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Abstract. Many databases have been filled with the chemical reactions
found in scientific publications and the information associated with (ef-
ficiency, chemical products involved. . . ). They can be used to define
functions representing costs such as the ecoligical impact of the reac-
tions. A major challenge is to use computer driven optimization in order
to improve synthesis process. The objective is to provide algorithms to
help determining a pathway (series of reactions) for the synthesis of a
molecule. Usually, a chemist proposes a pathway adapted from an exist-
ing one. Our goal is to determine optimum pathways from the reactions
recorded in the database.
As, the classical Petri nets do not allows us to consider the optimization
component, a weighted model has to be defined and the complexity of
the associated problems studied. In this paper we introduce the weighted
Petri nets in which each transition is associated with a weight. We define
the Minimum Weight Synthesis Problem: find a minimum weight series
of transitions to fire to produce a given target component. It mainly
differ from classical coverability as it is an optimization problem.
We prove that this problem is decidable but EXPSPACE-hard and that
there is no polynomial approximation even when both in and outdegree
are fixed to two and the target state is a single component. We also
consider a more constraint version of the problem limiting the number
of fired transitions. We prove this problem falls into PSPACE and the
parametrized versions into XP but it remains not approximable.
Keywords: Petri net coverability problem, Minimum weight synthesis
problem, Parameterized complexity, Approximability

1 Introduction

The development of decision support tools for the synthesis of new molecules
is a major challenge for organic chemistry and biochemistry [7,17], through the
use of databases of reactions that are regularly updated in these scientific fields
(such as REAXYS, CHEBI [1,13]). Indeed, the objective is to provide algo-
rithms to help determining a reaction pathway (serie of consecutive reactions)
for the synthesis of new molecules by using such reaction databases [7,9]. Usu-
ally, a chemist proposes a reaction pathway from a synthesis in the database



of a molecule sufficiently similar to the target molecule [16,21]. It is therefore
important to determine the optimum reaction pathway of this similar molecule
from the reactions recorded in this target database in which each reaction can
be associated with a cost depending on the complexity of the reactions or the
solvents involved. Thus, the initial molecules in a reaction pathway are usually
easy to synthesize or to be bought. Given the cost of these potentially initial
molecules and the list of all referenced chemical reactions, the problem is to
identify best process to obtain the target molecules.

In this article, we are considering to optimize the cost to obtain or synthesize
the target molecules but it can be any additive function such as the ecological
footprint if it can be estimated or the time needed if there is no parallelization.

As we say previously, many such chemical databases are used and updated
(for example [1,13]), filled with million of reactions found in scientific publica-
tions. These databases are maintaining many informations such as the efficiency
or the chemical products involved in the reaction which may not be reactive
but nevertheless necessary (solvent for example). They can be used to define
functions representing costs such as environmental impact of the reactions.

This challenge of improving synthesis process by using computer driven opti-
misation is not specific to chemistry. It can be found in all manufacturing areas
as long as one can describe the process as a set of transformations and evaluate
the cost of buying resources and the cost of transforming them. We can even find
this problem in games. In most of the MMORPG (massively multiplayer online
role-playing game), the player have the ability to craft items using resources they
find or buy in the game.

Petri nets were introduced by Petri [22] and is a classical model to describe
chemical and biological processes [6,12,14,15,19,24]. More generally, it is a way to
model transformations of molecular components. Each transformation destroys
some components (substrates) and generates some others (products). Consider-
ing a quantity (or stock) of such components, represented by a vector containing
for each component a non-negative quantity, a transformation may be fired to
change this stock into another one.

One of the classical problems with Petri net related to our synthesis problem
is the Coverability of a stock : starting with an initial stock, is it possible, with a
finite list of transformations, to get another stock containing a given target stock?
The Coverability problem is decidable [10,11] but requires at least an exponential
space complexity in general nets [18,20]. However, in this context, classical Petri
nets are not adapted anymore, a weigthed model has to be defined in order to
take into account the costs of buying molecules and making the reactions.

To represent this crafting problem with a Petri net, we introduce the weighted
Petri nets where each transformation is associated with a non-negative weight.
This weight allows us to represent both the cost of a transformation and the cost
of purchasing a component: a transition transforming an empty set of component
into a non empty set. These are two important differences with the coverability
problem, thus to avoid confusion, we refer to synthesis problem. The Minimum
Weight Synthesis Problem (Min–WSP) consists in determining, starting with no



component in the stock, which transformation should be fired in order to get, at
minimum weight, a stock containing a given target stock.

We have given the practical reasons for our interest in this problem. However,
we think that given its simplicity, in terms of definition, it is a problem that
deserves to be studied even if given the complexity of coverability problems in
classical Petri nets, one can not expect anything that hardness results. Finaly,
as we have seen with crafting in MMORPG, many optimization problems are
linked with the Min–WSP.

Related works. The Priced Petri nets are an extension of standard Petri nets
[2,3,4]. It consists in a net where transitions have a cost and possibly an aging
effect on the current stock. When a token ages, a conservation cost must also be
paid. Given an input stock and a target stock, the Priced Coverability problem
consists in the search for a minimum cost sequence of transitions transforming
the input stock into a stock containing the target stock. This associated decision
problem is decidable if and only if the costs are non-negative. This is an extension
of our weighted synthesis problem as the conservation cost of the molecules is
null and we do not take time into account. Abdulla et al. studied the decidability
of the priced Petri nets problems. Our work considers the approximability and
parameterized complexity of our model.

In the works of Abdulla et al. or ours, we introduce an optimization compo-
nent into the problem which try to capture a chemical property. This has also
been done in recent work. For example, [5] introduces an NP-Complete problem
in which, given an initial stock and some target place, we search for a reachable
stock containing a maximum number of tokens in the target place.

Our contribution. In this paper, we focus on two optimization versions of the
Petri Net Coverability problem. The first one is the above-mentionned Minimum
Weight Synthesis Problem (Min–WSP). We study the complexity, the approx-
imability from a chemist point of view in a sense that we also consider firstly
the fact that a chemical reaction has neither a high number ρ of reactants nor
a high number π of products and secondly the fact that the number C of tar-
get molecules is small. Consequently, in addition to the classical complexity and
approximability studies, we also deal with the parameterized complexity and
approximability with respect to ρ, π and C.

In Section 3, we prove that Min–WSP is decidable and that determining if
an instance of Min–WSP has a feasible solution is polynomial. However, we also
prove this problem to be EXPSPACE-hard and not polynomially approximated
to within a polylogarithmic ratio even if we consider the parameterized versions
where π = ρ = 2 and C = 1.

In the second problem, called Minimum Limited sequence Weighted Synthesis
problem (Min–LWSP), we also search for a minimum transformation cost to cover
a target stock. However, contrary to Min–WSP, we consider a human constraint
in the sense that we limit the number of transitions we can fire so that the
number l of chemical reactions we need and the number of molecules we have



to buy in order to synthesis a molecule is reasonable. We study how this new
parameter l affects the results of the first problem.

Table 1 summarizes the complexity results for Min–WSP and Min–LWSP
given in Sections 3 and 4.

Table 1. Summary of the results of the paper. The four first lines concern Min–WSP
and the others concern Min–LWSP. The four first columns indicate how the parameters
of the problems are considerered for the complexity: a unary entry, a binary entry, a
fixed constant or a fixed value. Note that l is not defined for Min–WSP thus for the
four first lines. The columns Opt. sol. and Feas. sol. respectively specify if the results
stands for the search of an optimal solution, the search of the existence of a feasible
solution or both.

l ρ π C Opt. sol. Feas. sol. Result

M
in

–
W

S
P - × Decidable Th. 1

- 2 2 1 × EXPSPACE-Hard Th. 2

- 2 2 1 × Polylog-Inapprox Th. 5

- × P Th. 3

M
in

–
L
W

S
P

Binary 2 2 1 × × PSPACE-Complete Th. 7

Unary 2 2 1 × × NP-Complete Th. 8

cst . × × XP Th. 9

cst . cst . × × W[2]-Hard Th. 10

cst . cst . × × W[2]-Hard Th. 10

cst . cst . × W[1]-Complete Th. 12

cst . cst . cst . cst . × W[1]-Hard Th. 11

The hardness results for deciding the existence of a feasible solution of an
instance of Min–LWSP immediately proves hardness of approximability for the
optimization problem.

The next section is dedicated to the formal definitions of the terminology. In
addition, it gives drawing conventions of this paper and details the parameters we
focus on in the parameterized complexity study. Sections 3 and 4 are respectively
dedicated to the studies of Min–WSP and Min–LWSP.

2 Definitions

This section is dedicated to the formal definitions of the terminology we use and
of the problems we study in this paper.

2.1 The Petri Net Coverability problem

A Petri net is a triplet (P, T ,M0) where P is the finite set of places and T is
the finite set of transitions. Each place may contain zero, one or more tokens. A
state M maps P to N, each place x is associated with a non-negative number



M(x) of tokens. We write, using classical vector notation [18], M =
∑
x∈P

ax · x

where ax = M(x). We may possibly remove a place x from the sum if ax is null.
Particularly, an empty state is denoted by ∅. M0 is called the initial state of the
Petri net: it defines the initial number of tokens in each place. Each transition
t ∈ T is a couple of states t− =

∑
x∈P

t−(x) ·x and t+ =
∑
x∈P

t−(x) ·x, respectively

called the input state and the output state of t. The set of places for which
t−(x) > 0 and the set of places for which t+(x) > 0 are respectively called the
input states and the output states. We denote the transition by t = t− → t+.

We say a state M ′ covers another state M if and only if, for all x ∈ P,
M ′(x) ≥M(x). Considering a state M of the Petri net, one can fire a transition
t ∈ T if M covers the input state t−. We say t is enabled at M . In that case, the
resulting state is M ′ =

∑
x∈P

(M(x)− t−(x) + t+(x)) · x. We denote this by M ⇒t

M ′. In other word, firing a transition means transforming some tokens in the
input places into tokens in the output places. Similarly, we can define a sequence
T = (t1, t2, . . . , t|T |). This sequence is enabled at M if we can successively fire
all the transitions of T from t1 to t|T |. In that case, and if firing this sequence
produce the state M ′, we write M ⇒T M ′. Note that the sequence T may
contain a transition t more than once.

We can now formally define the classical coverability problem in Petri nets.

Problem 1 (Coverability). Given a Petri net (P, T ,M0) and a target state C, is
there an enabled sequence T at M0 such that M0 ⇒T M and M covers C?

We represent an instance of this problem by a bipartite directed graph in
which the places are circle nodes and the transitions are squared nodes. For each
transition nodes t, we represent the input and output state using incoming and
respectively outgoing arcs. An arc (x, t) (resp. (t, x)) is associated with the value
t−(x) (resp. t+(x)). We omit this value when it is 1 and we omit the arc when
it is 0. For each target place, i.e. a place x for which C(x) 6= 0, is drawn with
a double circle. A dashed outgoing arc, from x, is associated with the number
C(x). Given a state M , M(x) is represented by a value inside the circle node x.
An example is given on Figure 1.

2.2 The Weighted Petri Net Synthesis problem

The Minimum Weighted Synthesis Problem (Min–WSP) insert an optimization
part to the previous problem. Each transition t ∈ T is associated with a non-
negative weight ω(t) ∈ R+. In addition, the initial state M0 is always ∅, there
is not any token in any place. However, note that the Petri net may contain
transitions for which the input state is empty.

We define the weight ω(T ) of a sequence T of transitions of T as the sum
ω(T ) =

∑
t∈T

ω(t).

Problem 2 (Minimum Weighted Synthesis, Min–WSP). Given a Petri net (P, T , ∅),
a weight function ω : T → R+ over the transitions and a target state C, return



3

x

2

y

2

z

c

t1 t2

2

2

3 2

6

Fig. 1. This figure illustrates an instance of the coverability problem: a Petri Net with
four places x, y, z, c and two transitions t1 = 2x+ y → 2z + 3c and t2 = z → 2c. The
initial state M0 is 3x + 2y + 2z. After firing t1, t2, t2 we obtain the state M = x + 7c
which is covering the target state 6c.

a enabled sequence T at ∅ of T such that ∅ ⇒T M , M covers C, and ω(T ) is
minimum.

In addition, we denote by FS–MWSP the problem of determining if there
exists a feasible solution for an instance of Min–WSP.

We use a representation similar to the classical Petri nets. We add a table
indicating the weight of each transition. An example of a Min–WSP instance if
is given in figure 2.

x

y z

c

tx

ty

t1 t2

2

2

3 2

6

transition weight

tx 1

ty 2

t1 2

t2 4

Fig. 2. This figure illustrates a instance of Min–WSP. It is a Petri Net with four
places x, y, z, c and four transitions tx = ∅ → x, ty = ∅ → y, t1 = 2x+ y → 2z + 3c and
t2 = z → 2c. The initial state M0 is ∅. After firing (ty, ty, tx, tx, tx, tx, t1, t1) of weight
12 we obtain the state M = 7c which is covering the target state 6c.

2.3 Parametrized version of Min–WSP

In order to analyze the parametrized complexity of the Petri Net Synthesis prob-
lem, we introduce four different parameters: ρ and π, respectively the maximum
number of input and output tokens among all the transitions of T , C the size of
the target state and l the number of transitions fired in a feasible solution. As



the three first are constraints on the instances, the last is a constraint on feasible
solutions so we will threat it independently.

The two first parameters, ρ and π, limit the maximum number of input and
output tokens. More formally,

ρ = max
t∈T

∑
x∈P

t−(x)

π = max
t∈T

∑
x∈P

t+(x)

The third parameter on which we focus is the size C =
∑
x∈P
C(x) of the

target state C. From a chemical perspective, these parameters model the limited
number of reactants, products of reactions and the number of molecules we want
to synthesize, which is likely to be small.

Finally, we define a fourth parameter l to limit the number of molecules we
can buy and the number of reactions we can perform to synthesize the target
molecules. As introducing this parameter changes the set of feasible solutions
for an instance (see Example 1), we define an independent problem: Minimum
Limited sequence Weighted Synthesis problem (Min–LWSP).

Example 1. We constraint the instance of Figure 1 by introducing a parameter
l = 6 to limit the number of fired transitions. As a consequence the sequence
T = (ty, ty, tx, tx, tx, tx, t1, t1) is not a feasible solution anymore as it contains
8 transitions. This constraint instance contains only one feasible solution: the
sequence T ′ = (ty, tx, tx, t1, t2, t2) of weight 14.

Problem 3. Limited sequence Weighted Petri Net Synthesis problem
(Min–LWSP). Given a Petri net (P, T , ∅), a weight function ω : T → R+ over
the transitions, a target state C and an integer l, return a enabled sequence T at
∅ of T such that ∅ ⇒T M , M covers C, |T | ≤ l and ω(T ) is minimum.

Similarly to FS–MWSP, we define FS–MLWSP the problem of determining
if there exists a feasible solution for an instance of Min–LWSP.

3 Min–WSP

In this section, we study the complexity, the approximability and the parame-
terized approximability of Min–WSP.

3.1 Complexity and parameterized complexity

The two next theorems give an upper bound and a lower bound of the complexity
of Min–WSP: the problem is decidable but EXPSPACE-hard.

Theorem 1 ([2]). Min–WSP is decidable.



Theorem 2. Min–WSP is EXPSPACE-hard even if π = ρ = 2 and C = 1.

Remark 1. The theorem 2 shows that Min–WSP is not easier if we fix the three
parameters π, ρ and C. As a consequence, there is no parameterized results
considering those three parameters.

Proof. The proof of EXPSPACE-hardness is a reduction from the Petri net Cov-
erability problem. This problem is EXPSPACE-hard [18,20]. Note that this result
remains true if the Petri net satisfies π = ρ = 2 and if the target state contains a
polynomial number C of tokens. We can create a equivalent instance with only
one target token and π = ρ = 2 by firstly adding a new place c and a new transi-
tion using all the C target tokens to create one token in c. Finally, transform this
transition into C − 1 transitions and add C − 2 new places as shown in Figure 3
so that ρ remains 2. As C is polynomial, this transformation is polynomial too.

c3

c2

c1

2

1

1

c3

c2

c1

c

1

Fig. 3. Example of transformation from an instance (on the left) in which the target
state C = c1 + c2 + 2 · c3 (and then C = 4) to an instance (on the right) satisfying
C = 1. The weight of every transition is 0.

Let I = ((P, T ,M0), C) be an instance of the Petri net Coverability problem.
We create an instance J of Min–WSP in which the Petri net is (P, T ∪ {t}, ∅)
in which we add a transition t which creates M0(x) tokens in x for every x ∈ P
from nothing. The weight of t is 1 and the weight of each other transition is 0.
Finally, the target state is C. Then C is coverable in I if and only if there is
a feasible solution of weight 1 in J . As a consequence the decision version of
Min–WSP is EXSPACE-hard.

This last theorem shows that the problem of determining if there exists a
feasible solution for an instance of Min–WSP is polynomial.

Theorem 3. FS–MWSP is polynomial.

Proof. In order to find a feasible solution, for each transition t for which the input
state is empty, we mark all the output places of t. Then, for each transition t for
which all the input places are marked, we mark all the output places. We repeat
this marking operation either until no new place is marked. There is a feasible
solution if and only if all the target places are marked.



This means that it is conceivable to build approximation algorithms for this
problem. However, we show in the next subsection a high inapproximability ratio.
Moreover, note that Theorem 3 does not explain how to build a feasible solution.
In fact, even if we can easily adapt the algorithm given in the proof to return
such a solution, for some instances, no feasible solution contains a polynomial
number of transitions. See, for example, the instance on Figure 4.

xn x3 x2 x1 x0txn tn t3 t2 t12 2 2 2 1. . .

Fig. 4. Example of instance for which the number of transitions is exponential. Indeed,
in order to put a token in the place x0, we need to buy 2n tokens for xn using the
transition txn , then fire 2n−1 times the transition tn, then fire 2n−2 times the transition
tn−1, and so on until we fire once the transition t1. This sequence contains then 2n

transitions.

3.2 Approximability

We show in this subsection that Min–WSP cannot be approximated within a
polylogarithmic ratio in polynomial time. Basically, the best ratio an approxi-
mation algorithm may achieve is at least polynomial in the size of the instance.
In order to prove this inapproximability result for Min–WSP, we build, in this
subsection, a reduction from the MMSAh problem.

Problem 4. Minimum Monotone Satisfying Assignment (MMSAh). Given
a set Y of boolean variables and a monotone boolean formula ϕ of depth h (this
formula has h levels of altenating AND and OR gates, where the top levels is an
AND gate), minimize the number of true variables such that ϕ is satisfied.

We respectively call D(ϕ) and C(ϕ) the set of OR and AND gates in the
formula.

Theorem 4 ([26]). Unless P = NP, there is no polynomial approximation for
MMSA3 with a ratio Q(log(|Y |), log(|D(ϕ)|), log(|C(ϕ)|)) where Q is any poly-
nomial.

We now detail and prove a reduction from MMSAh to Min–WSP. An example
is given on Figure 5. Let I = (Y, ϕ) be an instance of MMSAh, we build the
following instance J :

– add one place x0 and a transition t0 = ∅ → x0;
– for each variable y, add one place xy and a transition ty = x0 → ly ·xy where
ly is the number of literals y in ϕ;

– add one place xg for each gate g;



– for each OR gate g =
∨
i ϕi, where ϕi are either gates or variables, add, for

each i, a transition tig = xϕi → xg;
– for each AND gate g =

∧
i ϕi, where ϕi are either gates or variables, add a

transition tg =
∑
i xϕi → xg;

– set the target state to C = xg where g is the top level AND gate;
– set the weight of t0 to 1 and the weight of every other transition to 0.

x0

xa

xb

xc

xd

xa∨b

xa∨c∨d

xϕt0

taa∨b

tba∨b

taa∨c∨d

tca∨c∨d

tda∨c∨d

ta

tb

tc

td

2

1

transition weight

t0 1

t 6= t0 0

Fig. 5. Example of reduction from MMSA2 to Min–WSP with the boolean formula
ϕ = (a ∨ b) ∧ (a ∨ c ∨ d).

Lemma 1. If there is a feasible solution for I with ω ≥ 1 true variables, there
is a feasible solution for J of weight ω.

Proof. The solution consists in firing ω times t0 (this way, we put ω tokens in
the place x0) and then using all the transitions of the true gates and variables
in the formula, starting with the variables and the lower gates and terminating
with the top level AND gate. The proof that, when a transition is fired, all the
input places contain a token (and then that the solution is feasible) can be done
by induction on the height of each gate.

Lemma 2. If there is a feasible solution for J of weight ω ≥ 1, there is a
feasible solution for I with at most ω true variables.

Proof. Let T = (t1, t2, . . . , t|T |) be a feasible solution for J of cost ω ≥ 1. We
now prove that assigning true to all the variables y ∈ Y such that ty ∈ T is a
feasible solution for I of cost at most ω. Let f be the boolean function associating
to each variable and each gate the value true or false. We have to check that
f(g) is true where g is the top level AND gate.

Firstly, there are at most ω distinct variables for which the transition is fired
in T . Indeed, in order to fire the transition ty associated with the variable y ∈ Y ,



we have to fire the transition t0 of weight 1 first in order to put a token in x0.
As the weight of T is ω, there are at most ω variables set to true.

Secondly, for each 1 ≤ i ≤ |T | such that ti 6= t0, the transition ti is associated
either with a variable y or a gate g. Considering how we set the true and false
variables in I, if the transition is associated with a variable y, then f(y) is true.
We now prove by induction on i that, on the other case, f(g) is true. Let ϕ(t)
be the variable or the gate associated with the transition t, for t 6= t0. Similarly,
ϕ(x) is the variable or the gate associated to the place x, if x 6= x0. Note that
the first transition ti for which ti 6= t0 is necessarily associated with a variable.
We now assume that, for every j ≤ i, either tj = t0 or f(ϕ(tj)) is true. We also
assume, without loss of generality that ti+1 6= t0 and that g = ϕ(ti+1) is an
OR gate: g = ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕk. Thus, ti+1 has one input place x 6= x0 such
that ϕ(x) = ϕκ for some κ ∈ J1; kK (and ti+1 = tϕκg ). Before this transition is
fired, x contains a token otherwise T would not be a feasible solution for J . As
x 6= x0, the token in x was added by a reaction tj 6= t0 for some j ≤ i and
ϕ(x) = ϕ(tj) = ϕκ. By the inductive hypothesis, f(ϕ(tj)) is true, then f(g) is
true. A similar argument occurs if g is an AND gate. Consequently, there is a
feasible solution for I of cost at most ω.

Theorem 5. Unless P = NP, there is no polynomial approximation for Min–
WSP with a ratio Q(log(|P|), log(|T |)) even if π = ρ = 2 and C = 1 where Q is
any polynomial.

Proof. Let Q be a polynomial. We assume that the cost of an optimal solution for
I is ω∗. We can use the previous reduction to build an instance J . By Lemmas 1
and 2, the cost of an optimal solution for J is ω∗. If there is a Q(log(n), log(m))-
approximation for Min–WSP, we can use it to build a solution for J of cost at
most Q(log(n), log(m)) · ω∗, and then use Lemma 2 to build a feasible solution
for I of cost at most Q(log(n), log(m)) · ω∗.

Finally note that, in the reduction m = |C(φ)| + |D(φ)|(|D(φ)| + |C(φ)| +
|Y |)+|Y | et n = 1+|C(φ)|+|D(φ)|+|Y |, thus there is a polynomial Q′ such that
Q(log(n), log(m)) ≤ Q′(log(|Y |), log(|D(ϕ)|), log(|C(ϕ)|)). As a consequence, we
have built a Q′(log(|Y |), log(|D(ϕ)|), log(|C(ϕ)|))-approximation for MMSAh.
By Theorem 4, this is a contradiction.

4 Min–LWSP

In this section, we study the complexity, the approximability and the parame-
terized approximability of Min–LWSP.

4.1 Complexity

Theorem 6. The decision versions of Min–LWSP and FS–MLWSP are in PSPACE.

Proof. Let K be any integer. We search for the existence of a feasible solution
of weight less than K. To achieve this, we provide a non-deterministic algorithm
that runs in polynomial space.



We start with a state where all the places are empty. At each iteration, we
non-deterministically choose a transition t. If t is not enabled at the current state
or if the maximum weight K is lower than the current weight, then return NO,
otherwise, fire the t. If l+ 1 transitions were fired, return NO. If the target state
is covered, return YES. If none of those cases occur, we start a new iteration.

At each iteration, the algorithm must store, for each place, the number of
tokens in that place. Those numbers are no more than l · π as a transition can
produce at most π tokens. It must also store the current total weight and the
number of the current transition, which are respectively no more than K and
l. Consequently, this algorithm runs in polynomial space and Min–LWSP is in
NPSPACE.

As PSPACE = NPSPACE [25], Min–LWSP is in PSPACE. The proof for
FS–MLWSP is exactly the same except that we do not have to consider the
weight.

Theorem 7. The decision versions of Min–LWSP and FS–MLWSP are PSPACE-
complete, even if ρ = π = 2 and C = 1.

Proof. The proof of Theorem 1 of [18], page 287, gives a reduction from the
Turing halting problem in polynomial space to the Reachability problem (and
the Coverability problem) for 1-Conservative Petri nets with ρ = π = 2 and
C = 1. The same reduction can be used to prove our theorem. Some states
encode the tape and others encode the states of the automata. Each transition
function is encoded by a transition of the Petri net of weight 0. As the machine
cannot use more that P (|x|) cells of the tape, where P is a polynomial and x is
the input word, it cannot use more than 2P (|x|)|Q| transitions where |Q| is the
size of the automata otherwise the machine loops indefinitely. Thus the Petri net
must cover the target state by firing at most that number of transitions. The
initial state of the Petri net of the proof of [18] encodes the word x written on the
tape and the initial state of the automata. In this version, we add a transition t0
of weight 1 that creates that initial state from nothing. We can then transform
t0 into multiple transitions as we did in Theorem 2 so that π remains 2. The
machine halts without using more than P (|x|) cells if and only if the Petri net
covers the target state with at most 1 + 2P (|x|)|Q| transitions of total weight at
most 1.

Thus the decision version of Min–LWSP is PSPACE-hard. By Theorem 6,
the decision version of Min–LWSP is PSPACE-Complete, even if ρ = π = 2 and
C = 1.

In order to prove that FS–MLWSP is also PSPACE-hard, we must prevent
the transition t0 from being fired twice in a feasible solution. To do so, we add a
place x0 as input of t0 and a construction as the one given in Figure 4 so that we
need to fire at least 2P (|x|)+1|Q| transitions in order to put a token in the place
x0. We then set l = 2P (|x|)+1|Q| + 2P (|x|)|Q| + 1 so that any feasible solution
cannot place more than one token in x0 and then cannot fire t0 twice.

The same ideas show the following theorem.



Theorem 8. If the encoding of l is unary, the decision versions of Min–LWSP
and FS–MLWSP are NP-Complete, even if ρ = π = 2 and C = 1.

4.2 Parameterized complexity and approximability

We present in this section four theorems describing the parameterized complexity
of Min–LWSP and FS–MLWSP. There are proved using reduction from and to
the set cover problem and the partitioned clique problem.

Problem 5. Set Cover. Given an integer K, a set E and a set S ⊂ 2E , find a
subset S′ of S covering E such that |S′| ≤ K.

Problem 6. Partitioned clique Given an undirected graph G = (V,E) and a
partition V1, V2, . . . , Vk of V , find a clique of size k with exactly one node in each
set Vi.

Set Cover problem is W[2]-Complete with respect to the parameter K [8].
Partitioned clique problem is W[1]-complete with respect to the parameter k [23].

Theorem 9. Min–LWSP is XP with respect to the parameter l.

Proof. Indeed, one can search for an optimal solution by exhaustively enumerate
all the ml sequences of transitions.

Theorem 10. FS–MLWSP is W[2]-hard with respect to the parameters l and ρ
and is W[2]-hard with respect to the parameters l and C.

Proof of Theorem 10. This proof is an FPT reduction from the set cover problem
parameterized with K. Let I = (K,E, S) be an instance of Set Cover. We now
build an instance J of FS–MLWSP parameterized with l and ρ.

We create for each element e in E a place xe. For each set s in S, we create a
transition ts = ∅ →

∑
e∈s

xe. The target state is C =
∑
e∈E

xe. We finally set l = K.

This reduction satisfies ρ = 0. A feasible solution S′ for I can be transformed into
a feasible solution for J by firing every transition ts for s ∈ S′ and, conversely,
from a feasible solution for J , we can build a feasible solution for I by selecting
the sets for which the transition is fired. As this reduction is FPT with respect
to K, FS–MLWSP is W[2] with respect to l and ρ.

If we now add to this instance a new place c and a new transition
∑
e∈E

xe → c;

and if the target state is C = c, we get an instance of FS–MLWSP in which C = 1.
Note that ρ does not polynomially depend on the parameter K. As this reduction
is also FPT with respect to K, FS–MLWSP is W[2] with respect to l and C.

Theorem 11. FS–MLWSP is W[1]-hard with respect to the parameters l, ρ, π
and C.

Proof. Given an instance I = (G,V1, V2, . . . , Vk) of Partitioned Clique, we now
build the following instance J of FS–MLWSP parameterized with l, ρ, π and C:



– add one place x0 and a transition t0 = ∅ → x0;
– add one place xv and a transition tv = x0 → (k−1) ·xv for each node v ∈ V ;
– add one place ci,j for each i < j ∈ J1; kK;
– add, for each edge e = (u, v) such that u ∈ Vi, v ∈ Vj and i < j, a transition
te = xu + xv → ci,j ;

– set the target state to C =
k−1∑
i=1

k∑
j=i+1

ci,j ;

– set l to 2k + k·(k−1)
2 .

An example is given Figure 6.
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Fig. 6. Example of reduction from Partitioned Clique to FS–MLWSP. On the left, the
three dashed ellipses describe the partition of the nodes.

This reduction is polynomial and l, C, ρ and π depends only on k. Thus it
is FPT with respect to k.

If there is a clique (v1, v2, . . . , vk) of size k in G satisfying vi ∈ Vi for i ∈ J1; kK,
there is a feasible solution for J consisting in buying k tokens for the place x0
with the transition t0, firing the k transitions tvi for i ∈ J1; kK and then firing

the k·(k−1)
2 transitions t(vi,vj) for i < j ∈ J1; kK. Those transitions exist and are

enabled as (v1, v2, . . . , vk) is a clique.
We now assume there is a feasible solution T = (t1, t2, . . . , t|T |) for J . It

satisfies |T | ≤ l. Let TV and TE be respectively the set of transitions {tv, v ∈ V }
and {te, e ∈ E}. Let (M0 = ∅,M1,M2, . . . ,M|T |) be the successive states of J
after firing the transitions of T . Note that ∅ ⇒T M|T |, and, as a consequence, this
state M|T | contains at least C(ci,j) = 1 token in each place ci,j for i < j ∈ J1; kK.
Only the transitions of TE can create such tokens. As none of those transitions

create more than one such token, there are, in T , at least k·(k−1)
2 transitions of



TE . As l = 2 · k+ k·(k−1)
2 , there are at most 2k transitions of {t0} ∪ TV in T . As

there must be a token in x0 before a transition of TV can be fired, there are at
most k transitions of TV in T .

In addition, there is, for each i ∈ J1; kK, at least one node vi in Vi and an
integer l such that Ml(xvi) ≥ 1. Indeed, otherwise, no transition of TE placing a
token in cji or cij for all j 6= i could have been fired. Thus, there are in T exactly
k transitions of TV . Each one is associated with one node vi ∈ Vi for i ∈ J1; kK.

Finally, (v1, v2, . . . , vk) is a clique, otherwise, some transition t(vi,vj) would
not exist and consequently no token could have been placed in ci,j .

This conclude the reduction. FS–MLWSP is W[1]-Hard with respect to the
parameters l, C, π and ρ.

We finally prove that FS–MLWSP belongs to the W[1] class if parameterized
with l and π. We first give an intermediate lemma proving that, if l and π are
fixed, we can consider that ρ and C are fixed too.

Lemma 3. There exists an FPT-reduction from FS–MLWSP parameterized with
l and π to FS–MLWSP parameterized with l, π, ρ and C.

Proof. As there are at most l transitions in a feasible solution and as every
transition may produce at most π tokens, a feasible solution may produce at
most l · π tokens. Consequently, if C > l · π there is no feasible solution and the
problem is solved. In addition, if a transition needs more than l ·π input tokens,
this transition may be removed from the instance as it is not possible to fire it.
We then necessarily get an instance where C ≤ l · π and ρ ≤ l · π.

Theorem 12. FS–MLWSP is W[1]-complete with respect to the parameters l
and π.

Due to its length, the complete proof is given in Appendix A. It is based on
a reduction to the partitioned clique problem.

Remark 2. Note that Theorem 12 does not prove any parameterized result on
Min–LWSP. Determining if Min–LWSP is W[1]-Complete with respect to l and
π and with respect to l, ρ, π and C are open questions.

Finally, the complexity of the determing if there exists feasible solutions for
Min–LWSP allows us conclude this section with the following corollary.

Corollary 1. Let Q by a polynomial.

– Unless P = PSPACE, there is no polynomial approximation for Min–LWSP
with a ratio 2Q(|P|,|T |) even if ρ = π = 2 and C = 1.

– Unless P = NP, there is no polynomial approximation for Min–LWSP with
a ratio 2Q(|P|,|T |) even if ρ = π = 2 and C = 1 and if the encoding of l is
unary.

– Unless FPT = W[1], there is no FPT approximation for Min–LWSP with
ratio 2Q(|P|,|T |), with respect to l, ρ, π and C.

Proof. Those results are respectively deduced from Theorem 7, 8 and 11.



5 Conclusion

In this paper we present the Minimum Weight Synthesis problem, a variant of
the classical Coverability problem introducing weights on transitions. We pro-
vide a deep analysis of the complexity and parametrized complexity. Our results
are summarized in table 1. They illustrate how hard this problem is even when
most parameters are constrained. In the last section, we prove that using ap-
proximation algorithm for solving this problem is not adequate as there is no
constant ratio or small variable ratio approximation algorithm.

From a theoretical perspective, there are a few cases of parameterized com-
plexity which are still open questions. In particular, theorems 10 and 11 provide
W[1]-hard and W[2]-hard results. It would be interesting to find others reduc-
tions to achieve completeness results.

From a more practical perspective, as the problem is hard to solve and to
approximate, we should now study the different heuristic algorithms.
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A Proof of Theorem 12

Theorem 12. FS–MLWSP is W[1]-complete with respect to the parameters l
and π.

Proof. By Lemma 3 and Theorem 11, we have to prove that FS–MLWSP is W[1]
with respect to l, ρ, π and C. To do so, we describe a reduction to the partitioned
clique problem. Let I = ((P, T , ∅), ω, C, l) be an instance of FS–MLWSP. We
assume that I contains a fake transition t0 such that t−0 = t+0 = ∅ so that I
contains a feasible solution of size lower than l if and only if it contains a feasible
solution of size exactly l. We now create an instance J = (G,V1, V2, . . . , Vl, Vl+1)
of the partitioned clique problem such that J contains a feasible solution if and
only if I does. An example is given in Figure 7.

In the remaining of this proof, given a state M , the ordered set of states
{α1, α2, . . . , αk} is called a decomposition of M if and only if

∑k
j=1 αj = M .

The state αj may be empty.
Let t be a transition of I. For each i ∈ J2; lK, we create at most (i − 1)ρ ·

(l − (i + 1))π nodes in Vi, one per decomposition of t− in i − 1 states and per
decomposition of t+ in l − i + 1 states. If t− = ∅, we also create at most lπ

nodes in V1, one per decomposition of t+ into l states. Finally, we add at most
lC nodes to Vl+1, one for each decomposition of C into l sets. For example, in
Figure 7, t−1 = ∅ and t+1 = x + 2y. We add six nodes to V1 as there are six
possible decompositions of t+i into 2 states : {∅, x + 2y}, {x, 2y}, {x + y, y} and
the symmetrical decompositions. Note that the number of nodes in G is FPT
with respect to the parameters l, ρ, π and C.

Let i < j ∈ J1; lK, and vi ∈ Vi and vj ∈ Vj be two nodes of G. The node
vi is associated with a transition ti, a decomposition of t−i and a decomposition
{αi+1, αi+2, . . . , αl+1} of t+i . Similarly, the node vj is associated with a transition
tj , a decomposition {β1, β2, . . . , βj−1} of t−j and a decomposition of t+j . We add
to G the edge (vi, vj) if and only if αj covers βi.

Similarly, let i ∈ J1; lK, and vi ∈ Vi and vl+1 ∈ Vl+1 be two nodes of G. The
node vi (respectively vl+1) is associated with a transition ti, a decomposition
of t−i and a decomposition {αi+1, αi+2, . . . , αl+1} of t+i (resp. a decomposition
{β1, β2, . . . , βl} of C). We add to G the edge (vi, vl+1) if and only if αl+1 covers βi.

For example, in Figure 7, the last node of V1 and the second node of V2
are respectively associated with the decomposition {x + 2y, ∅} of t+1 and the
decomposition {x+ y} of t−2 . The two nodes are linked as x+ 2y covers x+ y.

We now prove that J contains a feasible solution if and only if I contains
an enabled sequence at ∅ with exactly l transitions such that the resulting state
covers C.

We first assume there is a clique of G containing a node vi of Vi for every i ∈
J1; l+1K. Let T = (t1, t2, . . . , tl) be the sequence such that ti is the transition asso-
ciated with vi for i ≤ l. Let {βi,1, βi,2, . . . , βi,i−1} and {αi,i+1, αi,i+2, . . . , αi,l+1}
be respectively the decompositions of t−i and t+i associated with vi and let
{C1, C2, . . . , Cl} be the decomposition of C associated with vl+1.
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Fig. 7. Example of reduction from an instance I of FS–MLWSP with l = 2 on the
left to an instance J of Partitioned Clique on the right. Due to lack of space, the fake
transition is not part of I. Each node of the clique instance is either a transition t with
decompositions of t− (on the left) and t+ (on the right) or an decomposition of C into
2 states. The sequence (t1, t2) is a feasible solution of I. The bold clique on the right
is a feasible solution of J associated with that sequence.

We now show that T is enabled at ∅. As v1 ∈ V1, then t−1 = ∅ and t1 is enabled at
∅. Let i ∈ J1; l− 1K. As (v1, v2 . . . vi, vi+1) is a clique of G, then, by construction,
αj,i+1 covers βj,i+1 for every j ∈ J1; iK. For each place x of P:

i∑
j=1

(t+j (x)− t−j (x)) ≥
i∑

j=1

αj,i+1(x) +

i∑
k=j+1

αj,k(x) +

j−1∑
k=1

βk,j(x)


≥

i∑
j=1

αj,i+1(x) +
∑
j<k≤i

(αj,k(x)− βj,k)(x)

≥
i∑

j=1

αj,i+1(x) = t−i+1(x)



Consequently, for every i ∈ J1; lK, (t1, t2, . . . , ti) is enabled at ∅. Finally, we

can similarly show that
l∑

j=1

(t+j (x)−t−j (x)) ≥
l∑

j=1

αj,l+1(x) and, as (vi, vl+1) is an

edge of G for i ≤ l + 1, then, by construction,
l∑

j=1

αj,l+1(x) ≥
l∑

j=1

Cj(x) = C(x)

for every place x. Thus, when firing T , the resulting state covers C and T is a
feasible solution of I.

We now assume there exists such a feasible solution T = (t1, t2, . . . , tl) of
I and prove J contains a clique of size l + 1. Let γi,j , for i < j ∈ J1; lK be
the states describing the tokens produced by ti and consumed by tj ; let γi,l+1

be the tokens produced by ti, not consumed by any next transition and used
to cover C ; and finally let γ′i,l+1 be the not consumed tokens of t+i that are

not used to cover C. Thus, we have firstly t+i =

(
l+1∑
j=i+1

γi,j

)
+ γ′i,l+1, secondly

t−j =
j−1∑
i=1

γi,j and thirdly
l∑
i=1

γi,l+1 = C. For each set Vi with i ≤ l, we select

the node vi associated with ti, the decomposition {γj,i, j ≤ i− 1} of t−i and the
decomposition {γi,i+1, . . . , γi,l, γi,l+1 + γ′i,l+1} of t+i . We finally choose the node
vl+1 of Vi+1 associated with the decomposition {γj,l+1, j ≤ l} of C. If i < j ≤ l,
then γi,j is the j-th state of the decomposition of t+i and the i-th state of the
decomposition of t−j . By construction the edge (vi, vj) belongs to G. Moreover, if

i ≤ l, the last state γi,l+1 +γ′i,l+1 of the decomposition of t+i covers the i-th state
γi,l+1 of the decomposition of C. By construction the edge (vi, vl+1) belongs to
G. Consequently, {v1, v2, . . . , vl+1} is a clique of size of l + 1 in J .

As a result, FS–MLWSP is W[1] with respect to l and π. By Theorem 11, it
is W[1]-Complete.


