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Introduction

In this paper we develop models for network design in the presence of two types of actors: network owners and network users. The problem is to maximize the profit of a network owner by selecting the tolls or tariffs charged for the network usage by the network owner. The novelty of the paper consists in considering uncertainty in the demand and network costs for the users (for example, travel times). Besides of substantial theoretical and computational interest, this problem has applications in telecommunication and road networks. The modelling framework is based on bilevel programming and Stackelberg games [START_REF] Stackelberg | The theory of the market economy[END_REF]. The bilevel programming (BP for short) considers only two players called leader and follower who seek to optimize their respective objective function within a hierarchical scheme [START_REF] Bracken | Defense applications of mathematical programs with optimization problems in the constraints[END_REF]. BP problems are generally difficult to solve as the feasibility region is usually nonconvex, disconnected or even empty in some cases. BP problems are also strongly NP hard even if the functions are linear [START_REF] Vicente | Bilevel and multilevel programming : A biblio-graphy review[END_REF]. Deterministic BP has many applications [START_REF] Brotcorne | Joint design and pricing on a network[END_REF][START_REF] Côté | A bilevel modeling approach to pricing and fare optimization in the airline industry[END_REF]. Competitive markets require robust solutions for different decision making problems. However, deterministic solutions cannot handle efficiently any change in the input data. To deal with different aspects of uncertainty or risk, stochastic optimization is an efficient tool as it models easily uncertain events, and provides robust solutions. Stochastic bilevel problems have also been recently studied in the literature with successful applications in different areas [START_REF] Adasme | A Distributionally Robust Formulation for Stochastic Quadratic Bilevel Programming[END_REF][START_REF] Kosuch | On a stochastic bilevel programming problem[END_REF][START_REF] Patriksson | Stochastic mathematical programs with equilibrium constraints[END_REF][START_REF] Werner | Bilevel stochastic programming problems : Analysis and application to telecommunications[END_REF]. The novelty of this paper lies in developing modeling and computational tools for treatment of uncertainty in network design problems. The paper is organized as follows: Section 2 presents the problem formulation. Section 3 presents the MILP formulation and the stochastic gradient method.

Problem formulation

We consider a network with the set of nodes N and the set of links A ⊆ N × N. We denote x a the total flow through link a ∈ A. It is assumed that the network (or part of it) is governed by an actor we call the Network Operator (NO). This actor has the authority to impose tolls on subset of links Ā ⊆ A. This toll is proportional: the originator of flow x a pays to Network Operator toll T a x a . The Network Operator pursues the aim of maximizing his revenue, i.e., he chooses the toll structure by solving the following optimization problem max

T Φ (T ) , Φ (T ) = a∈ Ā T a Ex a (1) s.t. T ∈ Υ, Υ = T |l a ≤ T a ≤ u a , ∀a ∈ Ā . ( 2 
)
where T is the vector of all tolls T a . The flows on the network are originated by one or more Flow Originators (FO). In this paper, we consider only one FO. The flows he generates satisfy the flow demand d rs between pairs of nodes r, s ∈ N. Demand d rs , (r, s) ∈ Θ ⊆ N × N is a random variable with known distribution. The Flow Originator decides how to route the demand and which part of it to satisfy in order to minimize the total costs that are composed of tolls T a , flow routing costs c a , a ∈ A and penalty costs q rs for not meeting a unit of demand between nodes r and s. He knows the toll structure that is communicated to him by Network Operator. While routing the demand, he can select between paths p ∈ P rs , where P rs is the set of admissible paths between nodes r and s. His decision how to route the demand is denoted by f rs p , this is the amount of demand between nodes r, s that is routed on path p ∈ P rs . In this paper, we consider real time routing, i.e., the demand is known at the time of actual routing decision and no advanced reservation is required. In this case the FO pays routing and toll costs for actually routed demand and the problem becomes the following

Q = min f,x    a∈A c a x a + a∈ ĀT a x a + (r,s)∈Θ q rs   d rs - p∈Prs f rs p      (3) s.t. p∈Prs f rs p ≤ d rs , f orall(r, s) ∈ Θ (4) 
x a = (r,s)∈Θ p∈Prs δ rs ap f rs p , ∀a ∈ A (5)

x a ≤ C a , (6) 
f rs p ≥ 0, ∀p ∈ P rs , ∀(r, s) ∈ Θ (7) 
Taking T a = l a = u a = 0 for a ∈ A\ Ā we can take Ā = A and drop the set Ā from our subsequent formal considerations.

Here we consider the case when the routing decision is taken after demand d rs is observed. Then the FO solves the problem (3),(4), [START_REF] Gaivoronski | Stochastic quasigradient methods and their implementation[END_REF]. As there is no coupling constraints, the FO problem can be decomposed into individual problems for demand between r and s nodes taking the form:

min f rs p   p∈Prs e p f rs p + q rs   d rs - p∈Prs f rs p     (8) s.t. p∈Prs f rs p ≤ d rs , (9) 
The problem of Network Operator (1),( 2) in this case takes the form described in the next Proposition. Proposition 1. Suppose that the Flow Originator when faced with alternative decisions that bear the same cost, but different level demand satisfaction always chooses decision with the highest demand satisfaction. Then the problem (1)-( 5),( 7) is equivalent to the following optimization problem:

max T a∈A T a x a = (r,s)∈Θrs drs I qrs≥e prs(T ) a∈prs(T ) T a , (10) 
where drs = Ed rs , I qrs≥e prs(T ) = 1 if q rs ≥ e prs(T ) 0 otherwise and p rs (T ) is any path from P rs for which e prs(T ) ≤ e p for any p ∈ P rs Due to the limited size of the conference papers, the proof of 1 will be given in the full version of the paper.

MILP formulation and Stochastic gradient method

The problem (10) can be reformulated under the form of linear mixed integer programming problem. Firstly, we introduce the binary variables y p rs , which equals one if p = p rs (T ) and q rs ≥ e prs(T ) . The objective function of the equivalent problem can be written as In order to solve the problem with random travel costs outlined in the previous section, we developed a variant of stochastic gradient method. The general computational scheme of stochastic gradient methods can be stated as follows [START_REF] Gaivoronski | Stochastic quasigradient methods and their implementation[END_REF]. The problem to be solved is max T ∈Υ Φ(T ) = a∈A T a Ex a iterates T s according to the following rule: T s+1 = π Υ (T s + ρ s ξ s ) , s = 0, 1, ... where π X (•) is the projection operator on set Υ, ρ s is nonnegative step size usually tending to zero and ξ s is stochastic gradient, that is a vector that satisfies the following stochastic gradient qualification

E ξ s |T 0 , ..., T s = ∇F (T ) + b s ( 12 
)
where b s diminishes in some sense in the course of iterations. Under quite general conditions the sequence T s converges to the optimal solution of (1) in a certain probabilistic sense, see [START_REF] Gaivoronski | Stochastic quasigradient methods and their implementation[END_REF] for more details.

Briefly, the vector ξ s is composed from components ξ s a , a ∈ A. At iteration s of the stochastic gradient method, ξ s is computed as follows: ξ s a = (r,s)∈Θ drs φ rs (T s , c s -a ) where φ rs T s , c s -a is a function studied in the full paper version, and c s -a is the vector cost generated according to G(c) but c a . Numerical results comparing our different approaches will be detailed in the full version of the paper.

T

  a . After linearizing the nonlinear terms, we obtain the following MILP: max z p rs ,y p rs ,Ta (r,s)∈Θ p∈Prs drs z p rs (11) z p rs -M y p rs ≤ 0, (r, s) ∈ Θ, p ∈ P rs z p rs -a∈p T a ≤ 0, (r, s) ∈ Θ, p ∈ P rs M y p rs + a∈p T a ≤ M + q rs -a∈p c a , (r, s) ∈ Θ, p ∈ P rs M y p rs + a∈p T a -a∈p T a ≤ M + a∈p c a -a∈p c a , (r, s) ∈ Θ, p, p ∈ P rs , p = p p∈Prs y p rs ≤ 1, (r, s) ∈ Θ l a ≤ T a ≤ u a , y p rs ∈ {0, 1} where M is a large number.