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f-BIHARMONIC SUBMANIFOLDS OF GENERALIZED SPACE FORMS

JULIEN ROTH AND ABHITOSH UPADHYAY

ABSTRACT. We study f-biharmonic submanifolds in both generalized
complex and Sasakian space forms. We prove necessary and sufficient conditions for
f-biharmonicity in the general case and many particular cases. Some geometric estimates as
well as non-existence results are also obtained.

1. Introduction

Harmonic maps between two Riemannian manifolds (M™,¢g) and (N7, h) are critical points of
the energy functional

1
B(w) = 3 [ v,

where 1) is a map from M to N and dvg denotes the volume element of g. The Euler-Lagrange
equation associated with E(t) is given by 7(v) = 0, where 7(v0) = TraceVdiy is the tension
field of v, which vanishes precisely for harmonic maps.

In 1983, Eells and Lemaire [I2] suggested to consider biharmonic maps which are a natural
generalization of harmonic maps. A map ¥ is called biharmonic if it is a critical point of the
bi-energy functional

Bav) = 5 [ i)y,

on the space of smooth maps between two Riemannian manifolds. In [I7], Jiang studied the
first and second variation formulas of Es for which critical points are biharmonic maps. The
Euler-Lagrange equation associated with this bi-energy functional is 72(¢) = 0, where 72 (%)) is
the so-called bi-tension field given by

(1) [bitensiontield] T () = Ar(eh) — tr(RY (i, (1)) di).

Here, A is the rough Laplacian acting on the sections of ¥ "1(T'N) given by AV = tr(V3V)
for any V € I'(¢y~1(T'N)) and RY is the curvature tensor of the target manifold N defined as
RN(X,Y) = [VY,V{¥] = V[ y, for any X, Y € T(TN).

Over the past years, many geometers studied biharmonic submanifolds and obtained a great
variety of results in this domain (see [3, 5] [6], 3] 14, [T5] 16, 211, 23] 241 27, 28, 311, [32] [34], for
instance). If the map ¢ : (M, g) — (N, h) is an isometric immersion from a manifold (M, g) into
an ambient manifold (N, h) then M is called biharmonic submanifold of N. Since it is obvious
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2 J. ROTH AND A. UPADHYAY

that any harmonic map is a biharmonic map, we will call proper biharmonic submanifolds the
biharmonic submanifolds which are not harmonic, that is, minimal.

The main problem concerning biharmonic submanifold is the Chen Conjecture []:
“the only biharmonic submanifolds of Fuclidean spaces are the minimal ones.”

The Chen biharmonic conjecture is still an open problem, but lots of results on submanifolds of
Euclidean spaces provide affirmative partial solutions to the conjecture (see 7, [] and references
therein for an overview). On the other hand, the generalized Chen’s conjecture replacing
Euclidean spaces by Riemannian manifolds of non-positive sectional curvature turns out to be
false (see [20], 26] for counter-examples). Nevertheless, this generalized conjecture is true in
various situations and obtaining non-existence results in non-positive sectional curvature is still
an interesting question. In [32], the authors gave two new contexts where such results hold.

In [22], Lu gave a natural generalization of biharmonic maps and introduced f-biharmonic maps.
He studied the first variation and calculated the f-biharmonic map equation as well as the
equation for the f-biharmonic conformal maps between the same dimensional manfolds. Ou also
studied f-biharmonic map and f-biharmonic submanifolds in [29], where he proved that an f-
biharmonic map from a compact Riemannian manifold into a non-positively curved manifold
with constant f-bienergy density is a harmonic map; any f-biharmonic function on a compact
manifold is constant, and that the inversion about S™ for m > 3 are proper f-biharmonic
conformal diffeomorphisms. He also derived f-biharmonic submanifolds equation and proved that
a surface in a manifold (N™, h) is an f-biharmonic surface if and only if it can be biharmonically
conformally immersed into (N™, k). Further in [30], the author characterizes harmonic maps and
minimal submanifolds by using the concept of f-biharmonic maps and obtained an improved
equation for f-biharmonic hypersurfaces.

By definition, for a positive, well defined and C* differentiable function f : M — R,
f-biharmonic maps are critical points of the f-bienergy functional for maps ¢ : (M, g) — (N, h),
between Riemannian manifolds, i.e.,

Bay(w) =5 [ Sirw)Pde,

Lu also obtained the corresponding Euler-Lagrange equation for f-biharmonic maps, i.e.,

(2)\re1ationfbiharmonic \Tg’f(ll)) = fTQ(w) + (Af)T(w) + 2Vgradf7(w) =0.

An f-biharmonic map is called a proper f-biharmonic map if it is neither a harmonic nor a bi-
harmonic map. Also, we will call proper f-biharmonic submanifolds a f-biharmonic submanifols
which is neither minimal nor biharmonic.

Very recently, Karaca and Ozgiir [18] studied f-biharmonic submanifolds in products sapce
and extended the results obtained by the first author [31] for biharmonic submanifolds. In the
present paper, we continue to explore f-biharmonic submanifolds. Precisely, we focus here on
f-biharmonic submanifolds of both (generalized) complex space forms and generalized Sasakian
space forms. After a section of basics about generalized complex and Sasakian space forms as
well as their submanifolds. we study of f-biharmonic submanifolds. For both classes of ambient
spaces, we first give the general necessary and sufficient condition for submanifolds to be
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f-biharmonic. Then, we focus of many particular cases and obtain some non-existence results
for spaces with holomorphic (or ¢-holomorphic) sectional curvature bounded from above.

2. Preliminaries

2.1. Generalized complex space forms and their submanifolds. A Hermitian manifold
(N, g,J) with constant sectional holomorphic curvature 4c is called a complex space form. We
denote by M@ (4c) be the simply connected complex n-dimensional complex space form of
constant holomorphic sectional curvature 4c. The curvature tensor R of Mg (4c) is given by

RE(X,Y)Z = c{g(Y, Z)X — g(X, Z)Y + g(Z,IY)IX — g(Z, JX)JY +29(X,JY)JZ},

for X,Y,Z € T'(TMg(4c)), where < -,- > is the Riemannian metric on M@ (4c) and J is the
canonical almost complex structure of M (4c). The complex space from M@ (4c) is the complex
projective space CP™(4c), the complex Euclidean space C™ or the complex hyperbolic space
CH™(4c¢) according to ¢ > 0, c=0or ¢ < 0.

Now, we consider a natural generalization of complex space forms, namely the generalized
complex space forms. After defining them, we will give some basic information about generalized
complex space forms and their submanifolds. Generalized complex space forms form a particular
class of Hermitian manifolds which has not been intensively studied. In 1981, Tricerri and
Vanhecke [33] introduced the following generalization of the complex space forms (C™, CP™ and
CH™). Let (N?",g,J) be an almost Hermitian manifold. We denote the generalized curvature
tensors by R; and Ro which is defined as

Ri(X,Y)Z = g(Y, Z)X — g(X, 2)Y,
Ro(X,Y)Z =g(JY,Z)JX — g(JX,2)JY +29(JY,X)JZ, ¥V X,Y,Z € T(TN).
The manifold (N, g, J) is called generalized complex space form if its curvature tensor R has the
following form
R=aR; + /BR27

where o and § are smooth functions on N. The terminology comes obviously from the fact that
complex space forms satisfy this property with constants a = 3 .

In the same paper [33], Tricerri and Vanhecke showed that if N is of (real) dimension 2n > 6,
then (N, g, J) is a complex space form. They also showed that o+ 3 is necessarily constant. This
implies that a = 8 are constants in dimension 2n > 6, but this is not the case in dimension 4.
Hence, the notion of generalized complex space form is of interest only in dimension 4. Further,
Olszak [25] constructed examples in dimension 4 with @ and 8 non-constant. These examples
are obtained by conformal deformation of Bochner flat Kéhlerian manifolds of non constant
scalar curvature. Examples of Bochner flat K&hlerian manifolds can be found in [10]. From now
on, we will denote by N(«, 8) a (4-dimensional) generalized complex space form with curvature
given by R = aR; + SRy. Note that these spaces are Einstein, with constant scalar curvature
equal to 12(a + ). Of course, they are not Kéhlerian because if they were, they would be
complex space forms.

Now, let M be a submanifold of the (generalized) complex space form Mg (4c) or N(«, 8). The
almost complex structure J on Mg (4c) (or N(c, ()) induces the existence of four operators on
M, namely

j:TM —TM, k:TM — NM,l: NM — TM and m: NM — NM,
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defined for all X € TM and all £ € NM by

(3)[relationthst] JX =jX+EkX and JE=I1&+ mé.
Since J is an almost complex structure, it satisfies J?2 = —Id and for X,Y tangent to M (4c) (or

N(a, B)), we have g(JX,Y) = —g(X, JY). Then, we deduce that the operators j, k, [, m satisfy
the following relations

(4) 7relationi.1? j2X + kX = -X,
(5) ?relationi.2? m2€ + kl¢ = ¢,

(6) 7relationi.3? JIE+1Imé =0,

(7) ?7relation1.4? ki X +mkX =0,

(8) 7relationi.5? g(kX, &) = —g(X,1¢),

for all X € I'(T'M) and all £ € I'(NM). Moreover j and m are skew-symmetric.

2.2. Generalized Sasakian space forms and their submanifolds. Now, we give some
recalls about almost contact metric manifolds and generalized Sasakian space forms. For more
details, one can refer to ([I, 4, 35]) for instance. A Riemannian manifold M of odd dimension
is said almost contact if there exists globally over M , a vector field &, a 1-form 7 and a field of

(1,1)-tensor ¢ satisfying the following conditions:
(9) {7} n¢)=1 and ¢*=-Id+nQE.

Remark that this implies ¢¢ = 0 and n o ¢ = 0. The manifold M can be endowed with a
Riemannian metric g satisfying

(10) {7} 9(0X,¢Y) = g(X,Y) =n(X)n(Y) and n(X) = g(X,$),

for any vector fields X,Y tangent to M. Then, we say that (]\A/f ,G,&,m,¢) is an almost contact
metric manifold. Three class of this family are of particular interest, namely, the Sasakian,
Kenmotsu and cosymplectic manifolds. We will give some recalls about them.

First, we introduce the fundamental 2-form (also called Sasaki 2-form) € defined for
X, Y e T(TM) by
QX,Y)=9(X,9Y).
We consider also Ny, the Nijenhuis tensor defined by
Ny(X,Y) = [¢X, ¢Y] — ¢[¢X, Y] — 61X, 0Y] + ¢°[X, Y],
for any vector fields X,Y. An almost contact metric manifold is said normal if and only if the
Nijenhuis tensor N, satisfies
Ny +2dn® & =0.
An almost contact metric manifold is said Sasakian manifold if and only if it is normal and
dn = Q. This is equivalent to

(11) {7} (Vx9)Y =g(X,Y){ —n(Y)X, V X,Y € I(M).
It also implies that
(12) {7} Vx&=—¢(X).

An almost contact metric manifold is said Kenmotsu manifold if and only if dyp = 0 and d§2 =
2n A . Equivalently, this means

(13) {7} (Vx9)Y = —n(Y)¢X — g(X, dY)E,
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for any X and Y. Hence, we also have
(14) {7} Vx§=X—-n(X)E

Finally, an almost contact metric manifold is said cosymplectic manifold if and only if dn = 0
and d) = 0, or equivalently

(15) {7} V¢ =0,
and in this case, we have
(16) {7} VE=0.

The ¢-sectional curvature of an almost contact metric manifold is defined as the sectional
curvature on the 2-planes {X,¢X}. When the ¢-sectional curvature is constant, we say that
the manifold is a space form (Sasakian, Kenmotsu or cosymplectic in each of the three cases
above). It is well known that the ¢-sectional curvature determines entirely the curvature of
the manifold. When the ¢-sectional curvature is constant, the curvature tensor is expressed
explicitely. Let R}, R5 and R3 be the generalized curvature tensors defined by

(17) {7} RI(X,Y)Z =g(Y,2)X — g(X, Z)Y,

(18) {7y  RI(X,Y)Z =n(Xn(2)Y —n(Y)n(Z)X +g(X, Z)n(Y)§ — g(Y, Z)n(X)§
and
(19) {2} RYX,Y)Z = QUZ,Y)$X — QZ, X)oY +20(X,Y)¢Z.

For the three cases we are interested in, the curvature of a space form of constant ¢-sectional
curvature c is given by

o Sasaki: R* = <2 Ry 4 <71 R; + <L Rj.

o Kenmotsu: R* = <33Ry + <HL Ry 4 <L Ry,

e Cosymplectic: R* = Ry + ;R + { 3.

In the sequel, for more clarity, we will denote the Sasakian (resp. Kenmotsu, cosymplectic)
space form of constant ¢-sectional curvature ¢ by Mg(c) (resp. M, x(c), Mo(c)) These space
forms appear as particular cases of the so-called generalized Sasakian space forms, introduced by
Alegre, Blair and Carriazo in [I]. A generalized Sasakian space form, denoted by M(fl, f2, f3),
is a contact metric manifold with curvature tensor of the form

(20) \CurvatureGSasakian\ f1 R’f + f2R§ + f3R§7

where f1, fo and f3 are real functions on the manifold. The most simple examples of generalized
Sasakian space forms are the warped products of the real line by a complex space form or
a generalized complex space forms. Their conformal deformations as well as their so-called
D-homothetic deformations are also generalized Sasakian space forms (see [I]). Other examples
can be found in [2].

Now, let (M,g) be a submanifold of an almost contact metric manifold (M 1, G,6,m, D).
The field of tensors ¢ induces on M, the existence of the following four operators:

P.:TM —TM, N:TM — NM, t: NM — TM and s : NM — NM,
defined for any X € TM and v € NM. Now, we have

(21)[relationthst] pX = PX 4+ NX and ov=sv+ty,
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where PX and NX are tangential and normal components of ¢ X, respectively, whereas tv and
sv are the tangential and normal components of ¢v, respectively. A submanifold M is said
invariant (resp. anti-invariant) if N (resp. P) vanishes identically. In [19], Lotta shows that if
the vector field £ is normal to M, then M is anti-invariant.

3. f-Biharmonic submanifolds of generalized complex space forms
?7(sec31)?
At first, we will calculate necessary and sufficient condition of f-biharmonic submanifold of
generalized complex space forms and then we make a exposition about the results which could

characterize these type of submanifolds.
(thm1)

Theorem 3.1. Let MP, p < 4 be a submanifold of the generalized complex space form N(«, f3)
with second fundamental form B, shape operator A, mean curvature H and a positive C°-
differentiable function f on M. Then M is f-biharmonic submanifold of N(a, ) if and only if

the following two equations are satisfied

(1)

Af
—AYH 4 tr (B(-, Ag-)) — paH + 38kIH + 7H + 2V raan y H = 0,

2)
ggrad\H|2 —2Apggrad(In f) + 2tr (Ay.5(+)) + 6841H = 0.

Proof: It is a classic fact that the tension field of the isometric immersion 1 is given by

(22) (1) = trVedip = trB = pH.

Using equation in equation (T)), we have
(23) 72(¥) = pAH — tr (RN (dyp, pH)dp).

Moreover, we recall that, by some classical and straightforward computations, we have
AH = ggrad\H|2 +tr(B(, Ap)) + 2tr (Age () + AT H.

Reporting this into , we get

(24) ~AYH +tr (B(-, Ap-)) + ggrad|H\2 +2tr (Ao gz (+)) + 2tr (RN (-, H)").

Now, the curvature tensor of generalized complex space form, N(a, (), is given by

tr (R(-,H)-) = atr(Ry(-,H)")+ Btr (Rao(-, H)").

Let {e1,--- ,ep} be a local orthonormal frame of TM. Then, we have

p p
tr(R(,H)) =Y _ Ri(e;,H)ei+ 8 Ralei, H)e;
=1 =1

or

tr(R(-, H)) = OZZ [9(H,ei)e; — glei, e;)H]

p
+B8 [9(JH, e;)Je; — g(Jei,e;)JH + 29(JH, e;) Je;] .

i=1
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or,
(25) tr (R(- H)-) = a(~pH) + B(3jLH + 3kLH).
From equation 7 M is f-biharmonic if and only if

1) + AfT(W) + 2V ,7(¥) = 0,

which is equivalent to

A
(26) [fbiharmoniccondizfigy|+ prH + 2p(—Angad(1n f) + Vglrad(ln f)H) =0.

Now, using equations (24) and in equation and considering that jIH is tangent and
klH is normal, we get the statement of the theorem by identification of tangent and normal
parts. (Il

We can easily obtain by the same computations an analogous result for f-biharmonic

submanifolds of complex space forms M{ (4c). Namely, we have
(cori)
Corollary 3.2. Let M?, p < 2n, be a submanifold of the complex space form M (4c) of complex

dimension n and constant holomorphic sectional curvature 4c, with second fundamental form B,
shape operator A, mean curvature H and a positive C*°-differentiable function f on M. Then
M is f-biharmonic submanifold of M (4c) if and only if the following two equations are satisfied

1) Af
—AYH 4 tr (B(-, Ag-)) — pcH + 3cklH + 7H +2Vgraaan ) H = 0,

(2)
Zfzjgrad|H|2 —2Aggrad(In f) 4+ 2tr (A1 g () + 6¢jIH = 0.

Proof: For complex space forms the computations are essentially the same as for the generalized
complex space forms with the only differences that &« = § = ¢ and dimension is not necessarily
equal to 4. O

In the sequel, we will state many results for biharmonic subamnifolds of the generalized
complex space forms N(a, 3). They have of course analogue for the complex space forms but
for a sake of briefness, we do not write then since the results are the same with a = g = ¢.
Assuming particular cases such as hypersurfaces, Lagrangian or complex surfaces and curves of

generalized complex space form N (a, ), we have the following conclusion.
(cor2)
Corollary 3.3. Let MP, p < 4 be a submanifold of the generalized complex space form N(c«, ()

with second fundamental form B, shape operator A, mean curvature H and a positive C°-
differentiable function f on M.

(1) If M is a hypersurface then M is f-biharmonic if and only if

A
~ALH + TfH +2Vgran ) H + tr (B(-, Ap-)) = 3(a+ ) H =0,

and
;grad|H|2 — 2Augrad(in f) + 2t (Ag () = 0.
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(2) If M is a complex surface then M is f-biharmonic if and only if
Af
—AtH + 7H + 2V graa(n py H + tr (B(, Ag)) — 2aH =0,
and
grad|H|?* — 2Aggrad(n f) + 2tr (Ag1 4 (-)) = 0.
(3) If M is a Lagrangian surface then M is f-biharmonic if and only if

A

and
grad|H|?* — 2Aggrad(In f) + 2tr (Ag1 4 (-)) = 0.
(4) If M is a curve then M is f-biharmonic if and only if

A
_AlH + TfH + QVgLrad(lnf)H +tr (B(vAH)) —aH — SB(H + mzH) = Oa

and
1
§g1rad|H|2 —2Apggrad(In f) + 2tr (Ay5(+)) = 0.

Proof: The proof is a consequence of Theorem [3.1] using the facts that

) if M is a hypersurface, then m = 0 and so jIH =0, kjH =0 and klH = —H,
) if M is a complex surface then k =0 and [ = 0,

) if M is a Lagrangian surface, then j =0, m = 0,

) if M is a curve, then j = 0.

O

Remark 3.4. It is a well known fact that any complex submanifold of a Kdhler manifold is
necessarily minimal. But as mentioned above, the generalized space forms N(a, () are not
Kdhlerian unless there are the complex projective plane or the complex hyperbolic plane. Hence,

considering f-biharmonic surfaces into N(«, B) is of real interest, since they are not necessarily
minimal.

Similarly, if we assume mean curvature vector H as parallel vector then for curves and complex

or Lagranian surfaces, we obtain the following corollaries.
?(corlag)?

Corollary 3.5. Let M?, p < 4 be a submanifold of the generalized complex space form N(«, )
with second fundamental form B, shape operator A, mean curvature H and a positive C'°°-
differentiable function f on M.

(1) If M be a Lagrangian surface of N(«a, ) with parallel mean curvature then M is f-
biharmonic if and only if
tr(B(-, Au+)) = 2aH +38H — 5L H, and Apgradf = 0.
(2) If M be a complex surface of N(a, ) with parallel mean curvature then M is f-
biharmonic if and only if
tr (B(-,Ag-)) =2aH — %H and Aggradf =0.
(3) If M is a curve in N(a, ) with parallel mean curvature then M is f-biharmonic if and
only if
tr (B(-,Ap+)) = aH + 338(H + m*H) — %H, and Aggradf = 0.
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Proof: Since M has parallel mean curvature so that the terms A~H, V4 H, grad|H|?> and
tr(Ay.p.) vanish and we obtain immediately the result from the previous Corollary. ]
Further, for constant mean curvature hypersurfaces in N(«, 3), we have the following result.

(propB)
Proposition 3.6. (1) Let M3 be a hypersurface of the generalized complex space form N (o, 3)

with second fundamental form B, non zero constant mean curvature H and f a positive C*-
differentiable function on M. Then M is f biharmonic if and only if

A
|B|* = 3(a+ ) — Tf and Agradf =0
or equivalently, M is proper f-biharmonic if and only if the scalar curvature of M satisfies
Af

Scalys = 3(a + 3) + 9H? + 7 and Agradf =0.

(2) There exists no proper f-biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature.

Proof: For the first point, since M is a hypersurface, by Corollary [3:2] M is f-biharmonic if
and only if

—AYH + SLH 42V L H + e (B(, Ane)) = 3(a+ B)H =0,

3grad|H|? — 2Aygrad(In f) + 2tr (Ag1g(-)) = 0.
Since M has constant mean curvature, the above equation reduces to

tr(B(-, Au-)) = 3(a + B)H — 5L H,
Apgrad(ln f) = 0.
Using condition Ay = H A for hypersurfaces, we get
tr(B(.,AH(.))) - Htr(B(-,A(.))) — H|BP.

Reporting this result in first equation of the above condition and from the assumption that H
is a non-zero constant, we get the desired identity |B|? = 3(a + ) — %.
For the second equivalence, by the Gauss equation, we have
3
Scaly = Z g (RN (e, e5)e;j,€;) — |BI> +9H?,
i,j=1
where {e1, ez, €3} is a local orthonormal frame of M. From the expression of the curvature tensor
of N(a, B), we get
Scalys = 6(a + 3) — || B||* + 9H?.
Moreover, since grad(ln f) = %gradf and Ay = HA with H is a non-zero constant, then
Apggrad(In f) = 0 reduces to Agradf = 0.

Hence, we deduce that M is proper f-biharmonic if and only if |B|?> = 3(a + ) — (%) and
Agradf = 0, that is, if and only if Scaly; = 3(a + 3) + 9H? + % and Agradf = 0.
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Now, for the second point, if M is a hypersurface with constant mean curvature and
constant scalar curvature, then by the first point, if M is f-biharmonic then

A
Scalys = 3(a+ 3) + 9H? + Tf
As we have already mentioned, o 4+ 3 is constant, hence, since H and Scaly; are constant, then

21 is constant, that is, f is an eigenvalue of the Laplacian. But f is a positive function, so the

only possibility is that f is a positive constant and M is biharmonic. This concludes the proof
of the second point. O

Now, we give this proposition which give an estimate of the mean curvature for a f-biharmonic
Lagrangian surface.

(proplag)
Proposition 3.7. Let M? be a Lagrangian surface of the generalized complex space form N (v, 3)

with second fundamental form B, shape operator A, non-zero constant mean curvature H and a
positive C°-differentiable function f on M.

(1) Ifinfy, (2a + 35 — %) is non-positive then M is not f-biharmonic.
(2) Ifinfy, (2a + 36— %) 18 positive and M is proper f-biharmonic then

2a—|—3,8—Aff>

0<H|2<inf<
M 2

Proof: Assume that M is a f-biharmonic Lagrangian surface of N(«, ), considering third
assertion of Corollary we have

~AYH + SLH 4+ 2VL H 4+t (B(, Ap+)) — 2aH — 38H =0,

grad

grad|H|? — %Angadf +2tr (Ay2 () =0.

Hence, by taking the scalar product with H and taking the assumption that mean curvatutre
H #0, i.e., |H| is constant, from the first part of the above equation, we have

< AYHH> 2 <VL  HH>+ Ay - (% —%a— 36) < H,H>=0.
This equation implies that
A
~ (ot i) = (2a 95— 2L) 1P~ auP?,

where we have used that < V4 H, H >= 0 since |H| is constant. Now, with the help of the
Bochner formula, we get

af
f

Now, using Cauchy-Schwarz inequality, i.e., |Az|? > 2|H|* in the above equation, we have

(2a + 33 — ) |H|> = |Ag|* + |V H%

A
(27) ?inequality? <2a +38— ff) |H|?> > 2|H[* + |V H|* > 2|H|*.
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2a+3[37%
2

So, we have 0 < |H|?* < infy, because |H| is a non-zero constant. This is only

possible if the function 2« + 38 — % has a positive infimum. This concludes the proof. O

Now, we have similar result for complex surfaces.

Proposition 3.8. Let v : M? — N(«, 3) be a complex surface of generalized complex space form
N(a, B) with second fundamental form B, shape operator A, mean curvature H and a positive
C>-differentiable function f on M.

(1) Ifinfy, (2a — %) s mon-positive then M is not f-biharmonic.

(2) Ifinfy, (Qa — %) is positive and M is proper f-biharmonic then

20 — AL
0 < |H|*> < inf <f>
M 2

Proof: Let M be a f-biharmonic complex surface of N(a, ) with non-zero constant mean
curvature. Then, by the second assertion of Corollary we have

~AYH + %Hﬁ-tr(B(',AH')) —2aH =0, and Aggradf =0.

Replacing 2a + 33 by 2« in the proof of Proposition [3.7, we have the required result. ([

Remark 3.9. Note that we can obtain analogues of all the results of this section for submanifolds
of the complex space forms M (4c) directly form Corollary . We do not write them here for
briefness. However, there is no analogue for complex submanifolds since any complex submanifold
of Mg (4c) in fact minimal.

4. f-BIHARMONIC SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE FORMS

Now, we consider f-biharmonic submanifolds of generalized Sasakian space forms and give the
following theorm for its characterization.

Theorem 4.1. Let MP be a submanifold of a generalized Sasakian space form M(fl,fg,fg),
with second fundamental form B, shape operator A, mean curvature H and a positive C°-

differentiable function f on M. Then M is f-biharmonic submanifold of M(fl, f2, f3) if and
only if the following two equations are satisfied

A
—~ATH +trB(-, Ag-) + TfH + 2V graan ) H = pLH — fo|¢TPH — pfon(H)E — 3fsNsH

and

ggrad|H|2 4 2trAgi g (-) — 2Aggrad(In f) = —2fo(p — 1)n(H)E" — 6f3PsH.

Proof: At first, we calculate the curvature tensor of generalized Sasakian space form
M(f1, f2, f3). From equation , we have
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R(X,Y)Z = [ARI(X,)Y)Z+ oRI(X,Y)Z + f3R5(X,Y)Z
= f{gY,2)X —g(X,2)Y}
+  L{n(X)n(2)Y —n(Y)n(2)X + g(X, Z)n(Y)§ — (Y, Z)n(X)E}
+  f3{9(X,0Z)Y — g(Y,92)9X +25(X, Y )9 Z}.

Let us consider {e1, €2, ...,e,} an orthogonal basis of the tangent space of M. Then, we have

R*(ei,H)ei = fi{g(H, ei)ei — glei,ei)H} + fo{n(ei)n(ei) H —n(H)n(e:)ei + g(ei, e;)n(H)E}
+  f3{g(es, pei)doH — G(H, pei)de; + 2G(es, oH ) e, }.

Taking the trace and using in the above equation, we get

tr(R*(H)-) = —fipH + fo Z{n(ei)QH —n(H)n(ei)e; + les*n(H)EY
+ f3 Z{tr(P)qu — g(H, Ne;)pe; +2g(e;, sH)pe; }

= —fipH + f{|¢TPH — n(H)ET + pn(H)E}
+ f3 ) _{tr(P)sH +tr(P)tH — §(H, Ne;)Pe; — §(H, Ne;)Ne;

+ 2g(e;,sH)Pe; + 2g(e;, sH)Ne; }.
It implies that
tr(R*(H)-) = —fipH+ fo{|¢"PH —n(H)ET + pn(H)E} + 3f3(PsH + NsH),
by considering the anti-symmetry property of ¢, tr(P) =0 and §(H, Ne;) = —g(tH,e;).

Now, from value of tr (R*(~7 H) - ) and equations 7 , we have result of the theorem by
considering the tangential and normal parts. O

Now, we have the following corollary if we assume different particular cases in Theorem [4.1

(cor2) N
Corollary 4.2. Let MP be a submanifold of a generalized Sasakian space form M(f1, f2, f3).

(1) If M is invariant then M is f-biharmonic if and only if
Af

—~ATH +trB(-, Ag-) + 7H + 2V ran p H = pf1H — f2l¢TPH — pfan(H)E

and
ggrad|H|2 4 2trAgi g (-) — 2Aggrad(In f) = —2fo(p — 1)n(H)E" — 6f3PsH.

(2) If M is anti-invariant then M is f-biharmonic if and only if

A
—ATH + trB(-, Ag-) + TfH + QV;ad(lnf)H =pfiH

—f2l€TPH — pfon(H)E — 3f3NsH
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and
ggrad|H|2 + 2trAgi g (-) — 2Apgrad(In f) = —2fo(p — Dn(H)E "

(3) If &€ is normal to M then M is f-biharmonic if and only if

A
—AtH +trB(-, Ay-) + TfH + 2V§;}ad(1nf)H =pfiH —pfon(H)E — 3fsNsH

and
ggrad|H|2 +2trAve g () — 2Aggrad(ln f) = 0.

(4) If € is tangent to M then M is f-biharmonic if and only if

A
~AYH +trB(-, Ag-) + TfH + 2vé_rad(lnf)H =pfill — foH —3f3NsH

and
ggrad\H|2 + 2trAgi g (-) — 2Aggrad(In f) = —6f3PsH.

(5) If M is a hypersurface then M is f-biharmonic if and only if

A
—AYH + B, A + TfH +2VE s H = @nfi+3f3)H

—f2l€TPH — (2nfs + 3f5)n(H)ES
and

ngrad|H|* 4+ 2trAg. g (-) — 2Aggrad(In f) = —(2(2n — 1) f1 + 6 f3)n(H)ET.

Proof. The proof is a direct consequence of Theorem using the following facts.

(1) If M is invariant then P = 0.

(2) If M is anti-invariant then N = 0.

(3) If € is normal then n(gradf) = 0 and M is anti-invariant which implies P = 0.
(4) If € is tangent then n(H) = 0.

5) If M is a hypersurface then sH = 0.

(

Analogously to the case of generalized complex space forms (Proposition [3.6), we can
obtain some curvature properties in some special cases by using characterizations of f-biharmonic

submanifolds of generalized Sasakian space forms.
(propscal)
Proposition 4.3. (1) Let M?" be a hypersurface of generalized Sasakian space form

M(fl,fg,fg) with non zero constant mean curvature H and & is tangent to M. Then M is
proper f-biharmonic if and only if

IBI?=2nf1 — fo+3fs — 5, and Agradf =0,
or equivalently if and only if

Scalpyy =2n(2n —2)fi+ (4n—1)fa — (2n —4)f3 + (2n — 1) H? + %H and Agradf = 0.

(2) There exists no proper f-biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature so that & is tangent.
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Proof. Let M be a f-biharmonic hypersurface of M (f1, f2, f3) with non zero constant mean
curvature and ¢ tangent to M. Then, from Corollary [£.2] we have

~AYH +0B(-, Ap) + 5L H + 2V} H

grad(ln f))
= (pfr +3f3)H — fol¢TPH — (2nfo + 3fs)n(H)ES,

ngrad|H|? + 2trAy . gy (-) — 2Aggrad(In f) = 0.
Now, as per assumption, £ is tangent to M which gives n(H) = n(v) = 0. Therefore, we have
*v = —v+ )€ = —v.
On the other hand, we have
v = ¢(sv+tv)
= Psv+ Nsv+ stv + t2v.

Hence, we get

(28) [minusnu| — v = Psv+ Nsv + stv + t°v.

Moreover, since (¢v,v) = Q(v,v) = 0, we have that ¢v is tangent, i.e., tv = 0. Thus, Equation

becomes

—v = Psv + Nsv,

and so Ps = 0 and Ns = —Id by identification of tangential and normal parts. Using these
results in the above f-biharmonic condition for the hypersurfaces of generalized Sasakian space
forms, we have

rB(-, Ay-) = (2nfr +3fs)H — fo|¢ T2 H — £LH,

Apggrad(In f) = 0.

Hence, the second equation is trivial and the first becomes

A
tI‘B(-,AH') = 2nf1H - ng + 3f3H - TfH,
or equivalently
A
B =2nfi — o+ 352 - .

since trB(-, Ag+) = |B|?H and H is a non zero constant.

Similarly, using Gauss formula for second part, we have

Scaly = Zg ezaej ejael) |B|27PH2

= Zfl{g ejae] 67561) g(eivej) g\€j, € }+Zf2{7l 61 ) (6J7€7)

n(ej)n(ej)g(ei,ei)+§(€z‘>€g) (e;)3(& i) — (egvea) (€:)g(&, €)'}
> falglen dey)ilde;, e) — Glej, dey)g(des e:) + 20(e, de;)g(de;, e)}

,J

— B —pH*=2n(2n—1)f1 +2(2n — 1) fo — (2n — 1) f3 — |B|> — pH?.

+
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Using the value of |B|? obtain in the first part of the proof, we get the required result, that is,

A
Scalpr = 2n(2n — 2)f1 + (4n — 1) fo — (2n — 4) f3 + (2n — 1)H? + TfH
Moreover, since grad(ln f) = %grad fand Ay = HA with H is a positive constant, the equation
Apgrad(In f) = 0 reduces to Agradf = 0. This concludes the proof. O

Now, from this proposition, we can prove the following non-existence result.

Corollary 4.4. Let M?" be a constant mean curvature hypersurface of generalized Sasakian
space  form M(fl,fg,fg) with & tangent. If the functions f1, fo, f3 satisfy the inequality
2nf1 — fo+3f3 < @ on M then M is not biharmonic.

In particular, there exists mo proper f-biharmonic CMC hypersurface with & tangent and f
satisfying

o ¢< 2nﬁ_2 [% — 82221 in a Sasakian space form MZIHE).
e ¢ 27512 [% + 82221 in o Kenmotsu space form MZH(@).
e ¢< 2n‘i2% in a cosymplectic space form Mg"“(&).

Proof: As per assumption, M is a hypersurface of M(fl, f2, f3) with non zero constant mean
curvature H and £ tangent to M. From Proposition [£:3] M is f-biharmonic if and only if its
second fundamental form B satisfies |B|? = 2nf1 — fo + 3f3 — %. In other words, this is not
possible if

A
(29) 7condf1£2£37 2nfi — fa+3f3 < Tf

Now, f; = % and fo = f3 = % if M(fh f2, f3) is a Sasakian space form where ¢ is ¢-sectional
curvature. Therefore, th~e inequality 2n f; - fo+3fs < % reduces ~to ¢ < ﬁ[% _ %].
Similarly, we have f; = CZS and fo = f3 = le'l (resp. f1 = f2 = f3 = §) for the Kenmotsu (resp.
cosymplectic) case and the inequality 2nf; — fo + 3f3 < % reduces to ¢ < 27;:- 5 [% 4 %}

< A
(resp. ¢ < ﬁ%) O

Now, we have the following proposition analogous to complex case.

Theorem 4.5. Let M7 be a submanifold of Sasakian (Kenmotsu or cosymplectic) space form

Mg"“(é) (resp. Mfg”l(é) or Mgﬂ(é)) with constant mean curvature H so that & and ¢H are
tangent. Further, we consider F(f,q,¢) the function defined on M by

2)¢ 3q—2 A AP+l ~
(e G ST for BE(0)

- A & — T ~
F(faqvc):qfl_f2+3f3_7f: %_%_% fOT Mﬁ“@)a
(qzz)& - % for ]Tjgrl(é).

Then we have the following observations.

(1) If i]I\14f F(f,q,¢) is non-positive then M is not f-biharmonic.
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(2) If 111\14f F(f,q,¢) is positive and M is proper f-biharmonic then

0 < [HP < ~inf F(f,,)

Q| =

Proof: As M is proper f-biharmonic submanifold with constant mean curvature H and & tangent
to M, so we get form Corollary [£.2] that

—AYH + 0B( Ap) + 3V H+ 55 H = of1 H — foH — 3f3NtH,

2trAgy1 g (+) — 2Aggrad(In f) = —6f3 PtH.

Now, considering ¢H is tangent implies that sH = 0. Again applying ¢ gives that ¢’H =
PtH + NtH. But from ¢?H = —H + n(H)¢ and € is tangent, we have ¢>H = —H. Therefore,
comparing tangential and normal parts, we get PtH = 0 and NtH = —H. Using these facts in
the above equation, we get

—ATH 4+ tB(, Ap) = af1 H — foH +3fsH — 5LH,

2trAv g (-) — 2Apggrad(ln f) = 0.

Now, considering v as an real eigenvalue of the eigenfunction f corresponding to Laplacian

operator A, i.e., % = v, from first equation, we have

—ATH +trB(-,Ag-) = qfiH — foH +3f3sH —vH
= F(f,q,0)H.

Taking scalar product by H, we get
—(AYH, H) + (trB(, An-), H) = F(f,q,8)|H|*.

Using the facts (trB(-, Ag-), H) = |Ag|? |H| is a constant and the Bochner formula, i.e.,
1A|H|? = (A+H,H) — [V-H|? in the above equation, we have

[Aul* + |VEH? = F(f,q,0)[H.
Now, this equation reduces to
F(f,q,0)|H]> = [Au|* + |V H|* > q|H* + |V H|* > ¢|H|",
by considering the Cauchy-Schwarz inequality |Ag|? > %tr(A m) = q/H|*. Tt implies that
F(f,q,¢) > qHJ?,
as |H| is a positive constant. This proves the two assertions of the theorem. O

Now, we have the analogous result replacing the assumption that ¢H is tangent by ¢H
is normal. Namely, we have:

Proposition 4.6. Let v : M? — Mg“(&) (resp. ]\7}'}“(5) or Mgﬂ(&)) be a submanifold of
Sasakian (Kenmotsu or cosymplectic) space form with constant mean curvature H so that & is
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tangent and ¢H is normal. Further, we consider F(f,q,¢) the function defined on M by

(q—41)c + (3QZ‘1) _Af fO?" Mngl(E),

f
N Af —1)e Y RN
G(vaaC):(Jfl_fQ_T: %_%_% fOT Mf(-i_l(c)a
7(‘1741)5 — % for Mg+l(5).

Then we have the following observations.
(1) If i?/[f G(f,q,¢) is non-positive then M is not f-biharmonic.

(2) If i]I\l/[f G(f,q,¢) is positive and M is proper f-biharmonic then
1
2< i g).
0< |H| = ql}\l/[fG(f7QaC)

Proof: Now, in this case, M is proper f-biharmonic submanifold with £ is tangent and ¢H is
normal. Normality of ¢H implies that sH = 0. Therefore, from Corollary we have

~A“H 4+ trB(,Ap-) = qf1H— f,H
= G(f,q,0)H.

Similarly, as in the previous theorem, taking the scalar product by H and using the Bochner
formula and then with the help of the Cauchy-Schwarz inequality, we get

G(f,q,¢)|H> = |Aul* + |V H|* > q|H> + |V H|* > q|H|*.

It easily provides the inequality G(f,q,¢) = q|H|?, since |H| is a positive constant. We get
0<|HI?< %infM G(f,q,¢), which concludes the proof. O
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