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1 Introduction

In this paper we develop models for network design in the presence of two types of actors:
network owners and network users. The problem is to maximize the profit of a network owner
by selecting the tolls or tariffs charged for the network usage by the network owner. The novelty
of the paper consists in considering uncertainty in the demand and network costs for the users
(for example, travel times). Besides of substantial theoretical and computational interest, this
problem has applications in telecommunication and road networks. The modelling framework
is based on bilevel programming and Stackelberg games [8]. The bilevel programming (BP for
short) considers only two players called leader and follower who seek to optimize their respective
objective function within a hierarchical scheme [2]. BP problems are generally difficult to solve
as the feasibility region is usually nonconvex, disconnected or even empty in some cases. BP
problems are also strongly NP hard even if the functions are linear [9]. Deterministic BP has
many applications [3, 4]. Competitive markets require robust solutions for different decision
making problems. However, deterministic solutions cannot handle efficiently any change in the
input data. To deal with different aspects of uncertainty or risk, stochastic optimization is an
efficient tool as it models easily uncertain events, and provides robust solutions. Stochastic
bilevel problems have also been recently studied in the literature with successful applications
in different areas [1, 6, 7, 10]. The novelty of this paper lies in developing modeling and
computational tools for treatment of uncertainty in network design problems. The paper is
organized as follows: Section 2 presents the problem formulation. Section 3 presents the MILP
formulation and the stochastic gradient method.

2 Problem formulation

We consider a network with the set of nodes N and the set of links A ⊆ N × N. We denote
xa the total flow through link a ∈ A. It is assumed that the network (or part of it) is governed
by an actor we call the Network Operator (NO). This actor has the authority to impose tolls
on subset of links Ā ⊆ A. This toll is proportional: the originator of flow xa pays to Network
Operator toll Taxa. The Network Operator pursues the aim of maximizing his revenue, i.e., he
chooses the toll structure by solving the following optimization problem

max
T

Φ (T ) , Φ (T ) =
∑
a∈Ā

TaExa (1)

s.t. T ∈ Υ,Υ =
{
T |la ≤ Ta ≤ ua, ∀a ∈ Ā

}
. (2)
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where T is the vector of all tolls Ta. The flows on the network are originated by one or more
Flow Originators (FO). In this paper, we consider only one FO. The flows he generates satisfy
the flow demand drs between pairs of nodes r, s ∈ N. Demand drs, (r, s) ∈ Θ ⊆ N × N is
a random variable with known distribution. The Flow Originator decides how to route the
demand and which part of it to satisfy in order to minimize the total costs that are composed
of tolls Ta, flow routing costs ca, a ∈ A and penalty costs qrs for not meeting a unit of demand
between nodes r and s. He knows the toll structure that is communicated to him by Network
Operator. While routing the demand, he can select between paths p ∈ Prs, where Prs is the set
of admissible paths between nodes r and s. His decision how to route the demand is denoted
by f rsp , this is the amount of demand between nodes r, s that is routed on path p ∈ Prs.

In this paper, we consider real time routing, i.e., the demand is known at the time of actual
routing decision and no advanced reservation is required. In this case the FO pays routing and
toll costs for actually routed demand and the problem becomes the following

Q = min
f,x

∑
a∈A

caxa +
∑
a∈Ā

Taxa +
∑

(r,s)∈Θ

qrs

drs − ∑
p∈Prs

f rsp

 (3)

s.t.
∑
p∈Prs

f rsp ≤ drs, forall(r, s) ∈ Θ (4)

xa =
∑

(r,s)∈Θ

∑
p∈Prs

δrsapf
rs
p , ∀a ∈ A (5)

xa ≤ Ca, (6)

f rsp ≥ 0, ∀p ∈ Prs,∀(r, s) ∈ Θ (7)

Taking Ta = la = ua = 0 for a ∈ A\Ā we can take Ā = A and drop the set Ā from our
subsequent formal considerations.

Here we consider the case when the routing decision is taken after demand drs is observed.
Then the FO solves the problem (3),(4),(5). As there is no coupling constraints, the FO problem
can be decomposed into individual problems for demand between r and s nodes taking the
form:

min
frs
p

 ∑
p∈Prs

epf
rs
p + qrs

drs − ∑
p∈Prs

f rsp

 (8)

s.t.
∑
p∈Prs

f rsp ≤ drs, (9)

The problem of Network Operator (1),(2) in this case takes the form described in the next
Proposition.
Proposition 1. Suppose that the Flow Originator when faced with alternative decisions that
bear the same cost, but different level demand satisfaction always chooses decision with the
highest demand satisfaction. Then the problem (1)-(5),(7) is equivalent to the following opti-
mization problem:

max
T

∑
a∈A

Taxa =
∑

(r,s)∈Θrs

d̄rsIqrs≥eprs(T )

∑
a∈prs(T )

Ta, (10)



where

d̄rs = Edrs, Iqrs≥eprs(T )
=

{
1 if qrs ≥ eprs(T )

0 otherwise

and prs (T ) is any path from Prs for which eprs(T ) ≤ ep for any p ∈ Prs

Due to the limited size of the conference papers, the proof of 1 will be given in the full
version of the paper.

3 MILP formulation and Stochastic gradient method

The problem (10) can be reformulated under the form of linear mixed integer programming
problem. Firstly, we introduce the binary variables yprs, which equals one if p = prs (T ) and
qrs ≥ eprs(T ). The objective function of the equivalent problem can be written as

maxyprs,Ta

∑
(r,s)∈Θ

d̄rs
∑
p∈Prs

yprs
∑
a∈p

Ta. After linearizing the nonlinear terms, we obtain the following

MILP:

max
zprs,y

p
rs,Ta

∑
(r,s)∈Θ

∑
p∈Prs

d̄rsz
p
rs (11)

zprs −Myprs ≤ 0, (r, s) ∈ Θ, p ∈ Prs

zprs −
∑
a∈p

Ta ≤ 0, (r, s) ∈ Θ, p ∈ Prs

Myprs +
∑
a∈p

Ta ≤M + qrs −
∑
a∈p

ca, (r, s) ∈ Θ, p ∈ Prs

Myprs +
∑
a∈p

Ta −
∑
a∈p′

Ta ≤M +
∑
a∈p′

ca −
∑
a∈p

ca, (r, s) ∈ Θ, p, p′ ∈ Prs, p
′ 6= p

∑
p∈Prs

yprs ≤ 1, (r, s) ∈ Θ

la ≤ Ta ≤ ua, yprs ∈ {0, 1}

where M is a large number.

In order to solve the problem with random travel costs outlined in the previous section,
we developed a variant of stochastic gradient method. The general computational scheme
of stochastic gradient methods can be stated as follows [5]. The problem to be solved is
maxT∈Υ Φ(T ) =

∑
a∈A TaExa

iterates T s according to the following rule: T s+1 = πΥ (T s + ρsξ
s) , s = 0, 1, ... where πX (·)

is the projection operator on set Υ, ρs is nonnegative step size usually tending to zero and ξs is
stochastic gradient, that is a vector that satisfies the following stochastic gradient qualification

E
[
ξs|T 0, ..., T s

]
= ∇F (T ) + bs (12)

where bs diminishes in some sense in the course of iterations. Under quite general conditions
the sequence T s converges to the optimal solution of (1) in a certain probabilistic sense, see
[5] for more details.



Briefly, the vector ξs is composed from components ξsa, a ∈ A. At iteration s of the stochastic

gradient method, ξs is computed as follows: ξsa =
∑

(r,s)∈Θ

d̄rsφrs(T
s, cs−a) where φrs

(
T s, cs−a

)
is

a function studied in the full paper version, and cs−a is the vector cost generated according to
G(c) but ca. Numerical results comparing our different approaches will be detailed in the full
version of the paper.
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