 0.

Hence, by taking the scalar product with H and taking the assumption that mean curvatutre
H 6= 0, i.e., |H| is constant, from the first part of the above equation, we have

− < ∆⊥H,H > + 2
f < ∇

⊥
gradfH,H > +|AH |2 −

(
∆f
f − 2α− 3β

)
< H,H >= 0.

This equation implies that

−
〈
∆⊥H,H

〉
=

(
2α+ 3β − ∆f

f

)
|H|2 − |AH |2,

where we have used that < ∇⊥gradfH,H >= 0 since |H| is constant. Now, with the help of the
Bochner formula, we get (

2α+ 3β − ∆f

f

)
|H|2 = |AH |2 + |∇⊥H|2.

Now, using Cauchy-Schwarz inequality, i.e., |AH |2 > 2|H|4 in the above equation, we have

(27) ?inequality?

(
2α+ 3β − ∆f

f

)
|H|2 > 2|H|4 + |∇⊥H|2 > 2|H|4.
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So, we have 0 < |H|2 6 infM

(
2α+3β−∆f

f

2

)
because |H| is a non-zero constant. This is only

possible if the function 2α+ 3β − ∆f
f has a positive infimum. This concludes the proof. �

Now, we have similar result for complex surfaces.
?〈propcomp〉?

Proposition 3.8. Let ψ : M2 → N(α, β) be a complex surface of generalized complex space form
N(α, β) with second fundamental form B, shape operator A, mean curvature H and a positive
C∞-differentiable function f on M .

(1) If infM

(
2α− ∆f

f

)
is non-positive then M is not f -biharmonic.

(2) If infM

(
2α− ∆f

f

)
is positive and M is proper f -biharmonic then

0 < |H|2 6 inf
M

(
2α− ∆f

f

2

)
.

Proof: Let M be a f -biharmonic complex surface of N(α, β) with non-zero constant mean
curvature. Then, by the second assertion of Corollary 3.2, we have

−∆⊥H + ∆f
f H + tr (B(·, AH ·))− 2αH = 0, and AHgradf = 0.

Replacing 2α+ 3β by 2α in the proof of Proposition 3.7, we have the required result. �

Remark 3.9. Note that we can obtain analogues of all the results of this section for submanifolds
of the complex space forms Mn

C (4c) directly form Corollary 3.2. We do not write them here for
briefness. However, there is no analogue for complex submanifolds since any complex submanifold
of Mn

C (4c) in fact minimal.

4. f-Biharmonic submanifolds of generalized Sasakian space forms

?〈sec32〉?
Now, we consider f -biharmonic submanifolds of generalized Sasakian space forms and give the
following theorm for its characterization.

〈thm2〉
Theorem 4.1. Let Mp be a submanifold of a generalized Sasakian space form M̃(f1, f2, f3),
with second fundamental form B, shape operator A, mean curvature H and a positive C∞-

differentiable function f on M . Then M is f -biharmonic submanifold of M̃(f1, f2, f3) if and
only if the following two equations are satisfied

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = pf1H − f2|ξ>|2H − pf2η(H)ξ⊥ − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = −2f2(p− 1)η(H)ξ> − 6f3PsH.

Proof: At first, we calculate the curvature tensor of generalized Sasakian space form

M̃(f1, f2, f3). From equation (20), we have
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R?(X,Y )Z = f1R
?
1(X,Y )Z + f2R

?
1(X,Y )Z + f3R

?
2(X,Y )Z

= f1{g̃(Y, Z)X − g̃(X,Z)Y }
+ f2{η(X)η(Z)Y − η(Y )η(Z)X + g̃(X,Z)η(Y )ξ − g̃(Y, Z)η(X)ξ}
+ f3{g̃(X,φZ)φY − g̃(Y, φZ)φX + 2g̃(X,φY )φZ}.

Let us consider {e1, e2, ..., ep} an orthogonal basis of the tangent space of M . Then, we have

R?(ei, H)ei = f1{g̃(H, ei)ei − g̃(ei, ei)H}+ f2{η(ei)η(ei)H − η(H)η(ei)ei + g̃(ei, ei)η(H)ξ}
+ f3{g̃(ei, φei)φH − g̃(H,φei)φei + 2g̃(ei, φH)φei}.

Taking the trace and using (21) in the above equation, we get

tr
(
R?(·, H) ·

)
= −f1pH + f2

∑
i

{η(ei)
2H − η(H)η(ei)ei + |ei|2η(H)ξ}

+ f3

∑
i

{tr(P )φH − g̃(H,Nei)φei + 2g̃(ei, sH)φei}

= −f1pH + f2{|ξ>|2H − η(H)ξ> + pη(H)ξ}
+ f3

∑
i

{tr(P )sH + tr(P )tH − g̃(H,Nei)Pei − g̃(H,Nei)Nei

+ 2g̃(ei, sH)Pei + 2g̃(ei, sH)Nei}.
It implies that

tr
(
R?(·, H) ·

)
= −f1pH + f2{|ξ>|2H − η(H)ξ> + pη(H)ξ}+ 3f3(PsH +NsH),

by considering the anti-symmetry property of φ, tr(P ) = 0 and g̃(H,Nei) = −g̃(tH, ei).

Now, from value of tr
(
R?(·, H) ·

)
and equations (24), (26), we have result of the theorem by

considering the tangential and normal parts. �

Now, we have the following corollary if we assume different particular cases in Theorem 4.1.

〈cor2〉
Corollary 4.2. Let Mp be a submanifold of a generalized Sasakian space form M̃(f1, f2, f3).

(1) If M is invariant then M is f -biharmonic if and only if

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = pf1H − f2|ξ>|2H − pf2η(H)ξ⊥

and
p

2
grad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = −2f2(p− 1)η(H)ξ> − 6f3PsH.

(2) If M is anti-invariant then M is f -biharmonic if and only if

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = pf1H

−f2|ξ>|2H − pf2η(H)ξ⊥ − 3f3NsH
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and
p

2
grad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = −2f2(p− 1)η(H)ξ>.

(3) If ξ is normal to M then M is f -biharmonic if and only if

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = pf1H − pf2η(H)ξ − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = 0.

(4) If ξ is tangent to M then M is f -biharmonic if and only if

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = pf1H − f2H − 3f3NsH

and
p

2
grad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = −6f3PsH.

(5) If M is a hypersurface then M is f -biharmonic if and only if

−∆⊥H + trB(·, AH ·) +
∆f

f
H + 2∇⊥grad(ln f)H = (2nf1 + 3f3)H

−f2|ξ>|2H − (2nf2 + 3f3)η(H)ξ⊥

and

ngrad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = −(2(2n− 1)f1 + 6f3)η(H)ξ>.

Proof. The proof is a direct consequence of Theorem 4.1 using the following facts.

(1) If M is invariant then P = 0.
(2) If M is anti-invariant then N = 0.
(3) If ξ is normal then η(gradf) = 0 and M is anti-invariant which implies P = 0.
(4) If ξ is tangent then η(H) = 0.
(5) If M is a hypersurface then sH = 0.

Analogously to the case of generalized complex space forms (Proposition 3.6), we can
obtain some curvature properties in some special cases by using characterizations of f -biharmonic
submanifolds of generalized Sasakian space forms.

〈propscal〉
Proposition 4.3. (1) Let M2n be a hypersurface of generalized Sasakian space form

M̃(f1, f2, f3) with non zero constant mean curvature H and ξ is tangent to M . Then M is
proper f -biharmonic if and only if

|B|2 = 2nf1 − f2 + 3f3 − ∆f
f , and A gradf = 0,

or equivalently if and only if

ScalM = 2n(2n− 2)f1 + (4n− 1)f2 − (2n− 4)f3 + (2n− 1)H2 + ∆f
f H and A gradf = 0.

(2) There exists no proper f -biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature so that ξ is tangent.
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Proof. Let M be a f -biharmonic hypersurface of M̃(f1, f2, f3) with non zero constant mean
curvature and ξ tangent to M . Then, from Corollary 4.2, we have

−∆⊥H + trB(·, AH ·) + ∆f
f H + 2∇⊥grad(ln f))H

= (pf1 + 3f3)H − f2|ξ>|2H − (2nf2 + 3f3)η(H)ξ⊥,

ngrad|H|2 + 2trA∇⊥H(·)− 2AHgrad(ln f) = 0.

Now, as per assumption, ξ is tangent to M which gives η(H) = η(ν) = 0. Therefore, we have

φ2ν = −ν + η(ν)ξ = −ν.

On the other hand, we have

φ2ν = φ(sν + tν)

= Psν +Nsν + stν + t2ν.

Hence, we get

(28) minusnu − ν = Psν +Nsν + stν + t2ν.

Moreover, since 〈φν, ν〉 = Ω(ν, ν) = 0, we have that φν is tangent, i.e., tν = 0. Thus, Equation
(28) becomes

−ν = Psν +Nsν,

and so Ps = 0 and Ns = −Id by identification of tangential and normal parts. Using these
results in the above f -biharmonic condition for the hypersurfaces of generalized Sasakian space
forms, we have 

trB(·, AH ·) = (2nf1 + 3f3)H − f2|ξ>|2H − ∆f
f H,

AHgrad(ln f) = 0.

Hence, the second equation is trivial and the first becomes

trB(·, AH ·) = 2nf1H − f2H + 3f3H −
∆f

f
H,

or equivalently

|B|2 = 2nf1 − f2 + 3f3 −
∆f

f
,

since trB(·, AH ·) = |B|2H and H is a non zero constant.

Similarly, using Gauss formula for second part, we have

ScalM =
∑
i,j

g̃(R?(ei, ej)ej , ei)− |B|2 − pH2

=
∑
i,j

f1{g̃(ej , ej)g̃(ei, ei)− g̃(ei, ej)g̃(ej , ei)}+
∑
i,j

f2{η(ei)η(ej)g̃(ej , ei)

− η(ej)η(ej)g̃(ei, ei) + g̃(ei, ej)η(ej)g̃(ξ, ei)− g̃(ej , ej)η(ei)g̃(ξ, ei)}

+
∑
i,j

f3{g̃(ei, φej)g̃(φej , ei)− g̃(ej , φej)g̃(φei, ei) + 2g̃(ei, φej)g̃(φej , ei)}

− |B|2 − pH2 = 2n(2n− 1)f1 + 2(2n− 1)f2 − (2n− 1)f3 − |B|2 − pH2.
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Using the value of |B|2 obtain in the first part of the proof, we get the required result, that is,

ScalM = 2n(2n− 2)f1 + (4n− 1)f2 − (2n− 4)f3 + (2n− 1)H2 +
∆f

f
H.

Moreover, since grad(ln f) = 1
f gradf and AH = HA with H is a positive constant, the equation

AHgrad(ln f) = 0 reduces to A gradf = 0. This concludes the proof. �

Now, from this proposition, we can prove the following non-existence result.

Corollary 4.4. Let M2n be a constant mean curvature hypersurface of generalized Sasakian

space form M̃(f1, f2, f3) with ξ tangent. If the functions f1, f2, f3 satisfy the inequality

2nf1 − f2 + 3f3 6
(∆f)
f on M then M is not biharmonic.

In particular, there exists no proper f -biharmonic CMC hypersurface with ξ tangent and f
satisfying

• c̃ 6 4
2n+2 [∆f

f −
6n−2

4 ] in a Sasakian space form M̃2n+1
S (c̃).

• c̃ 6 4
2n+2 [∆f

f + 6n−2
4 ] in a Kenmotsu space form M̃2n+1

K (c̃).

• c̃ 6 4
2n+2

∆f
f in a cosymplectic space form M̃2n+1

C (c̃).

Proof: As per assumption, M is a hypersurface of M̃(f1, f2, f3) with non zero constant mean
curvature H and ξ tangent to M . From Proposition 4.3, M is f -biharmonic if and only if its
second fundamental form B satisfies |B|2 = 2nf1 − f2 + 3f3 − ∆f

f . In other words, this is not

possible if

(29) ?condf1f2f3? 2nf1 − f2 + 3f3 6
∆f

f
.

Now, f1 = c̃+3
4 and f2 = f3 = c̃−1

4 if M̃(f1, f2, f3) is a Sasakian space form where c̃ is φ-sectional

curvature. Therefore, the inequality 2nf1 − f2 + 3f3 6
∆f
f reduces to c̃ 6 4

2n+2 [∆f
f −

6n−2
4 ].

Similarly, we have f1 = c̃−3
4 and f2 = f3 = c̃+1

4 (resp. f1 = f2 = f3 = c̃
4 ) for the Kenmotsu (resp.

cosymplectic) case and the inequality 2nf1 − f2 + 3f3 6
∆f
f reduces to c̃ 6 4

2n+2 [∆f
f + 6n−2

4 ]

(resp. c̃ 6 4
2n+2

∆f
f ). �

Now, we have the following proposition analogous to complex case.
?〈thmSKC〉?

Theorem 4.5. Let Mq be a submanifold of Sasakian (Kenmotsu or cosymplectic) space form

M̃2n+1
S (c̃) (resp. M̃2n+1

K (c̃) or M̃p+1
C (c̃)) with constant mean curvature H so that ξ and φH are

tangent. Further, we consider F (f, q, c̃) the function defined on M by

F (f, q, c̃) = qf1 − f2 + 3f3 −
∆f

f
=



(q+2)c̃
4 + (3q−2)

4 − ∆f
f for M̃p+1

S (c̃),

(q+2)c̃
4 − (3q−2)

4 − ∆f
f for M̃p+1

K (c̃),

(q+2)c̃
4 − ∆f

f for M̃p+1
C (c̃).

Then we have the following observations.

(1) If inf
M
F (f, q, c̃) is non-positive then M is not f -biharmonic.
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(2) If inf
M
F (f, q, c̃) is positive and M is proper f -biharmonic then

0 < |H|2 6 1

q
inf
M
F (f, q, c̃).

Proof: AsM is proper f -biharmonic submanifold with constant mean curvatureH and ξ tangent
to M , so we get form Corollary 4.2 that

−∆⊥H + trB(·, AH ·) + 2
f∇
⊥
gradfH + ∆f

f H = qf1H − f2H − 3f3NtH,

2trA∇⊥H(·)− 2AHgrad(ln f) = −6f3PtH.

Now, considering φH is tangent implies that sH = 0. Again applying φ gives that φ2H =
PtH + NtH. But from φ2H = −H + η(H)ξ and ξ is tangent, we have φ2H = −H. Therefore,
comparing tangential and normal parts, we get PtH = 0 and NtH = −H. Using these facts in
the above equation, we get

−∆⊥H + trB(·, AH ·) = qf1H − f2H + 3f3H − ∆f
f H,

2trA∇⊥H(·)− 2AHgrad(ln f) = 0.

Now, considering ν as an real eigenvalue of the eigenfunction f corresponding to Laplacian
operator ∆, i.e., ∆f

f = ν, from first equation, we have

−∆⊥H + trB(·, AH ·) = qf1H − f2H + 3f3H − νH
= F (f, q, c̃)H.

Taking scalar product by H, we get

−
〈
∆⊥H,H

〉
+ 〈trB(·, AH ·), H〉 = F (f, q, c̃)|H|2.

Using the facts 〈trB(·, AH ·), H〉 = |AH |2, |H| is a constant and the Böchner formula, i.e.,
1
2∆|H|2 =

〈
∆⊥H,H

〉
− |∇⊥H|2 in the above equation, we have

|AH |2 + |∇⊥H|2 = F (f, q, c̃)|H|2.

Now, this equation reduces to

F (f, q, c̃)|H|2 = |AH |2 + |∇⊥H|4 > q|H|2 + |∇⊥H|2 > q|H|4,

by considering the Cauchy-Schwarz inequality |AH |2 > 1
q tr(AH) = q|H|4. It implies that

F (f, q, c̃) > q|H|2,

as |H| is a positive constant. This proves the two assertions of the theorem. �

Now, we have the analogous result replacing the assumption that φH is tangent by φH
is normal. Namely, we have:

Proposition 4.6. Let ψ : Mq → M̃p+1
S (c̃) (resp. M̃p+1

K (c̃) or M̃p+1
C (c̃)) be a submanifold of

Sasakian (Kenmotsu or cosymplectic) space form with constant mean curvature H so that ξ is
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tangent and φH is normal. Further, we consider F (f, q, c̃) the function defined on M by

G(f, q, c̃) = qf1 − f2 −
∆f

f
=



(q−1)c̃
4 + (3q+1)

4 − ∆f
f for M̃p+1

S (c̃),

(q−1)c̃
4 − (3q+1)

4 − ∆f
f for M̃p+1

K (c̃),

(q−1)c̃
4 − ∆f

f for M̃p+1
C (c̃).

Then we have the following observations.

(1) If inf
M
G(f, q, c̃) is non-positive then M is not f -biharmonic.

(2) If inf
M
G(f, q, c̃) is positive and M is proper f -biharmonic then

0 < |H|2 6 1

q
inf
M
G(f, q, c̃).

Proof: Now, in this case, M is proper f -biharmonic submanifold with ξ is tangent and φH is
normal. Normality of φH implies that sH = 0. Therefore, from Corollary 4.2, we have

−∆⊥H + trB(·, AH ·) = qf1H − f2H

= G(f, q, c̃)H.

Similarly, as in the previous theorem, taking the scalar product by H and using the Böchner
formula and then with the help of the Cauchy-Schwarz inequality, we get

G(f, q, c̃)|H|2 = |AH |2 + |∇⊥H|4 > q|H|2 + |∇⊥H|2 > q|H|4.

It easily provides the inequality G(f, q, c̃) > q|H|2, since |H| is a positive constant. We get
0 < |H|2 6 1

q infM G(f, q, c̃), which concludes the proof. �
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