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We consider the rotation of small neutrally buoyant axisymmetric particles in a viscous steady shear flow. When
inertial effects are negligible the problem exhibits infinitely many periodic solutions, the “Jeffery orbits.” We
compute how inertial effects lift their degeneracy by perturbatively solving the coupled particle-flow equations.
We obtain an equation of motion valid at small shear Reynolds numbers, for spheroidal particles with arbitrary
aspect ratios. We analyze how the linear stability of the “log-rolling” orbit depends on particle shape and find it
to be unstable for prolate spheroids. This resolves a puzzle in the interpretation of direct numerical simulations
of the problem. In general, both unsteady and nonlinear terms in the Navier-Stokes equations are important.
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Consider a small neutrally buoyant axisymmetric particle
rotating in a steady viscous shear flow. This problem was
solved by Jeffery [1]. He found that the particle tumbles
periodically: it aligns with the flow direction for a long time
and then rapidly changes orientation by 180 degrees. There are
infinitely many marginally stable periodic orbits, the “ Jeffery
orbits.” This degeneracy means that small perturbations may
have substantial consequences. It is thus necessary to consider
perturbations due to physical effects neglected in Jeffery’s
theory.

For very small particles rotational diffusion must be taken
into account [2]. The resulting orientational dynamics forms
the basis for the theoretical understanding of the rheology of
dilute suspensions [3,4]. A second important perturbation is
breaking of axisymmetry. It is known that the rotation of small
particles in a simple shear depends very sensitively on their
shape [5–7]. Third, for larger particles inertial effects must
become important. This is the question we address here. To
compute the effect of particle inertia is straightforward [8,9].
But to determine the effect of fluid inertia on the tumbling is
much more difficult. Despite the significance of the question
there are few theoretical results, we discuss them in connection
with our results below.

To understand the effect of fluid inertia on the motion of
particles suspended in a fluid is a question of fundamental
importance. But in general it is impractical to solve the coupled
particle-flow problem, and there is a long history of deriving
approximate equations of motion for the particles, taking into
account the unsteady and nonlinear convective terms in the
Navier-Stokes equations [10]. The translational motion of a
sphere in nonuniform flows at low Reynolds numbers, for
example, is approximately described allowing for unsteadi-
ness of the disturbance flow but neglecting convective fluid
inertia [11,12]. There are many examples where convective
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fluid inertia must be taken into account, leading to drag and
lift effects [13–16]. In most cases either the unsteady or the
nonlinear term in the Navier-Stokes equations are considered
(but see Refs. [17] and [18]). In our problem both unsteady
and nonlinear convective effects matter.

We have derived an equation of motion for the orientation
of a neutrally buoyant spheroid in a steady shear when inertial
effects are weak but essential. We show how the unsteady and
convective terms in the Navier-Stokes equations determine
the dynamics. Our results explain how the degeneracy of the
Jeffery orbits is lifted by weak inertia. We concentrate on four
examples that have been discussed in the literature [19–24]:
tumbling and log rolling of prolate and oblate particles (Fig. 1).

In this Rapid Communication we give only a brief account
of the formulation of the problem and its perturbative solution
(Secs. 1 and 2). We focus on the main results, Eqs. (6), (7),
and (8), and explain their implications. Details of our calcula-
tion are given in Ref. [25].

1. Formulation of the problem. Tumbling of a spheroid in a
simple shear is governed by the shear Reynolds number Res =
sa2ρf/μ (fluid inertia), the Stokes number St = (ρp/ρf)Res

(particle inertia), and the particle aspect ratio λ. Here s denotes
the shear rate, ρf and ρp are fluid- and particle-mass densities,
and μ is the dynamic viscosity of the fluid. We reserve a for the
major axis length of the particle (used in the definitions of Res

and St). The aspect ratio is defined as the ratio of lengths along
and perpendicular to the symmetry axis. Thus, λ = a/b > 1
(prolate particle) and λ = b/a < 1 (oblate particle), where b

is the minor particle-axis length. We dedimensionalize the
problem by using the inverse shear rate s−1 as time scale,
particle size a as length scale, and μs as pressure scale.
For a neutrally buoyant particle Res = St. To distinguish the
contributions from particle and fluid inertia we keep these two
parameters separate. In dimensionless variables the angular
equations of motion for an axisymmetric particle read

ṅ = ω × n , (1a)

St L̇ = St (I ω̇ + İω) = T . (1b)

Here n is the unit vector along the particle symmetry
axis. Dots denote time derivatives, L is the particle angular
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FIG. 1. (Color online) Spheroid in a simple shear. The flow
direction is ê1, shear direction ê2, and the vorticity points in the
negative ê3-direction. (a) Log-rolling of a prolate particle, n is a unit
vector along the symmetry axis of the particle. (b) Tumbling in the
shear plane of a prolate particle. (c) Log-rolling of an oblate particle.
(d) Tumbling of an oblate particle.

momentum, I is the moment-of-inertia matrix of the particle.
The particle angular velocity is ω, and T is the torque that
the fluid exerts on the particle. To find the torque one must
solve the Navier-Stokes equations for the flow velocitiy u
and pressure p subject to no-slip boundary conditions on the
particle surface S :

Res(∂t u + u · ∇u) = −∇p + ∇2u , ∇ · u = 0 , (2a)

u = ω × r for r ∈ S , and u = u∞ as |r| → ∞ . (2b)

Here r is a spatial coordinate vector with components
(r1,r2,r3) in the Cartesian coordinate system ê1,ê2,ê3 shown in
Fig. 1. The undisturbed flow field, u∞, is a simple shear flow.
We write it as u∞ = r2ê1, so that its gradient matrixA has only
one nonzero element, Aij = δi1δj2. We decompose A into its
symmetric part S = (A + AT)/2, and its antisymmetric part
O = (A − AT)/2.

2. Perturbation theory. The hydrodynamic torque in
Eq. (1b) derives from the solutions of Eq. (2). The boundary
conditions Eq. (2b) in turn depend on both particle orientation
n and particle angular velocity ω. Thus, Eqs. (1) and (2)
are coupled and present a difficult problem. To proceed we
use a reciprocal theorem [17,20,26] to calculate the torque.
Following Ref. [17] we find for the particular case of a simple
shear flow:

T = T (0) − Res

∫
V

dv Ũ
(

∂t u︸︷︷︸
unsteady

fluid inertia

+ u · ∇ u︸ ︷︷ ︸
convective

fluid inertia

)
. (3)

The first term T (0) in Eq. (3) is the viscous torque computed
by Jeffery [1]. The volume integral is the O(Res)-correction
to the hydrodynamic torque. The integral is taken over the
entire fluid volume V outside the particle. The elements of the
matrix Ũ are obtained by solving an auxiliary Stokes problem.
Details are given in Ref. [25].

Equation (3) is exact. The difficulty is that the integrand
depends on the sought solution u of Eq. (2). Therefore, we
follow Refs. [17] and [20] and evaluate Eq. (3) to order O(Res),
the integrand is then only needed to O(1). More precisely,
we assume that St and Res are small and of the same order,
so that ResSt is negligible. This allows us to use the known
Res = St = 0 solutions of Eq. (2) in Eq. (3). The two terms in
the integrand in Eq. (3) have the interpretations given in the
equation, to linear order in Res.

To obtain an equation of motion for n we substitute the
hydrodynamic torque Eq. (3) into Eq. (1b) and expand:

ω = ω(0) + St ω(St) + Res ω(Res) + . . . (4)

Each order in St and Res must satisfy Eqs. (1b) and (3),
determining the contributions on the right-hand side of Eq. (4).
To lowest order we find the condition T (0) = 0. It gives

ω(0) = � + �n × Sn, (5)

where � = (λ2 − 1)/(λ2 + 1) and � = (∇ × u∞)/2, so that
On = � × n. Equation (5) is Jeffery’s result [1] for the
angular velocity of a spheroid in a simple shear, in the absence
of inertial effects. The second term in Eq. (4), the St correction,
is found to be equivalent to a result given by Einarsson et al. [9].
We do not reproduce the details here because the expression
for ω(St) is lengthy. The third term, the O(Res) correction,
involves the integral in Eq. (3). But even in perturbation theory
[evaluating the integrand to order O(1)] it is difficult to perform
the integral for arbitrary orientations n.

3. Symmetries. Exploiting the symmetries of the problem
we can show that it is enough to evaluate the integral for only
four directions n. The corresponding four integrals suffice to
determine the orientational equation of motion for n. Here we
discuss the idea and give the resulting equation of motion.
Details are found in Ref. [25].

The small-St and -Res corrections to Jeffery’s equation of
motion are quadratic in A = O + S. The symmetries listed in
Table I constrain the form of these contributions. The resulting
equation of motion has only four degrees of freedom, which
we denote β1, . . . ,β4:

ṅ =On + �[Sn − (n · Sn)n] (6)

+ β1(n · Sn)PSn + β2(n · Sn)On

+ β3 POSn + β4 PSSn.

The right-hand side of the first row is Jeffery’s equation, it
follows from Eqs. (1a) and (5). The remaining terms are all
the terms quadratic in A = O + S that are allowed by the
symmetries listed in Table I. The projection P projects out
components in the n direction: Px = x − (n · x)n. The four

TABLE I. Symmetries constraining the form of Eq. (6).

Incompressibility: TrS = 0
Symmetry of S: ST = S
Antisymmetry of O: OT = −O
Steady shear: OO = −SS, OS = −SO
Normalization of n: n · ṅ = 0
Inversion symmetry: invariance under n → −n, ṅ → −ṅ
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scalar coefficients βα are linear in St and Res, and functions
of the particle aspect ratio: βα = Stβ(St)

α (λ) + Resβ
(Res)
α (λ). To

obtain these functions we evaluate Eq. (4) directly for four
suitably chosen directions n. Comparison with Eq. (6) gives a
linear system of equations that can be solved for the βα .

4. Results for the coefficients βα . In two important limiting
cases, the integrand in Eq. (3) simplifies so that we can derive
explicit formulas for the coefficients βα . Details are given in
Ref. [25].

First, in the limit of large aspect ratios we find that particle
inertia does not contribute, β(St)

α (λ) = 0, and we obtain that the
βα coefficients are asymptotic to

β1 = 7Res

30 log(2λ) − 45
, β2 = 3β1

7
, β3 = β4 = 0, (7)

for large values of λ. The large-λ asymptote of Eq. (7) agrees
with the slender-body limit obtained in Ref. [20], up to a
factor of 8π . We cannot explain this factor but have verified
our results by comparing with an independent calculation
(Ref. [27], see below).

Second, we can evaluate the limit of nearly spherical
particles. We set λ = 1/(1 − ε) and find to O(ε):

β1 = 0, β2 = ε(St/15 + Res/35),

β3 = ε(St/15 − 37Res/105), β4 = ε(St/15 + 11Res/35).
(8)

In this case particle inertia contributes, and this contribution is
consistent with the results of Ref. [9] and also with Eqs. (3.15)
and (3.16) in Ref. [21].

But the correction due to fluid inertia differs from the earlier
results, Eq. (7) in Ref. [19] and Eq. (4.22) in Ref. [21].
In Ref. [19], the Navier-Stokes equations (2) were solved
iteratively with approximate boundary conditions. Only the
final result is given, thus we cannot determine whether the
problem lies in the method or in the algebra. We note that
Saffman’s assertion that particle inertia can be neglected is
incorrect, as Eq. (8) and the results of Ref. [9] show. We have
also verified Eq. (8) by an independent calculation, based on a
joint perturbation theory in ε and Res using a basis expansion in
spherical harmonics. The results are summarized in Ref. [27]
and agree with Eq. (8). We also note that Eq. (4.22) of Ref. [21]
violates the particle inversion symmetry (Table I).

It follows from Eq. (3) that the unsteady and convective
fluid-inertia terms contribute linearly to β(Res)

α . This enables us
to separate their effects to order Res. For large values of the
aspect ratio λ we find that unsteady fluid inertia contributes
(8 log 2λ − 12)−1 to β

(Res)
1 and β

(Res)
2 . Comparison with Eq. (7)

shows that the contribution from convective fluid inertia is of
the same order. For nearly spherical particles, by contrast,
we find that convective inertia dominates (order ε), while the
contribution from unsteady fluid inertia is smaller, of order ε2.

5. Angular dynamics and linear stability analysis. The
inertial corrections in Eq. (6) are small in magnitude when
Res = St is small, but they are important because they destroy
the degeneracy of the Jeffery orbits. We illustrate this effect
by analyzing four cases: log-rolling along the vorticity axis
and tumbling in the flow-shear plane, for prolate and oblate
particles (Fig. 1). In the absence of inertial effects these orbits
are neutrally stable, as all Jeffery orbits in this limit.

Our analysis is motivated by the fact that recent direct
numerical simulation (DNS) results [22–24] of the problem at
small but finite Res have resulted in a debate as to whether log
rolling is stable for prolate particles, or not. We rewrite Eq. (6)
in spherical coordinates, n1 = sin θ cos ϕ, n2 = sin θ sin ϕ,
n3 = cos θ (the Cartesian coordinates are defined in Fig. 1):

ϕ̇ ≡ f (ϕ,θ ) = (� cos 2ϕ − 1)/2 + (β1/8) sin2 θ sin 4ϕ

− sin 2ϕ(β2 sin2 θ + β3)/4, (9a)

θ̇ ≡ g(ϕ,θ ) = � sin θ cos θ sin ϕ cos ϕ

+ sin θ cos θ (β1 sin2 θ sin2 2ϕ + β3 cos 2ϕ + β4)/4.

(9b)

Equation (9) admit two equilibria for θ , log rolling (θ = 0),
and tumbling in the shear plane (θ = π/2); see Fig. 1.

Consider first the linear stability of the tumbling orbit. The
angle ϕ is a monotonously decreasing function of time for
infinitesimal values of Res = St. We can thus parametrize the
orbit by ϕ instead of time, noting that ϕ changes from 0 to −2π

during the period time Tp = 4π/
√

1 − �2. We obtain a one-
dimensional periodically driven dynamical system dθ/dϕ =
g(ϕ,θ )/f (ϕ,θ ). We define the stability exponent as the rate of
separation in one period:

γT = T −1
p lim

δθ0→0
log |δθ−2π/δθ0| . (10)

Here δθ0 is a small initial separation from π/2 at ϕ = 0, and
δθ−2π is the value of this separation at ϕ = −2π , after one
period. Linearization of the θ dynamics gives

γT = T −1
p

∫ −2π

0
dϕ

∂

∂θ

g(ϕ,π/2)

f (ϕ,π/2)
. (11)

Evaluating the integral Eq. (11) to order Res yields an
expression for the exponent γT, linear in βα:

γT = −β4

4
+ 1 − √

1 − �2

4�2
(�β2 − β1) . (12)

Log-rolling is a fixed point of the dynamics Eq. (6), not a
periodic orbit. But its stability exponent can be calculated as
outlined above since the ϕ-dynamics decouples from that of
θ ; see also Ref. [9]. We find

γLR = β4/4 . (13)

Using Eqs. (7) and (8) we obtain in the nearly spherical limit
[ε = (λ − 1)/λ → 0]

γT

Res
∼ −2ε/21,

γLR

Res
∼ 2ε/21. (14)

Thus, log-rolling is unstable for nearly spherical prolate parti-
cles (ε > 0), and tumbling is stable. For nearly spherical oblate
particles the stabilities are reversed. An earlier approximate
theory by Saffman [19] predicts that log-rolling is stable for
neutrally buoyant, near-spherical prolate spheroids at small
Res; see also Ref. [21]. But stable log rolling has not been
observed in DNS for nearly spherical prolate spheroids [22–
24], and it has been debated how to reconcile this fact with
Saffman’s prediction. We have corrected Saffman’s equation
of motion. As Eq. (14) shows, it follows that log-rolling is
unstable for prolate spheroids at small Res, consistent with the
DNS results [23].
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FIG. 2. (Color online) (a) Stability exponent of log-rolling (solid
line). Separately shown are particle-inertia (dotted) and fluid-inertia
contributions (dashed). Data computed using Eqs. (12) and (13) and
numerical results for βα (details are given in Ref. [25]). Also shown
are the asymptote Eqs. (14) and (15), red dashed lines. (b) Same for
tumbling in the shear plane.

In the limit of large aspect ratios we find that the exponents
are asymptotic to

γT

Res
∼ (45 − 30 log 2λ)−1,

γLR

Res
∼ (15λ2)−1. (15)

We see that tumbling is stable in this limit, and log rolling is
unstable.

To determine the stability of the tumbling and log-rolling
orbits for arbitrary values of λ we have computed the βα

by numerically integrating Eq. (3) for four directions n, as
outlined above. Figures 2(a) and 2(b) show the resulting
exponents. The asymptote Eqs. (14) and (15) are also shown
in Fig. 2. Figure 2(a) demonstrates that log rolling is unstable
for prolate particles of any aspect ratio. Figures 2(a) and 2(b)
also show the separate contributions from fluid and particle
inertia to the stability exponents. We see that the contribution
of fluid inertia is in general significantly larger than that of
particle inertia.

6. Concluding remarks. It would be of great interest to
study by DNS how the stability exponents change as Res is
increased and to determine how the results described here
connect to those of Ref. [24] valid at larger Res. Second, we
plan to generalize the calculation summarized here to describe
wall effects at small Res, by the method of reflection [28].
Third, to describe sedimenting particles it is necessary to
generalize our results to ρp 	= ρf . Fourth, both the unsteady
term and the nonlinear term in the Navier-Stokes equations
matter in our problem. This raises the question under which
circumstances both effects matter for the tumbling of small
particles in unsteady flows, and in particular in turbulence.
Finally, we remark that Jeffery orbits are commonly used as
benchmarks for DNS, despite being valid only in the limit
Res = 0. Our solutions provide a new reference when fluid
inertia is essential but weak.
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