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f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS OF
GENERALIZED SPACE FORMS

JULIEN ROTH AND ABHITOSH UPADHYAY

ABSTRACT. We study f-biharmonic and bi-f-harmonic submanifolds in both generalized
complex and Sasakian space forms. We prove necessary and sufficient condition for
f-biharmonicity and bi-f-harmonicity in the general case and many particular cases. Some
non-existence results are also obtained.

1. Introduction

Harmonic maps between two Riemannian manifolds (M™, g) and (N", h) are critical points of
the energy functional

1
B(w) = 3 [ 1w,

where 1) is a map from M to N and dvg denotes the volume element of g. The Euler-Lagrange
equation of E(v) is given by 7(¢)) = TraceVdy = 0, where 7(1)) is the tension field of 1, which
vanishes precisely for harmonic maps.

In 1983, J. Eells and L. Lemaire [13] suggested to consider the problems associated to biharmonic
maps which are a natural generalization of harmonic maps. A map v is called biharmonic if it
is a critical point of the bi-energy functional

Bav) = 5 [ i)y,

on the space of smooth maps between two Riemannian manifolds. In [I8], G.Y. Jiang studied the
first and second variation formulas of E5 for which critical points are called biharmonic maps.
The Euler-Lagrange equation associated with this bi-energy functional is 75(¢)) = 0, where 75()
is the so-called bi-tension field given by

(1) T2(¢) = AT(¥) — tr (RN (do, 7(4))dip).
Here, A is the rough Laplacian acting on the sections of ¥ ~1(T'N) given by AV = tr(V3V)

for any V € I'(¢y"1(T'N)) and RY is the curvature tensor of the target manifold N defined as
RN(X,Y) = [VY, V{] = V[ y, for any X, Y € T(TN).

Over the past years, many geometers studied biharmonic submanifolds and obtained a great
variety of results in this domain (see [3, [6] [7, 14l 15, [16, 17, 211, 23] [24] 28] 29, [32] [33] [35], for
instance). If the map ¢ : (M, g) — (N, h) is an isometric immersion from a manifold (M, g) into
an ambient manifold (N, h) then M is called biharmonic submanifold of N. Since, it is obvious
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2 J. ROTH AND A. UPADHYAY

that any harmonic map is a biharmonic map, we will call proper biharmonic submanifolds the
biharmonic submanifolds which are not harmonic, that is, minimal.

The main problem concerning biharmonic submanifold is the Chen’s Conjecture [9]:

“Biharmonic submanifolds of Fuclidean spaces are the only submanifolds which
are minimal ones.”

The Chen’s biharmonic conjecture is still an open problem, but lots of results on submanifolds of
Euclidean spaces provide affirmative partial solutions to the conjecture (see [8,[10] and references
therein for an overview). On the other hand, the generalized Chen’s conjecture replacing
Euclidean spaces by Riemannian manifolds of non-positive sectional curvature turns out to be
false (see [20], 27] for counter-examples). Nevertheless, this generalized conjecture is true in
various situations and obtaining non-existence results in non-positive sectional curvature is still
an interesting question. In [33], authors gave two new contexts where such results hold.

In [22], Lu gave a natural generalization of biharmonic maps and introduced f-biharmonic maps.
He studied the first variation and calculated the f-biharmonic map equation as well as the
equation for the f-biharmonic conformal maps between the same dimensional manfolds. Ou also
studied f-biharmonic map and f-biharmonic submanifolds in [30], where he proved that an f-
biharmonic map from a compact Riemannian manifold into a non-positively curved manifold
with constant f-bienergy density is a harmonic map; any f-biharmonic function on a compact
manifold is constant, and that the inversion about S™ for m > 3 are proper f-biharmonic
conformal diffeomorphisms. He also derived f-biharmonic submanifolds equation and proved that
a surface in a manifold (N™, h) is an f-biharmonic surface if and only if it can be biharmonically
conformally immersed into (N, k). Further in [31], author characterize harmonic maps and
minimal submanifolds by using the concept of f-biharmonic maps and obtained an improved
equation for f-biharmonic hypersurfaces.

By definition, for a positive, well defined and C* differentiable function f : M — R,
f-biharmonic maps are critical points of the f-bienergy functional for maps ¢ : (M, g) — (N, h),
between Riemannian manifolds, i.e.,

1
Eas0) = [ fir(w)Pds,
M
Lu also obtained the corresponding Euler-Lagrange equation for f-biharmonic maps, i.e.,

(2) a0 () = fra(¥) + (Af)T (W) + 2V, 7(¥) = 0.

An f-biharmonic map is called a proper f-biharmonic map if it is neither a harmonic nor a bi-
harmonic map. Also, we will call proper f-biharmonic submanifolds a f-biharmonic submanifols
which is neither minimal nor biharmonic.

In [25], the authors introduce another generalization of harmonic and biharmonic maps,
namely, the f-harmonic and bi-f-harmonic maps. Given two Riemannian manifolds (M™, g)
and (N™, h) and f a smooth positive function over M, they call bi-f-harmonic maps the
critical points of the bi- f-energy functional for maps ¢ : (M, g) — (N, h), between Riemannian
manifolds:

1
Byw) =5 [ 5190,
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The Euler-Lagrange equation is 7¢(¢) = 0, where 77 is the f-tension field defined by
T (¥) = fT(¢¥) + dip(gradf).

Hence, the natural notion to consider is the bi- f-harmonicity given by the bi- f-energy functional

E3() = /M 7y () P,

Critical points of this functional are called bi-f-harmonic maps and are characterize by the
following Euler-Lagrange equation

(3) T3 (W) = TV (75(9)) = Vigaay 77 (¥) =0,
where J¥ is the jacobi operator of the map defined by

JV(X) = ~[TryVYVYX — VL, X — RN (d, X)dip).

Obviously, f-harmonic maps are bi-f-harmonic maps, hence, we will call proper f-biharmonic
map a f-biharmonic map which is not f-harmonic. However, we want to point out that there is
no link between the notion of f-biharmonic and bi- f-harmonic maps. In particular, there is no
reason for a f-harmonic maps to bi f-biharmonic.

In the present paper, we will focus here on f-biharmonic submanifolds and bi-f-harmonic
submanifolds of both (generalized) complex space forms and generalized Sasakian space forms.
The paper is organized as follows:

In Section [2| we recall the basics of genaralized complex and Sasakian space forms as well
as their submanifolds. Section [3| is devoted to the study of f-biharmonic submanifolds. For
both classes of ambient spaces, we first give the general necessary and sufficient condition for
submanifolds to be f-biharmonic. Then, we focus of many particular cases and obtain some
non-existence results. Finally, Section [4 is devoted to bi-f-harmonic submanifolds. At first,
since the notion of bi-f-harmonic submanifold almost has not been studied, we give a general
characterization of bi-f-harmonic submanifold in any ambient space. Then, we apply this
general result to the case of generalized complex and Sasakian space forms.

2. Preliminaries

2.1. Generalized complex space forms and their submanifolds. A Hermitian manifold
(N, g,J) with constant sectional holomorphic curvature 4c is called a complex space form. We
denote by Mg (4c) be the simply connected complex n-dimensional complex space form of
constant holomorphic sectional curvature 4c. The curvature tensor R of M{ (4c) is given by

RE(X,Y)Z = c{g(Y, 2)X — g(X, 2)Y + g(Z,JY)JX — g(Z,JX)JY +29(X,JY)JZ},

for X,Y,Z € T'(TMg(4c)), where < -,- > is the Riemannian metric on M@ (4c) and J is the
almost complex structure of Mg (4c). The complex space from Mg (4c) is the complex projective
space CP™(4c), the complex Euclidean space C™ or the complex hyperbolic space CH™(4c)
according toc > 0,c=0or ¢ < 0.

Now, we consider a natural generalization of complex space forms, namely the generalized
complex space forms. After defining them, we will give some basic information about generalized
complex space forms and their submanifolds. Generalized complex space forms form a particular
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class of Hermitian manifolds which has not been intensively studied. In 1981, Tricelli and
Vanhecke [34] introduced the following generalization of the complex space forms (C™, CP™ and
CH™). Let (N?",g,J) be an almost Hermitian manifold. We denote the generalized curvature
tensors by R; and Ro which is defined as

Ri(X.Y)Z = g(Y. 2)X — g(X, Z)Y,
Ry(X,Y)Z = g(JY, Z)JX — g(JX,Z)JY +29(JY,X)JZ, ¥ X,Y,Z € I(TN).

The manifold (N, g, J) is called generalized complex space form if its curvature tensor R has the
following form

R=aR; + 6R27

where o and 8 are smooth functions on N. The terminology comes obviously from the fact that
complex space forms satisfy this property with constants a = 3 .

In the same paper [34], Tricelli and Vanhecke showed that if N is of (real) dimension 2n > 6,
then (N, g, J) is a complex space form. They also showed that o+ 3 is necessarily constant. This
implies that o = 8 are constants in dimension 2n > 6, but this is not the case in dimension 4.
Hence, the notion of generalized complex space form is of interest only in dimension 4. Further,
Olszak [26] constructed examples in dimension 4 with « and S non-constant. These examples
are obtained by conformal deformation of Bochner flat Kéhlerian manifolds of non constant
scalar curvature. Examples of Bochner flat Kéhlerian manifolds can be found in [11]. From now
on, we will denote by N(«, 8) a (4-dimensional) generalized complex space form with curvature
given by R = aR; + BRs. Note that these spaces are Einstein, with constant scalar curvature
equal to 12(av + B). Of course, they are not Kéhlerian because if they were, they would be
complex space forms.

Now, let M be a submanifold of the (generalized) complex space form M (4c) or N(«, 3). The
almost complex structure J on Mg (4c) (or N(e, §)) induces the existence of four operators on
M, namely

j:TM —TM, k:TM — NM,l: NM — TM and m: NM — NM,
defined for all X € TM and all £ € NM by
(4) JX =jX+kX and JE=I1&+mé.

Since J is an almost complex structure, it satisfies J? = —Id and for X, Y tangent to M (4c) (or
N(a, ), we have g(JX,Y) = —g(X, JY). Then, we deduce that the operators j, k, I, m satisfy
the following relations

(5) P2X + kX = X,
(6) m2¢ + ki€ = —¢,

(7) GlE+1Imé =0,

(8) kjiX +mkX =0,

(9) 9(kX,§) = —g(X,1E),

for all X € T(T'M) and all £ € I'(NM). Moreover j and m are skew-symmetric.

2.2. Generalized Sasakian space forms and their submanifolds. Now, we give some
recalls about almost contact metric manifolds and generalized Sasakian space forms. For more
details, one can refer to ([Il 5], [36]) for instance. A Riemannian manifold M of odd dimension



f-BIHARMONIC AND BI-f-HARMONIC SUBMANIFOLDS OF GENERALIZED SPACE FORMS 5

is said almost contact if there exists globally over M , a vector field &, a 1-form 7 and a field of
(1,1)-tensor ¢ satisfying the following conditions:

(10) nE)=1 and ¢*=-Id+n®E.

Remark that this implies ¢¢ = 0 and 7 o ¢ = 0. The manifold M can be endowed with a
Riemannian metric g satisfying

(11) 9(0X,¢Y) = g(X,Y) =n(X)n(Y) and n(X) = g(X,¢),

for any vector fields X,Y tangent to M. Then, we say that (M ,g,&,m, $) is an almost contact
metric manifold. Three class of this family are of particular interest, namely, the Sasakian,
Kenmotsu and cosymplectic manifolds. We will give some recalls about them.

First, we introduce the fundamental 2-form (also called Sasaki 2-form) € defined for
X, Y eI'(TM) by

QX,Y) = g(X, oY),
We consider also N, the Nijenhuis tensor defined by

for any vector fields X,Y. An almost contact metric manifold is said normal if and only if the
Nijenhuis tensor Ny satisfies

Ng +2dn®&=0.
An almost contact metric manifold is said Sasakian manifold if and only if it is normal and
dn = Q. This is equivalent to

(12) (Vx9)Y =g(X,Y){ —n(Y)X, V X, Y € I'(M).
It also implies that
(13) Vx€=—¢(X).

An almost contact metric manifold is said Kenmotsu manifold if and only if dyp = 0 and df) =
2n A Q. Equivalently, this means

(14) (Vx@)Y = —n(Y)oX — g(X, 9Y)E,
for any X and Y. Hence, we also have
(15) Vx§ =X —n(X)E

Finally, an almost contact metric manifold is said cosymplectic manifold if and only if dn = 0
and df) = 0, or equivalently

(16) V¢ =0,
and in this case, we have
(17) VE =0.

The ¢-sectional curvature of an almost contact metric manifold is defined as the sectional
curvature on the 2-planes {X,¢X}. When the ¢-sectional curvature is constant, we say that
the manifold is a space form (Sasakian, Kenmotsu or cosymplectic in each of the three cases
above). It is well known that the ¢-sectional curvature determines entirely the curvature of
the manifold. When the ¢-sectional curvature is constant, the curvature tensor is expressed
explicitely. Let R}, R5 and Rj be the generalized curvature tensors defined by

(18) Ri(X,Y)Z =§(Y,Z)X ~ §(X, 2)Y,
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(19) Ry(X,Y)Z =n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)§
and
(20) Ry X, Y)Z =QZ,Y)pX — QUZ, X)pY +2Q(X,Y)dZ.

For the three cases we are interested in, the curvature of a space form of constant ¢-sectional
curvature c is given by

o Sasaki: R* = “2 Ry + ¢1 Ry 4 LRy,

e Kenmotsu: R* = <2 Ry + <L Ry 4+ <L RS,

e Cosymplectic: R* = Ry + ;R + { 3.

In the sequel, for more clarity, we will denote the Sasakian (resp. Kenmotsu, cosymplectic)
space form of constant ¢-sectional curvature ¢ by Ms(c) (resp. M, x(c), ]\70(0)) These space
forms appear as particular cases of the so-called generalized Sasakian space forms, introduced by
Alegre, Blair and Carriazo in [I]. A generalized Sasakian space form, denoted by M(fl, f25 f3),
is a contact metric manifold with curvature tensor of the form

(21) [iR + f2R5 + f3R3,

where f1, fo and f3 are real functions on the manifold. The most simple examples of generalized
Sasakian space forms are the warped products of the real line by a complex space form or
a generalized complex space forms. Their conformal deformations as well as their so-called
D-homothetic deformations are also generalized Sasakian space forms (see [I]). Other examples
can be found in [2].

Now, let (M,g) be a submanifold of an almost contact metric manifold (]Téf ,G,6,m, B).
The field of tensors ¢ induces on M, the existence of the following four operators:

P:TM —TM, N:TM — NM, t : NM — TM and s : NM — NM,
defined for any X € TM and v € NM. Now, we have
(22) ¢X =PX +NX and o¢v=sv+ty,

where PX and NX are tangential and normal components of ¢ X, respectively, whereas tv and
sv are the tangential and normal components of ¢v, respectively. A submanifold M is said
invariant (resp. anti-invariant) if N (resp. P) vanishes identically. In [I9], Lotta shows that if
the vector field £ is normal to M, then M is anti-invariant.

3. f-BIHARMONIC SUBMANIFOLDS

3.1. f-Biharmonic submanifolds of generalized complex space forms. At first, we will
calculate necessary and sufficient condition of f-biharmonic submanifold of generalized complex
space forms and then we make a exposition about the results which could characterize these
type of submanifolds.

Theorem 3.1. Let MP, p < 4 be a submanifold of the generalized complex space form N(«, 3)
with second fundamental form B, shape operator A, mean curvature H and a positive C™-
differentiable function f on M. Then M is f-biharmonic submanifold of N(«, 8) if and only if
the following two equations are satisfied
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(1)

A
CALH 4t (B( Aps)) — pal + 386H + 2L OV i H =0,

f
(2)
ggrad\HF — 2Apgrad(In f) + 2tr (Ag () + 6851H = 0.

Proof: It is a classic fact that the tension field of the isometric immersion v is given by

(23) T(¢) = trVdy = trB = pH.

Using equation in equation , we have

(24) 2(¢) = pAH — tr(R™ (dy, pH)d).

Moreover, we recall that, by some classical and straightforward computations, we have
AH = ggrad\HF 0 (B(-, Ag)) + 2tr (Age g (1) + ALH.

Reporting this into , we get

25) 7o) = —AYH 4 tr (B(, An-)) + ggrad|H\2 +2tr (Ags () + 2tr (RN (-, H)) .

Now, the curvature tensor of generalized complex space form, N(a, (), is given by

tI‘(R(,H)) = OétI‘(Rl(,H))—‘rﬁtI'(Rg(,H))
Let {e1,--- ,ep} be a local orthonormal frame of TM. Then, we have
P P
tr(R(-,H):) =Y Ri(e;, H)e; + B Rolei, H)e;
i=1 i=1
or,
P
tr (R(-, H)-) = @Z [9(H,ei)e; — glei,ei)H]
i=1
p
+8Y _[9(JH, e:)Jei — g(Jei, ei) JH + 29(JH, e;) Jei] .
i=1
or,
(26) tr (R(-, H)-) = a(—pH) + B(3jlH + 3kIH).

From equation , M is f-biharmonic if and only if

Fra(®) + AfT(W) + 2V 0,7(¥) = 0,
which is equivalent to

A
(27) T2(¢)) +P7fH +2p(—Apggrad(In f) + Viaaan ) H) = 0.
Now, using equations and in equation and considering that jIH is tangent and
klH is normal, we get the statement of the theorem by identification of tangent and normal
parts. ([
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Corollary 3.2. Let M?, p < 2n, be a submanifold of the complex space form M (4c) of complex
dimension n and constant holomorphic sectional curvature 4c, with second fundamental form B,
shape operator A, mean curvature H and a positive C*°-differentiable function f on M. Then
M is f-biharmonic submanifold of M (4c) if and only if the following two equations are satisfied

(1)
Af
~AYH +tr (B(-, Ap-)) — pcH + 3cklH + 71{ +2Vgraaan p H = 0,

2)

p

2gmd|H|2 —2Apggrad(In f) + 2tr (Av1 5 (+)) + 6¢jlH = 0.

Proof: For complex space forms the computations are essentially the same as for the generalized
complex space forms with the only differences that &« = § = ¢ and dimension is not necessarily
equal to 4. O

In the sequel, we will state many results for biharmonic subamnifolds of the generalized
complex space forms N(«,3). They have of course analogue for the complex space forms but
for a sake of briefness, we do not write then since the results are the same with a = g = c.
Assuming particular cases such as hypersurfaces, Lagrangian or complex surfaces and curves of
generalized complex space form N (a, 8), we have the following conclusion.

Corollary 3.3. Let M?, p < 4 be a submanifold of the generalized complex space form N(«, )
with second fundamental form B, shape operator A, mean curvature H and a positive C™-
differentiable function f on M.

(1) If M is a hypersurface then M is f-biharmonic if and only if

A
—ALtH + TfH + 2V gran p H + 07 (B(-, Ap+)) = 3(a+ B)H =0,

and
ggrad|H|2 —2Apgrad(In f) + 2tr (AgLy(-)) = 0.
(2) If M is a complex surface then M is f-biharmonic if and only if

A
~AYH + TfH +2VL qan p H + tr (B(, Ap+)) — 2aH = 0,

and
grad|H|?* — 2Aggrad(In f) + 2tr (Ag1 4 (-)) = 0.
(3) If M is a Lagrangian surface then M is f-biharmonic if and only if

A
~ATH 4 TfH + 2V qn p H + tr (B(, Ay+)) — 2aH — 38H = 0,

and
grad|H|* — 2Aggrad(In f) + 2tr (Ag1 4 (-)) = 0.
(4) If M is a curve then M is f-biharmonic if and only if

A
_ALH * TfH - 2v;ad(1nf)H +tr (B<7AH)) —aH — 3ﬁ<H + mzH) = Oa

and
1
§gmd|H|2 —2Apggrad(In f) + 2tr (Ay.5(+)) = 0.
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Proof: The proof is a consequence of Theorem [3.1] using the facts that

(1) if M is a hypersurface, then m = 0 and so jIH =0, kjH =0 and klH = —H,
(2) if M is a complex surface then £ =0 and | = 0,

(3) if M is a Lagrangian surface, then j =0, m = 0,

(4) if M is a curve, then j = 0.

O

Remark 3.4. It is a well known fact that any complex submanifold of a Kdhler manifold is
necessarily minimal. But as mentioned above, the generalized space forms N(«,[f3) are not
Kahlerian unless there are the complex projective plane or the complex hyperbolic plane. Hence,
considering f-biharmonic surfaces into N(«, B) is of real interest, since they are not necessarily
minimal.

Similarly, if we assume mean curvature vector H as parallel vector then for curves and complex
or Lagranian surfaces, we obtain the following corollaries.

Corollary 3.5. Let MP, p < 4 be a submanifold of the generalized complex space form N(c«, )
with second fundamental form B, shape operator A, mean curvature H and a positive C°-
differentiable function f on M.

(1) If M be a Lagrangian surface of N(«a, ) with parallel mean curvature then M is f-
biharmonic if and only if
tr(B(-, Ay+)) = 2aH + 38H — 8LH, and Aygradf = 0.
(2) If M be a complex surface of N(a, ) with parallel mean curvature then M is f-
biharmonic if and only if
tr (B(, Ap+)) = 2aH — %H and Aggradf = 0.
(3) If M is a curve in N(«, ) with parallel mean curvature then M is f-biharmonic if and
only if
tr(B(-, Au+)) = aH +38(H +m?*H) — £LH, and Apgradf = 0.

Proof: Since M has parallel mean curvature so that the terms A+H, Vérade, grad|H|? and
tr(Ag.g.) vanish and we obtain immediately the result from the previous Corollary. O

Remark 3.6. Note that for the last two results there is no analogue for compler subamnifolds
of Mg (4c) since they are in fact minimal.
Further, for constant mean curvature hypersurfaces in N(«, 8), we have the following result.

Proposition 3.7. (1) Let M? be a hypersurface of the generalized complex space form N(a, 3)
with second fundamental form B, non zero constant mean curvature H and f a positive C'*°-
differentiable function on M. Then M is f biharmonic if and only if

A
|B|* = 3(a+ ) — Tf and Agradf =0
or equivalently, M 1is proper f-biharmonic if and only if the scalar curvature of M satisfies

A
ScaIM:S(aJrﬁ)+9H2+7f and Agradf = 0.
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(2) There exists no proper f-biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature.

Proof: For the first point, since M is a hypersurface, by Corollary M is f-biharmonic if
and only if

—ATH 4+ 8L H + 2V g0 H 4 tr(B(, Ap) = 3(a+ B)H =0,
3grad|H|* — 2Aggrad(In f) 4 2tr (Ag1g(-)) = 0.
Since M has constant mean curvature, the above equation reduces to

tr(B( An-)) = 3(a+ f)H — G H,
Apggrad(ln f) = 0.
Using condition Ay = H A for hypersurfaces, we get
tr(B(~,AH(-))) - Htr(B(-,A(-))) — H|BP.

Reporting this result in first equation of the above condition and from the assumption that H
is a non-zero constant, we get the desired identity |B|? = 3(a+ ) — %.
For the second equivalence, by the Gauss equation, we have
3
Scaly = Z g (RN(ei,ej)ej,ei) — |B]* +9H?,
ij=1
where {eq, e, e3} is a local orthonormal frame of M. From the expression of the curvature tensor
of N(a, B), we get
Scalys = 6(a + B) — || B||* + 9H?.
Moreover, since grad(In f) = %gradf and Ay = HA with H is a non-zero constant, then
Apgrad(In f) = 0 reduces to Agradf = 0.

Hence, we deduce that M is proper f-biharmonic if and only if |B|?> = 3(a + 3) — (%) and

Agradf = 0, that is, if and only if Scalys = 3(a + 3) + 9H? + % and Agradf = 0.

Now, for the second point, if M is a hypersurface with constant mean curvature and
constant scalar curvature, then by the first point, if M is f-biharmonic then

A
Scaly; = 3(a + B) + 9H? + Tf
As we have already mentioned, o + (8 is constant, hence, since H and Scal,; are constant, then

Al is constant, that is, f is an eigenvalue of the Laplacian. But f is a positive function, so the

only possibility is that f is a positive constant and M is biharmonic. This concludes the proof
of the second point. O

Now, we give this proposition which give an estimate of the mean curvature for a f-biharmonic
Lagrangian surface.

Proposition 3.8. Let M? be a Lagrangian surface of the generalized complex space form N (., 3)
with second fundamental form B, shape operator A, non-zero constant mean curvature H and a
positive C*°-differentiable function f on M.
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(1) Ifinfy, (204 + 38 — %) is non-positive then M is not f-biharmonic.

(2) Ifinfy, (2a + 35 — M) is positive and M is proper f-biharmonic then

f
2a+3ﬁ—Aff>

0<H|2<inf<
M 2

Proof: Assume that M is a f-biharmonic Lagrangian surface of N(«, ), considering third
assertion of Corollary 3.3} we have

~AYH + SLH 4+ 2VE H +tr (B(, Ap+)) — 2aH — 38H =0,

grad|H|? — %Angadf +2tr (Ay2g(-) =0.

Hence, by taking the scalar product with H and taking the assumption that mean curvatutre
H #0, i.e., |H| is constant, from the first part of the above equation, we have

< AYHH > 2 < VL HH >+ Ayl — (%—204—35) < H,H>=0.

grad

This equation implies that

A
—(AtH H) = (2a +38— ff> |H? — |Ag |,
where we have used that < V;ade, H >= 0 since |H]| is constant. Now, with the help of the
Bochner formula, we get

(2a +33 — Aff> |H|> = |Ag|* + |VEH%
Now, using Cauchy-Schwarz inequality, i.e., |Az|? > 2|H|* in the above equation, we have
(28) (2a + 38— Aff) |H|? > 2|H|* + |V H|* > 2|H|*.
So, we have 0 < |H|?* < infy, (W) because |H| is a non-zero constant. This is only
possible if the function 2a + 35 — % has a positive infimum. This concludes the proof. ([

Now, we have similar result for complex surfaces.

Proposition 3.9. Let v : M? — N(a, 3) be a complex surface of generalized complex space form
N(a, B8) with second fundamental form B, shape operator A, mean curvature H and a positive
C>-differentiable function f on M.

(1) Ifinfy, (2a — %) s mon-positive then M is not f-biharmonic.

(2) Ifinfy, (Qa — M) is positive and M is proper f-biharmonic then

f
20— &L
0 < |H|? < inf <f>
M 2
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Proof: Let M be a f-biharmonic complex surface of N(«,3) with non-zero constant mean
curvature. Then, by the second assertion of Corollary we have

~AYH + 8LH + 40 (B(-, Ap+)) — 2aH =0, and Apgradf = 0.

Replacing 2a + 33 by 2« in the proof of Proposition [3.8] we have the required result. O

3.2. f-Biharmonic submanifolds of generalized Sasakian space forms. Now, we consider
f-biharmonic submanifolds of generalized Sasakian space forms and give the following theorm
for its characterization.

Theorem 3.10. Let MP? be a submanifold of a generalized Sasakian space form M(fl,fg, f3),
with second fundamental form B, shape operator A, mean curvature H and a positive C*°-
differentiable function f on M. Then M is f-biharmonic submanifold of M(f1, fa, f3) if and
only if the following two equations are satisfied

A
—~ATH +trB(-, Ag-) + TfH +2Vraan pH = pf1H — fol¢TPH — pfon(H)¢™ — 3fsNsH

and
ggrad|H|2 +2trAgs g () — 2Aggrad(In f) = —2fo(p — 1)n(H)ET — 63 PsH.

Proof: At first, we calculate the curvature tensor of generalized Sasakian space form
M(f1, f2, f3). From equation , we have

R(X,Y)Z = ARNX,Y)Z+ hRIX,Y)Z + fsR5(X,Y)Z

= fA{g(Y.Z2)X —9(X,2)Y}

+  LnX)n(2)Y —n(¥)n(Z2)X + (X, Z)n(Y)E — g(Y, Z)n(X)E}
+  f3{9(X,02)0Y — §(Y,02)pX +25(X, ¢Y)pZ}.

Let us consider {e1,eq, ..., e, } an orthogonal basis of the tangent space of M. Then, we have

R*(e;,H)e; = fi{g(H, ei)ei — glei,e;)H} + fa{n(ei)n(ei)H — n(H)n(e;)e; + glei, ei)n(H)E}
+  f3{g(es, pei)pH — G(H, pe;)pe; + 2G(ei, oH ) pe; }.

Taking the trace and using in the above equation, we get
tr(R*(H)-) = —fipH + f2 ) {n(e:)”H — n(H)n(e:)e; + |ei*n(H)E}

+ f3 ) _{tr(P)¢H — §(H, Ne;)de; + 25(e;, sH)pe;}

= —fipH + f{|¢TPH — n(H)§T + pn(H)E}
+ f3 ) _{tr(P)sH +tr(P)tH — §(H, Ne;)Pe; — §(H, Ne;)Ne;

+ 2g(e;,sH)Pe; + 2g(e;, sH)Ne; }.
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It implies that
tr(R*(-\H) ) = —fipH + fo{|€"PH —n(H)ET + pn(H)EY + 3f3(PsH + NsH),
by considering the anti-symmetry property of ¢, tr(P) =0 and §(H, Ne;) = —g(tH,e;).

Now, from value of tr (R*(~7H ) - ) and equations 7 , we have result of the theorem by
considering the tangential and normal parts. O

Now, we have the following corollary if we assume different particular cases in Theorem (3.10

Corollary 3.11. Let M? be a submanifold of a generalized Sasakian space form M(fl7 f2, f3).

(1) If M is invariant then M is f-biharmonic if and only if

A
—~ATH 4+ trB(-, Ag-) + TfH + 2V graan ) H = pfLH — fo|¢T[PH — pfon(H)EH

and

ggrad|H|2 4 2trAg () — 2Aggrad(In f) = —2fo(p — V)n(H)E" — 6f3PsH.

(2) If M is anti-invariant then M is f-biharmonic if and only if

A
—AJ_H + tI'B(,AH) + TfH + 2v;ad(lnf)H = ple

—f2l€T1PH — pfon(H)E- = 3f3NsH
and

ggmd|H|2 + 2trAgL g (-) — 2Aggrad(In f) = —2fo(p — D)n(H)ET.

(3) If € is normal to M then M is f-biharmonic if and only if

A
—AtH +trB(, Ay-) + TfH + 2V§;—rad(lnf)H =pfiH —pfon(H)E — 3fsNsH

and
ggrad|H|2 +2trAg.g(-) — 2Aggrad(ln f) = 0.

(4) If € is tangent to M then M is f-biharmonic if and only if

A
—ALH + trB(,AH) + TfH + QV;ad(lnf)H = pf]H — f2H — 3f3N8H

and
ggrad\H|2 +2trAvig(-) — 2Aggrad(ln f) = —6f3 PsH.
(5) If M is a hypersurface then M s f-biharmonic if and only if

A
At 4+ trB(-, Ag-) + TfH + 2V;_rad(lnf)H = (2nf1 +3f3)H

—fol€TIPH — (2nfo + 3f3)n(H)E*
and
ngrad|H|* 4+ 2trAg. g (-) — 2Aggrad(In f) = —(2(2n — 1) f1 + 6 f3)n(H)ET.

Proof. The proof is a direct consequence of Theorem [4.10] using the following facts.
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(1) If M is invariant then P = 0.

(2) If M is anti-invariant then N = 0.

(3) If € is normal then n(gradf) = 0 and M is anti-invariant which implies P = 0.
(4) If € is tangent then n(H) = 0.

()

If M is a hypersurface then sH = 0.
Analogously to the case of generalized complex space forms (Proposition , we can
obtain some curvature properties in some special cases by using characterizations of f-biharmonic
submanifolds of generalized Sasakian space forms.

Proposition 3.12. (1) Let M?" be a hypersurface of generalized Sasakian space form

]T/[/(fl,fg,fg,) with non zero constant mean curvature H and & is tangent to M. Then M is
proper f-biharmonic if and only if

|B|? =2nf1 — fo+3f3 — %, and Agradf =0,

or equivalently if and only if
Scalyy =2n(2n —2)fi+ (4n —1)fa — (2n —4)f3 + (2n — 1)H? + %H and Agradf = 0.

(2) There exists no proper f-biharmonic hypersurfaces with constant mean curvature and
constant scalar curvature so that € is tangent.

Proof. Let M be a f-biharmonic hypersurface of M (f1, f2, f3) with non zero constant mean
curvature and ¢ tangent to M. Then, from Corollary we have

N Af 1
—A~H 4+ trB(-, Ag-) + TH + 2Vgrad(lnf))H

= (pf1+3f3)H — [|¢TIPH — (2nf2 + 3f3)n(H)E,

ngrad|H|? + 2trAg 1 g (-) — 2Aggrad(In f) = 0.
Now, as per assumption, ¢ is tangent to M which gives n(H) = n(v) = 0. Therefore, we have
0 = —v + (V)¢ = —v.
On the other hand, we have

*v = ¢(sv+tv)
= Psv+ Nsv+ stv + t°v.
Hence, we get
(29) —v = Psv+ Nsv + stv + t*v.

Moreover, since (¢v,v) = Q(v,v) = 0, we have that ¢v is tangent, i.e., tv = 0. Thus, Equation
becomes
—v = Psv + Nsv,

and so Ps = 0 and Ns = —Id by identification of tangential and normal parts. Using these
results in the above f-biharmonic condition for the hypersurfaces of generalized Sasakian space
forms, we have

trB(, Ay-) = (2nf1 +3fs)H — fo|¢ T2 H — 5L H,

Apggrad(In f) = 0.
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Hence, the second equation is trivial and the first becomes
trB(-, Ap-) = 2nfiH — foH + 3f3H — %H,

or equivalently

|B|* = 2nf1 — fa+3fs — %,

since trB(-, Ag+) = |BJ|?H and H is a non zero constant.

Similarly, using Gauss formula for second part, we have

Sealy = Zg (ei,¢5)ej,€i) — | B® — pH®

= Zfl{g ej ej)glei,ei) —glei,e;)g 6Ja€z}+2f2{77 ei)n(e;)gle;, e:)

- n(ej)n(ej)g(ei»ei)+§(€z‘»ey) (e)9(8, ei) — (ea»eg) (e)g(& €i)}
> fadglen dey)ilde;, e) — Glej, de;)g(des e:) + 20(es, de;)g(de;, e:)}

,J
|B]> —pH? =2n(2n — 1)f1 + 2(2n — 1) fo — (2n — 1) f3 — |B|* — pH".
Using the value of |B|? obtain in the first part of the proof, we get the required result, that is,

+

A
Scalpr = 2n(2n — 2)f1 + (4n — 1) fo — (2n — 4) f3 + (2n — 1) H? + Tf
Moreover, since grad(ln f) = fgrad fand Ay = HA with H is a positive constant, the equation
Apgrad(In f) = 0 reduces to Agradf = 0. This concludes the proof. O

Now, from this proposition, we can prove the following non-existence result.

Corollary 3.13. Let M?" be a constant mean curvature hypersurface of generalized Sasakian
space form M(fl,fg,fzg) with & tangent. If the functions f1, fo, f3 satisfy the inequality
2nf1 — fo +3f3 < @ on M then M is not biharmonic.

In particular, there exists mo proper f-biharmonic CMC hypersurface with & tangent and f
satisfying

4_[&f _ 6n=21 in q Sasakian space form Mg”“(é).

e ¢< =
I

e i< 52 [% + 82221 in a Kenmotsu space form M+ (é).
Smmy

N
3

JF
]

4

e ¢ in a cosymplectic space form Mg"“(&).

Proof: As per assumption, M is a hypersurface of M(fl, f2, f3) with non zero constant mean
curvature H and £ tangent to M. From Proposition M is f-biharmonic if and only if its
second fundamental form B satisfies |B|? = 2nf; — fo + 3f3 — %. In other words, this is not
possible if

Af
o

N( fi,fo, f3)isa Sasakian space form where ¢ is ¢-sectional
4 [Af 6n—2]
2nt2l7f T I

(30) 2nfi — f2+3f3 <

Now, f1 = &3 and f, = f3 = ¢
curvature. Therefore, the inequality 2nfi — fo + 3f3 < 2L reduces to ¢ <
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Similarly, we have f1 = &2 and fo = f3 = <2 (resp. fi = fo = f3 = £) for the Kenmotsu (resp.

cosymplectic) case and the inequality 2nf; — fo + 3f3 < % reduces to ¢ < 27;:2 [% + 0n=2]

N A
(resp. é < ﬁ%) O

Now, we have the following proposition analogous to complex case.

Theorem 3.14. Let MY be a submanifold of Sasakian (Kenmotsu or cosymplectic) space form

]T/[E"H(é) (resp. Mi"“(é) or ]\7@“(6)) with constant mean curvature H so that & and ¢H are
tangent. Further, we consider F(f,q,¢) the function defined on M by

+2)é 3q—2 A AP+~
(04)C+(Q4 )_Tf fOT’ M§+ (0)7

- A é — oy ~
F(f?Qac)ZQfl_f2+3f3_7f: %_%_% fO’/’ M£+1(C)a
(‘Hf)a — % for Mgﬂ((i).

Then we have the following observations.
(1) If i]I\14f F(f,q,¢) is non-positive then M is not f-biharmonic.

(2) If i&f F(f,q,¢) is positive and M is proper f-biharmonic then

0<|H]* < =inf F(f,q,é).

1
q M
Proof: As M is proper f-biharmonic submanifold with constant mean curvature H and & tangent
to M, so we get form Corollary that

—ATH + teB(, Ap) + 3V H+ 55 H = i H — foH — 3f3NtH,

2trAv 1y (-) —2Apggrad(ln f) = —6f3 PtH.

Now, considering ¢H is tangent implies that sH = 0. Again applying ¢ gives that ¢’H =
PtH + NtH. But from ¢*H = —H + n(H)¢ and ¢ is tangent, we have ¢>H = —H. Therefore,
comparing tangential and normal parts, we get PtH = 0 and NtH = —H. Using these facts in
the above equation, we get

—AYH +rB(-, Ap-) = gt H — foH + 3f3H — SLH,

2trAy . g (-) —2Apggrad(ln f) = 0.

Now, considering v as an real eigenvalue of the eigenfunction f corresponding to Laplacian
operator A, i.e., % = v, from first equation, we have

—ATH +trB(-,Ag) = qfiH — foH +3f3sH —vH
= F(f,q,0)H.

Taking scalar product by H, we get
- <AJ‘H7H> + <trB('aAH')7H> = F(qua5)|H|2'
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Using the facts (trB(-, Ag-), H) = |Ay|? |H| is a constant and the Bochner formula, i.e.,
1A|H|? = (A+H,H) — [V+-H? in the above equation, we have

[Anl? + |V-H|? = F(f,q,0)H|.
Now, this equation reduces to
F(f,q,0H> = |Au* + |V H|* > ¢ H]? + [V H? > q|H|",
by considering the Cauchy-Schwarz inequality |Ag|? > %tr(AH) = q|H|*. Tt implies that
F(f,q,¢) > ¢ HJ?,

as |H| is a positive constant. This proves the two assertions of the theorem. (]

Now, we have the analogous result replacing the assumption that ¢H is tangent by ¢H
is normal. Namely, we have:

Proposition 3.15. Let ¢ : M4 — Mg“(é) (resp. M;}H(E) or Mgﬂ(é)) be a submanifold of
Sasakian (Kenmotsu or cosymplectic) space form with constant mean curvature H so that & is
tangent and ¢H is normal. Further, we consider F(f,q,¢) the function defined on M by

(q—41)c + (3q2—1) _Af for Mngl(é)’

f
. A _1)e ~ -
G(fv‘]ac):qfl_ 2_7f: %_%_% fO’f’ M£+1(C)a
7(‘1741)5 — % for Mgﬂ(&).

Then we have the following observations.

(1) If i;l/lf G(f,q,¢) is non-positive then M is not f-biharmonic.

(2) If i]I\l/[f G(f,q,¢) is positive and M is proper f-biharmonic then
1
0<[Hf? < 5i]rvlij(f7q,5)-

Proof: Now, in this case, M is proper f-biharmonic submanifold with £ is tangent and ¢H is
normal. Normality of ¢ H implies that sH = 0. Therefore, from Corollary we have

~A“H +trB(,Ap-) = qf1H - f,H
= G(f,q,¢0)H.

Similarly, as in the previous theorem, taking the scalar product by H and using the Bochner
formula and then with the help of the Cauchy-Schwarz inequality, we get

G(f.q,0H? = |Ag* + [V H|* > g H]? + |VTH* > q|H]|".

It easily provides the inequality G(f,q,¢) > ¢|H|?, since |H| is a positive constant. We get
0<|H|* < %infM G(f,q,¢), which concludes the proof. O

4. Bi-f-harmonic submanifolds

In this section, we consider bi-f-harmonic submanifolds, which are, as we mention in the
introduction, different from the f-biharmonic submanifolds studied above.
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4.1. A general necessary and sufficient condition. We begin by giving this general result
which gives the necessary and sufficient condition for a submanifold to be bi-f-harmonic

Theorem 4.1. Let (M™,g) be a Riemannian manifold isometrically immersed into another
Riemannian manifold (N,h). Let f be a smooth function on M. Then, M is a bi-f-harmonic
submanifold of N if and only if the following two equations hold:

(1)
nfPALH +nf*trB(-, Ag) — nf(Af)H — 3nV;ade
—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|grad f|>H — B(gradf, grad f)

= —nf*x (R( H))" — ftr (R( gradf):) ",
n2f2
grad|H|? + 2n? f2tr(Av.p.) + 3nfApgradf

+f Ricas(grad ) + farad(Af) + Fix(Ap( graap()) — axad(arad 1)
= —2nf%r (R(, H))T — ftr (R(, gradf)-)T .

Proof: We recall that M is a bi- f-harmonic submanifold if and only if
THW) = [T (7)) = Vg (@) = 0,
where JY is defined by

JU(X) = —[TryVYVYX — VL, X — RN (dy, X)dy]

and 7¢(¢) = fr(¢) + diy(gradf). Since we are in the case of submanifolds, for a sake of
compactness, we will omit the map ¢ and we will denote V¥ by V as the Levi-Civita
connection on N. Hence, we have

Tr(¥) = fr() + dip(gradf) = nfH + grad f.

Taking {e1, - ,e,} a normal frame of T, M for a fixed point p € M, we get
Try (VOVPr () = VEum; () = Y VEVET () = Vi, 77 ()
i=1
(31) = Zveivel(an—i—gradf).
i=1

First, we compute

SN Ve Ve, (nfH) = 0 Ve, (ei(/)H + Ve, H)
=1

i=1
= Y (elei (N H +26:())Ve H + [V, Ve H)
i=1

(32) = —nAf+2VpaarH +nf Y Ve, Ve, H.

i=1

Now, we give this first lemma.
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Lemma 4.2. We have

ZveﬁelH = —ggrzﬂbd\l‘ﬂ2 —trB(-, Ag-) — 2tr(Agig-) — AYH +tr(R(-, H)-) "
i=1

Proof: We have
VeVeH = Vo (VELH - Ape;)
= V. VaH—Ay.py— Ve, (Age;) — B(Ane;,e;)
Hence, summing over i, we get
(33) S Ve Ve H = ~AMH — tr(Ags () ~ (V) A () — B(- An ().
i=1
Moreover, we have

M-

r(VoAu() = D Veldne) = Y 9(Vei(Anei), e)e;

=1
n n
= Z eig(Ame;, ej)e; = Z eig(Bl(e;, e;),H)e;
1,j=1 i,j=1

€¢Q(Vej ei, H)e;

I
ﬁMs

1

-
&
Il

I
:M3

(g(ﬁﬁej ei, H)ej + g(vejei,ﬁeiH)eO

-

<
Il
—

(g(veivej €i, H)ej + g(B(€j7 ei)a v
1

Il
IMs

eiH)ej)

=
<
Il

g(vei vej €, H)ej + Z AVé HE

Il
IMs

3,j=1 i=1
(34) = Z 9(Ve, Ve e, H)ej + tr(Agip-).
ij=1
Now, we have
Z g(veivejei,H)ej = Z g(ﬁ(ei7ej)ei +ﬁeﬁeiei —|—v[ehej]ei,H> ej.
i,j=1 i,5=1
Since, the frame {ej,- - -, e,} is normal, we have [e;, e;] = 0. Moreover, we have

zn: 79]. vei €; — nve]. H.
=1

Hence, we get

Zg(veiﬁejei,H)ej = —tr(ﬁ(-7H)-)T+nZg(vejH,H)ej

i,7=1 j=1

(35) = —t(R(, H))T + Sgrad H[*.

19
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Putting into (34)), we get

(36) (V) A () = (A ) — e(R( 1)) + Derad HE

and finally, reporting this in , we get
N V.V H= —ggrad\HF —trB(, Ay-) — 2tr(Avs ) — ALH + te(R(-, H))T,
i=1

which concludes the proof of the lemma. ([
We now state this second lemma.

Lemma 4.3. We have

Zﬁeiﬁeigradf = grad(Af) + 2Ricps(gradf) — tr(R(-, gradf)-)
i=1
+tr(B(-, V.gradf)) + tr(VI B(-, gradf)) — tr(Ap( grads) (+))-

Proof: We have
Ve Vegradf = V., (Vegradf + B(e;, gradf))
= V., Vegradf + B(e;, Vegradf) + Vi Bles, gradf) — Ap(e, graas) (i)
= V., Vegradf +tr(B(-, V.gradf)) + tr(VIB(-, grad f)) — tr(Ap(. gradas) ()
Moreover, we conclude by using the classical fact that (see [] for instance)

Z Ve, Ve, gradf = grad(Af) + 2Ricys (grad f) — tr(R(-, gradf)-).

i=1
(|
Finally, we have this last elementary lemma.
Lemma 4.4. We have
Vyraa(nTr(¥) = nlgradf|?H —nfAg(gradf) + nfvé_rade
+serad(|gradf1?) + Blgradf, grad )
Proof: We have
VoraagrTr(¥) = Vgraar(nfH + gradf)
= nlgradf*H + nfViaa H = nf A (gradf)
+Vraasgradf + B(gradf, gradf).
Using the fact that Vgaasgradf = 1grad(|gradf|?), we get the desired identity. O

Now, we can finish the proof of Theorem [{.I] Recall that M is a bi-f-harmonic submanifold
if and only if

TH(9) = FIV(75(¥)) = Vi aa(py T () = 0.
From and , we have

T?(¢) = _anf + 2fvgrade + an ZvelvelH + f Zﬁelﬁel gradf B v;bradfo (w)

i=1 i=1
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Replacing the last three terms in the right-hand side using, respectively, Lemmas [£.2] [£-3] and
[4.4] we obtain

T]%((ﬁ) = —nfAf+2fVgraarH — an%grad|H\2 —nf*trB(-, Ag-) — 2nf2tr(Av+H~)

—nf?AYH 4+ nf?tr(R(-, H)-) " + fgrad(Af) 4+ 2fRicy (gradf)
— ftr(R(-, grad f)) + ftr(B(-, V.gradf)) + ftr(VB(-, gradf))
_ftr(AB(-,gradf)(')) - n|gradf|2H + anH(gradf) - nfvglrade

— garad(|aradf[?) ~ B(gradf, grad).

Finally decomposing the fact that TJ%((b) = 0 into tangent and normal parts, we get the two
identities of the theorem. This conludes the proof of Theorem O

4.2. Bi-f-harmonic submanifolds of generalized complex space forms. In this section,
using the general bi- f-harmonicity condition of Theorem [4.1] we give the necessary and sufficient
condition for submanifold of generalized complex space forms to be bi- f-harmonic. Namely, we
have the following theorem.

Theorem 4.5. Let M"™, n < 4, be a submanifold of generalized complex space form N(«, )
with second fundamental form B, shape operator A, mean curvature H and a positive C*-
differentiable function f on M. Then M is bi-f-harmonic submanifold of N(«, 8) if and only
the following two equations are satisfied

(1)

nf?ALH +nf?trB(-, Ag:) — nf(Af)H — SnV;ade
—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|gradf|2H — B(gradf, gradf)
=n2f2aH — 3nf?BklH — 3fBkjgradf,

272
n'f grad|H|? + 2n? f2tr(Av.y.) + 3nfApgradf

+FRicss(grad ) + Ferad(Af) + Fir(Ap(.map)()) - Serad(jgrad )
= —6nf2BjlH + 2f(n — 1)agradf — 6f3;j2gradf.

Proof: This theorem is a direct consequence of Theorem taking into account that the
curvature tensor of the generalized complex space form N(«, ) is given by R = aR; + S8Ra,
with Ry and Ry defined in Section [2| First, we have from

tr (R(-,H)-) = —naH + S(3j1H + 3klH).
Moreover, we need to compute tr (E(-, grad f)) We have the following lemma
Lemma 4.6. We have
tr (E(-,gradf)-)—r = —(n — 1)agradf + 385%gradf

and
tr (R(-,gradf))) " = 38kjgradf.
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Proof: We have

n

tr (E(-,gradf)-) = az ((gradf,e;) e; — (e;, e;) gradf)

=1

+8> " ((Jgradf,e;) Jei — (Jei,e;) Jgrad f + 2 (Jgradf, ;) Je;)
1=1
= —(n—1)agradf + 38.J(Jgradf)"
= —(n—1)agradf + 38j%gradf + kjgradf.

We conclude the proof of the lemma by identifying tangential and normal parts. O

Using this lemma and reporting into Theorem we get the desired identities. This
concludes the proof of Theorem O

Theorem 4.7. Let ¢ : M™ — Mg(c), n < 2N, be a submanifold of the compler space form
MP¥ (¢) of complex dimension N and constant holomorphic sectional curvature ¢, with second
fundamental form B, shape operator A, mean curvature H and a positive C*°-differentiable
function f on M. Then M s bi-f-harmonic submanifold of M¥ (c) if and only the following two
equations are satisfied

(1)
nf?ALH +nf*trB(-, Ag) — nf(Af)H — 3nV;ade
—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|gradf|2H — B(gradf, gradf)
=n2f2cH — 3nf?cklH — 3fckjgradf,

n2f2

2 1
+fRicy(gradf) 4 ferad(Af) 4 ftr(Ap(. graaf) () — §grad(|gradf|2)
= —6nf2cjlH + 2f(n — 1)cgradf — 6 fcj’gradf.

grad|H|?* + 2n? f?tr(Ag. y.) + 3nfAggradf

Proof: The proof is similar to the one of Theorem [£.5] with the only difference that o = 8 = ¢
and n < 2N instead of n < 4. O
Now, we consider some particular cases where these conditons become simpler. Namely, we have:

Corollary 4.8. Let ¢ : MP — N(«, ), p < 4 be a submanifold of generalized complex space
form N(«a, ) with second fundamental form B, shape operator A, mean curvature H and a
positive C*°-differentiable function f on M.

(1) If M is a hypersurface of N(c, B) with constant mean curvature, then M is bi- f -harmonic
if and only if

—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|gradf|2H — B(gradf, gradf)
=n?f2aH + 3nf?BH — nf?H|B|*> + nf(Af)H,

[Ricy(gradf) + ferad(Af) + ftr(Ap(. graas) () — %grad(|gradf|2)
=2f(n —1)agradf — 6fBj%gradf — 3nfAggradf.
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(2) If M is a complex surface of N(«,3) with parallel mean curvature, then M is bi-f-
harmonic if and only if

—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(gradf, gradf)
=n’f?al —nf*trB(-, Ag-) + nf(Af)H,

+FRicys(grad ) + Ferad(Af) + Fir(Ap(.mar)()) - Serad(jeradf?)
=2f(n —1)agradf — 6fBj%gradf — 3nfAggradf.

(3) If M is a Lagrangian surface of N(a, 8) with parallel mean curvature, then M is bi-f-
harmonic if and only if

—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(gradf, gradf)
=n?f2aH +3nf?BH — nf*trB(-, Ag-) + nf(Af)H

. 1
+fRicp (gradf) + ferad(Af) + fir(Ap( graas)(-)) — §grad(|gradf\2)
=2f(n— 1agradf — 3nfAggradf.
(4) If M is a curve in N, B) with parallel mean curvature, then M is f-biharmonic if and
only if

—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(gradf, gradf)
=n2f2aH — 3nf?BklH — nf*trB(-, Ag-) + nf(Af)H,

4 Ricnr(gradf) + farad(Af) + fir(Ap( graap) () — parad(lgrad[?)
=2f(n—1)agradf — 3nfAggradf.

Proof: The proof is a direct consequence of Theorem taking into account first that M has
parallel mean curvature so that the terms ALH, V;ade, grad/H|* and tr(Ay.p.) vanish.
Moreover, we use the fact that

1) if M is a hypersurface, then m = 0 and so jIH =0, kjH =0 and klH = —H,
2) if M is a complex surface then k =0 and [ = 0,

3) if M is a Lagrangian surface, then 5 =0, m = 0,

4) if M is a curve, then j = 0.

(
(
(
(

O

Remark 4.9. Note that from Theorem [{.7, we can deduce a analogous corollary for hyper-
surfaces, curves and complex or Lagrangian submanifolds of complex space forms Mg (c). Here
again, the only difference is that o = 8 = ¢ and n < 2N instead of n < 4. We do not write down
this corollary.

4.3. Bi-f-harmonic submanifolds of generalized Sasakian space forms.

Theorem 4.10. Let ¢ : MP — M(fo, f1, f2) be a submanifold of a generalized Sasakian space

form M(fo,fl,fg), with second fundamental form B, shape operator A, mean curvature H
and a positive C°-differentiable function f on M. Then M s f-biharmonic submanifold of
M(fo, f1, f2) if and only if the following two equations are satisfied
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(1)
nfPALH +nf?trB(-, Ag-) — nf(Af)H — 30V g0 H
—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(gradf, gradf)
=n?f2fLH —nf? o€ PH — n? f2 fon(H)E- = 3nf? fsNsH
—(n—1)f fon(grad f)é+ — 3f N Pgradf,

(2)

2 r2
/ grad|H|? + 2n? f2tr(Av.y.) + 3nfApgradf

. 1
+fRZCM(gradf) + fgrad(Af) + ftr(AB(-,gradf)(')) - igrad(‘gradflz)

= —2n(n—1)ffon(H)§" — 6nf fsPsH + (n— 1) f figradf
—[fl€T Pgradf — (n = 2)f fon(grad f)§" — ff3P2gradf.

Proof: In order to prove this Theorem, we first recall that from the computation of Section [3]
we have (see proof of Theorem (3.10)))

(37) tr (R(, H)") " = faln— D)(H)ET +3fsPsH
and
(38) tr (R(, H)~)l =—finH + fo (|¢"PH + nn(H)EY) + 3f3NsH.

Moreover, we have this elementary lemma.
Lemma 4.11. We have
— T
tr (R(-,gradf):) = —(n—1) figradf + fo (|€" [*gradf + (n — 2)n(grad /)¢") + faP*grad f

and
tr (ﬁ(-,gmdf))L = fo(n — 1)n(gradf)éL + 3N Pgradf.

O

Now, combining Equations (37)-(38) and Lemma together with Theorem we obtain
the conditions given in Theorem [£.10, which concludes the proof. O

Now, we give the proof of the Lemma [4.11

Proof of Lemma From the definition of the curvature tensor of M(fi, fa, f3) we
have

n

~(n = 1) fagradf + fo > (nle:)?gradf — n(grad fn(e:)e; )

i=1

tr (R(-, gradf)-)

n

2 (< einer > nlgradf)e— < gradf.e; > n(e))
i=1

+f3 3 (Qessgradf)ge; — Q)ei, e5)dgrad f + 20(es, grad f)e;
i=1

= —(n—1)figradf + fa (IETIQgradf —n(gradf)E" + (n— 1)n(gradf)£)
+3f3¢°gradf.
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Using the fact that ¢?gradf = P2?gradf + NPgradf and identification of tangent and normal
parts, we get the desired identities. ([

Here again, we finish this section with some particular cases. Namely, we have the
following corollary.

Corollary 4.12. Let v : MP be a submanifold of a generalized Sasakian space form J/\\J/(fo7 f1: f2)
with parallel mean curvature.

(1) If M is invariant then M is bi-f-harmonic if and only if

nf2trB(-, Ag-) —nf(Af)H
—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|gradf|*H — B(gradf, gradf)
=0 f2fLll —nf? foleTPH —nf2 fon(H)EH — (n— 1) f fon(grad f)E+,

fRicy(gradf) + ferad(Af) + ftr(Ap( graaf)(-)) — %grad(\gradfﬁ)

= —2n(n —1)ffan(H)E" — 6nf fsPsH + (n — 1) f frgrad f
—ffol€TPgradf — (n —2)f fon(grad f)E" — ffsPgradf — 2n® f2r(AyLp.).

(2) If M is anti-invariant then M is bi-f-harmonic if and only if

nf?trB(-, Ag-) —nf(Af)H

—ftrB(-, V.gradf) — ftrV.B(-, gradf) — n|grad f|>H — B(gradf, gradf)
=n?f2fiH —nf?fo|¢"PH — n® f? fon(H)E- = 3nf?fsNsH

—(n —1)f fan(grad )&+,

fchM(gradf) + fgrad(Af) + ftr(AB(<,gradf)(')) - %grad(|gradf|2)
= =2n(n —1)f fan(H)E" — 2n2f2tr(Av+H,)

~fF21€ Pgradf — (n — 2)f fon(grad f)ET.

(3) If ¢ is normal to M then M is bi-f-harmonic if and only if

—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(grad f, grad f)
=n?f2fill —n?f? fon(H)E — 3nf? fsNsH — (n — 1) f fan(grad f)¢
—nf?trB(-, Ag-) + nf(Af)H,

. 1
[Ricy(gradf) + ferad(Af) + ftr(Ap(. graas) () — §grad(|gradf|2)
= (n—1)f frgradf — 2n* f*tr(AgLy.).

(4) If € is tangent to M then M is bi-f-harmonic if and only if

nf?trB(-, Ag-) —nf(Af)H
—ftrB(-,V.gradf) — ftrV.B(-,gradf) — n|grad f|>H — B(gradf, gradf)
=n’f2fLH —nf?fol —3nf?fsNsH — 3fN Pgradf,

fRicar(gvad ) + farad(Af) + Fir(Ap( graap) () — yerad(|gradf?)
= —6nffsPsH + (n—1)f figradf — 2n® f*tr(Ag.y.)
— [ a6 Peradf — (n — 2) f fan(gradf)§T — f fsP?gradf.
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(5) If M is a hypersurface then M is f-harmonic if and only if

nf?trB(-, Ag-) —nf(Af)H

—ftrB(-,V.gradf) — ftrV.B(-, gradf) — n|grad f|>H — B(grad f, grad f)
=n?f2fiH —nf?fo|¢"PH —n? f2 fan(H)E — (n — 1) f fan(grad f)&+
—3fN Pgradf,

FRicar(gradf) + Farad(Af) + Fix(Ap( gaap) () — zerad(larad ]
= —2n(n ~ V) fn(H)E" + (n — 1) frgradf — 2n* fPer(Avin)
I 121€ T Pradf - (n = 2)f fon(grad [)ET — [ foP*grad}.

Proof: The proof is a direct consequence of Theorem [£.10] using the fact that the mean curvature

is parallel and so the terms AL H, Vg-rade, grad|H|? and tr(Ag. .) vanish. In addition, we use

(1) if M is invariant, then P = 0,

(2) if M is anti-invariant, N = 0,

(3) if € is normal, then n(gradf) = 0 and M is anti-invariant which implies P = 0,
(4) if £ is tangent, then n(H) =0,

(5) if M is a hypersurface, then sH = 0.
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