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Abstract—The contribution of the paper is twofold. First, it
introduces a model for analyzing energy consumption in networks
of mobile sensors. Second, it uses this model for studying energy
complexity of distributed protocols for the task of data collection.
The proposed model is quite general and can be used for other
tasks. It can be considered as the first extension of this kind,
taking into account energy consumption, of the classical model
of population protocols. In population protocols, anonymous
and bounded memory agents (sensors) move unpredictably and
communicate in pairs when two of them are in proximity. The
interest of the extended model is to allow a purely analytical
analysis of the energy complexity of a protocol, in the same
spirit as for time and space complexity, without appealing to
simulations. This approach allows to exhibit energy functions and
to draw their curves, from which the optimal values of various
parameters can be deduced.
In order to illustrate the power and the usefulness of this model,
we consider the issue of determining and adjusting the amount
of agents’ initial energy necessary and sufficient for being able
to perform a given task. This issue is crucial for choosing, in
practice, a category of sensors (in respect with their power
capacities) adapted both to the task and to the number of times it
should be repeated (before the sensors are replaced or recharged).
In this context, the natural chosen metric is the maximum energy
spent by an agent (for accomplishing the overall collaborative
task). This metric is directly related to the minimum necessary
initial energy (and also to the lifetime of the network). Contrary
to most of the energy studies in networks of mobile agents, our
approach is completely deterministic. The reason is that due to
the nature of the considered problem, the analysis has to be done
in the worst case (in particular, such analysis is impossible when
the interactions between agents are supposed to be probabilistic).

The specific task we consider in this work is data collection,
which is known to be fundamental in sensor networks. In this
problem, initially, each sensor has an input (a sensed) value, and
eventually, every input should be delivered exactly once, to a
base station. Transfers of inputs between sensors are possible in
order to optimize time and energy metrics. In this context, our
first contribution is the energy complexity analysis of an already
known time optimal protocol. The second contribution is a new
power-aware protocol, which improves the previous one in terms
of the maximum energy spent by an agent. Finally, we present
a lower bound concerning energy consumption of any possible
data collection protocol and we show the cases where this lower
bound is reached by the presented protocols.

Index Terms—mobile sensor networks; population protocols;
energy consumption; data collection

I. INTRODUCTION

In wireless mobile networks, routing is a complex problem,
mainly due to node mobility resulting in a frequently changing
network topology. The rate of the topology changes depends

on many factors including node mobility patterns and speeds,
and characteristics of the terrain and of the communication
medium. Typical metrics used to evaluate routing protocols
like shortest-hop, shortest-delay, and local stability may have
a negative effect on the network performance, because they
result in an overuse of energy resources of a small set of
nodes, decreasing network lifetime. Consequently, it is essen-
tial to consider algorithms from a power-aware perspective, in
addition to such traditional metrics.

In this work, we are interested in a special type of mobile
sensor networks, where the sensors are extremely simple and
cheap. They have very limited computing and communication
capabilities. They have no identifiers and execute all the same
code. The size of their memory is uniformly bounded, indepen-
dently of the total number of sensors in the network. As their
communication power is limited, they do not communicate by
broadcasting, but only, in pairs, when two agents come close
to each other. Moreover, the number of nodes in the network
is unknown and may be very large. Though, they generally
move in a limited area. 1

In this framework of very simple mobile sensors, we con-
sider a restricted, but natural (for sensor networks), form of
routing toward a special node, called data collection. One may
assume that each sensor has got a value from the environment
(temperature, pressure, altitude, etc.), and that all values must
be routed towards a base station, where they will be analyzed
and treated. As the considered mobile sensors interact unpre-
dictably and only in pairs, the data collection is by essence
opportunistic, meaning that it has to be performed even though
there are no permanent routes from mobile sensors to the base
station. Then, when a node meets another node, it has to
decide, according to its protocol, whether it is better or not
to transfer its sensed value to the other or to keep it. Better
usually refers to the global time for performing data collection.

The issue that we address here is how to route the sensors’
values towards the base station and spend as little energy as
possible, while retaining good performances in terms of data
collection time. Our approach is at the algorithmic level. It
means that, beside the classical time complexity, we define
formally an energy complexity, the goal being to compute
time and energy complexities in a purely analytical way,
independent of simulations.

1As examples to such networks, one can consider the ZebraNet project
deploying a network of sensors attached to zebras [1] or the Pigeon Air Patrol
Network project, with pigeons carrying very simple sensors.



The distributed computing model that we choose for the
considered networks is the (classical) model of population
protocols (PP) [2]. This model has been designed to study
asynchronous networks of finite state anonymous mobile sen-
sors (called agents) interacting in pairs. We enhance this model
with an energy consumption framework. Basically, an agent
consumes energy when: (1) interacting and exchanging data,
and (2) signaling its presence and sensing the wireless medium
continuously (to allow detection of other agents in proximity).
An interacting agent is said to be in awake mode and spends
an amount Ewkp of energy. When it does not interact, but
senses the medium, it is in sleep mode, and spends Eslp for
every global interaction (that can be seen as a time unit). We
also consider an additional mode called terminated, in which
an agent consumes no energy. This mode can allow saving
energy of agents having terminated their part in a task.

To adapt this general model to the specific type of networks
we consider here, we make some additional considerations
and assumptions detailed in Sect. II. For instance, as the
data exchanged during an interaction is bounded by the small
agent’s memory, we can assume that any transmitted data fits
in one packet and thus the energy spent in a communication is
constant. In addition, as the agents communicate only in pairs
when they come close to each other, it is likely to assume that
the sensing of the medium is done by proximity sensors (cf.
[3], [4]) and thus, agents signal their presence only passively,
spending no energy.

In this study, we analyze the maximum amount of energy
spent by an agent for performing a one-time collaborative task
(data collection in our case). This metric is clearly related to
the lifetime of the network and to the amount of the required
initial energy for each agent. The formal analysis of this metric
allows, in advance, to adjust the network both in terms of size
and battery power allocated to the agents. It is particularly
important in the case of networks where it is difficult or
undesirable to access the sensors frequently (cf., Bird Species
Recognition [5]). However, it is important to note that, if
no guarantees are imposed on the agents’ interactions, such
analysis is in general impossible (for non-trivial protocols).
Consider, for example, one of the classical assumptions in
PP where any pair of agents is required to interact only in-
finitely often. In this case, protocols converge only eventually,
consuming an arbitrary large energy till convergence. On the
contrary, with another classical assumption where pairs of
agents interact according to some probability distribution, an
average complexity analysis of energy consumption can be
computed.

Here, for having a bounded convergence and still being able
to perform a worst case analysis of the maximum energy spent,
we do not adopt the probabilistic approach, but we assume a
sort of partial synchrony. According to it, an agent interacts
with all the others with a certain “frequency”, expressed by a
cover time parameter [6]. This is an upper bound on the “time”,
counted in number of global interactions (pairwise meetings),
for an agent to interact with all the others. The “faster” an

agent meets the others, the smaller its cover time is.2

As shown by recent experimental and analytical studies
[10], [11], [12], [13], the assumption of bounded cover times
is (maybe surprisingly) well adapted for modeling mobility
in practical sensor networks. The relevant networks are those
where agents have different mobility and communication ca-
pabilities, and move within a bounded area or have tendency to
return periodically to some specific places, e.g., their homes.
The experiments studied networks of students in a campus,
participants in a network conference, visitors at Disney World
and more [10], [14], [15]. The analytical studies of such
networks show that the inter-contact time of two specific
agents is practically bounded. Since a cover time of an agent
can be expressed as a sum of inter-contact times of the agent
with the others, bounded cover times can model well the
mobility in such networks.
Contributions. The main general contribution of this paper is
the framework allowing an analytical computation of energy
consumption, presented for the first time in the context of
population protocols (Section II). Using this energy model, we
start by analyzing energy consumption of the data collection
protocol proposed and proven to be time optimal in [6]
(Section III). In this analysis, our approach is motivated by
the observation that the energy spent is proportional to the
length of an execution. However, further investigation shows
that this is not the only factor that can affect the energy
spent, and other factors, as the residual energy of an agent,
if considered by a solution, can improve energy performance.
This gives an idea for developing a better solution in terms
of energy consumption, and we propose an energy-aware
protocol. We prove its correctness and analyze its energy
complexity (Section IV-A and IV-B). Not surprisingly, it
appears that it needs less energy than the first protocol when
correctly adjusting the protocol’s parameters. Having analytic
formulas for energy consumption under the form of functions
allows to draw graphs and plots, on which remarkable points,
zones and limits appear immediately (Sect. IV-B2 and IV-B3).
This is particularly advantageous when a great number of
parameters are involved and when the exhibited functions are
hybrid (i.e., composed of several functions). Getting the same
or approximative results from simulations would certainly be
longer and costly, while here exact results can be obtained
almost immediately. The paper presents such plots as an
illustration of this methodology. Section V presents a lower
bound concerning energy consumption of any possible data
collection protocol. Cases where this lower bound is reached
by the presented protocols are also given. Finally, Sect. VI is

2The notion of cover time has some similarities with partial synchrony
[7] or timeliness [8] (in a lock-step message-passing or shared-memory
communication model), in the sense that the cover times impose constraints
on the relative (activation) speeds and on the communication of processes
(here agents). This sort of synchrony is partial, because the agents have no
access to the cover time values.
In the context of population protocols, somewhat similar to cover times’
guarantees on agents’ interactions are assumed in the implementation of the
cover time service proposed in [9], for augmenting population protocols with
termination detection.



a summary of the paper results.
Note that, in most of the study, we consider the more

difficult, but also more realistic case, where an agent can hold
only a limited number of values (independent of the number
of agents). Such an assumption is coherent with the spirit of
population protocols.

Related Work. There is a very large literature on power-aware
network protocols. The reader could find general references
in surveys, like [16], [17] for power-aware routing protocols
in MANET, like [18] for data collection in mobile sensor
networks, and like [19] for optimistic routing in highly dy-
namic networks. Most of the works on energy consumption
do not present an analytical study of energy complexity, and
the validation of the approaches is made by simulation. In
this section, we will only mention the studies directly linked
to our approach by restricting our attention to those for which
a formal model of energy consumption is presented and its
mathematical analysis is done.

In this category, we should first mention [20] where authors
study the problem of energy balancing between non finite
state agents (interacting uniformly at random) in a model
inspired by population protocols. The considered model is not
an energy consumption one. An interacting agent can transfer
some part of its energy to the other agent during the interaction
(by using a corresponding energy equipment) and there may
be a constant energy loss for each unit of the transferred
energy. However, contrary to our study, energy consumption
for interacting and sensing is not considered. Three protocols,
for balancing (averaging) the distribution of energies given to
agents, are presented and their analytical or simulation analysis
is presented.

Then, one can mention [21], which studies a synchronized
scheduling of wake-up times for improving the data collection
in a non-mobile sensor network. It proposes protocols with
energy consumption of at most twice the optimum. Syn-
chronization of the wake-up times is also studied in [22],
where several self-stabilizing protocols to solve the problem
of temporal partition are presented and analyzed.

In [23], a 2-approximation (energy consumption) centralized
heuristic and a distributed power-aware heuristic are developed
for wireless sensor networks with unique identifiers, to ensure
that all packets are delivered with the minimum energy cost
within a required deadline. Authors develop an evaluation
function of energy cost for one transmission, considering
residual energy, quality of link and the type of nodes.

In [24], authors propose a randomized clustering algorithm
for non-mobile wireless sensor networks which minimizes the
energy spent for transmissions. It is proven formally that the
algorithm has a time complexity of much less than O(n).

In [25], authors give an approximated cone-based topology
scheme to increase ad-hoc network lifetime with adaptive
transmission power control, while maintaining connectivity
for routing. In an analytical way, it is shown that the power
consumption of each route can be made arbitrarily close to the
optimal.

[26] studies the performance of a class of simple and
local algorithms for energy-efficient construction of minimum
spanning trees in a wireless ad hoc setting. Bounds on the
performance of these algorithms, in instances obtained by
uniformly distributed points in the unit square, are given.

For being complete, we should also mention that there exist
studies presenting a mathematical model for optimizing the
energy-consumption of a single entity, independently of the
protocol run, but they are very far from our preoccupations.

Finally, even if some approaches considering energy con-
sumption are in spirit similar to ours, none of them is devoted
to the specific type of networks that we consider: anonymous
resource-limited mobile sensors moving unpredictably and
constituting a highly dynamic opportunistic network.

II. MODEL AND NOTATIONS

A. Population Protocols (PP)

A system consists of a collection A of pairwise interacting
agents, also called a population. Each agent represents a finite
state sensing and communicating mobile device. Among the
agents, there is a distinguishable agent called the base station
(BST), which can be as powerful as needed, in contrast with
the resource-limited non-BST agents. The non-BST agents are
also called mobile, interchangeably. The size of the population
|A| = n is unknown to the agents.

A (population) protocol can be modeled as a finite transition
system whose states are called configurations. A configuration
is a function that associates each agent with its state. Each
agent has a state taken from a finite set of states, the same for
all non-BST agents, but generally different for BST. Every
transition C→C ′ between two configurations C and C ′ is
modeled by a single transition between two agents happening
during an interaction. That is, when two agents x, in state p,
and y, in state q, in C, interact (meet), they execute a transition
rule (p, q) → (p′, q′). As a result, in C ′, x changes its state
from p to p′ and y from q to q′.

An execution of a protocol is a sequence of configurations
C0, C1, C2, . . . such that C0 is the starting configuration and
for each i ≥ 0, Ci → Ci+1. In a real distributed execution,
interactions could take place simultaneously, but when writing
down an execution we can order those simultaneous interac-
tions arbitrarily. An execution is said to be finite, iff from some
point on, no applicable transition changes the configuration.
In this case, this non-changing configuration is said to be
terminal. When a terminal configuration is reached, we say
that the termination has occurred. Each execution corresponds
to a unique sequence of interactions, also called schedule. If an
execution e is finite, its length |e| is the number of interactions
until termination. For convenience, we consider the number of
interactions in an execution as the time reference, i.e., each
next interaction adds one time unit to the global time.
Cover Time Fairness. Every agent i ∈ A has (an unknown
to agents) parameter cvi ∈ N called cover time s.t. during
any cvi time units (consecutive interactions in an execution),
agent i interacts with every other agent at least once. cvi is
the minimum such number of interactions. For two agents x



and y, if cvx < cvy , then we say that x is faster than y, and
y is slower than x. The minimum cover time value is denoted
by cvmin and the maximum one by cvmax. A fastest (resp.
slowest) agent z has cvz = cvmin (resp. cvz = cvmax). We
denote by F the set of fastest mobile agents, and by NF the
set of non-fastest ones.
In the protocol analysis, we consider only the case where
cvBST > cvmin, that maximizes time and energy consumption
(for data collection). In some cases, for simplicity, we also
assume that cvmin � O(n2). This assumption holds for a
large and natural family of cover time vectors. It is especially
natural for the case of passively mobile sensor networks,
which is exactly the type of networks modeled by population
protocols. Intuitively, as cvmin (in this family) is much larger
than the number of all possible pair-wise interactions, agents
are free to interact in many different ways, as it would be
naturally expected with passive mobility. Still very particular
schedules are possible and there are guarantees that agents
interact according to the cover times.
We emphasize that agents are not assumed to know cover times
(to conform with the finite state population protocol model).
Instead, we do assume that two interacting agents can only
compare their respective cvs. As described in [6], this can be
implemented with finite state agents, if the number of different
cvs is finite too.
Data Collection. A problem is defined by a predicate D on
executions. A population protocol P is said to solve a problem
D, if and only if every execution of P satisfies the conditions
defining D.
The problem of data collection (or data gathering) is defined
as follows. We assume that each agent, except BST, owns
initially an input value (which is constant during one execution
of the protocol). Eventually, every input value has to be
delivered to BST, and exactly once (as a multi-set). When this
happens, we say that the protocol (its execution) has converged
or terminated. The convergence time of a protocol is the
maximum length of a possible execution (until convergence).
We denote by M the number of values that a non-BST agent
can receive from other agents (on top of its own initial value).
When describing or analyzing a considered protocol, the term
“to transfer a value” from agent x to y means to copy it to
y’s memory, and erase it from the memory of x.

B. Energy Consumption Scheme and Metrics

During an execution, each non-BST agent consumes energy
according to three different modes: sleep, awake and termi-
nated. The overall consumption scheme can be summarized
by the following points:

1) Each agent starts with the same amount of initial energy
E0 (e.g., all agents are fully charged). It is in sleep
mode, and consumes Eslp per time unit (every interac-
tion). During this mode, an agent consumes a reduced
amount of energy. It senses the vicinity for detecting
other agents in proximity, and signals its presence. The
signalling can be done either actively, by emission of
small beacon messages (as, e.g., in IEEE 802.11), or

passively, only by agent’s presence. The latter can be
carried out by sensing the vicinity using proximity
sensors (cf. [3], [4]). In this work, we consider this latter
case of sensing.

2) When two agents in sleep mode have successfully
detected each other, the interaction happens and both
turn into awake mode to proceed with a communication.
For that, they have to switch on their radio transceivers,
which is generally a high energy consuming opera-
tion (cf. [27]). During the interaction, both agents stay
awake and each consumes Ewkp = Esw +Etx+Erx+
Eslp, where Esw is the energy consumed for switching
to the main radio, Etx and Erx are consumed during
the sending and the reception of data, and Eslp is due
to point 1.
Since in the considered types of networks (and in PP)
non-BST agents have a small memory, independent of
the network size, transmitted data can fit in very few, and
even one, packets in every communication. Thus, we can
assume that the energy consumed by the communication,
Etx + Erx, is constant.

3) During an interaction, two awake agents decide to turn
either to sleep or to terminated mode, according to
the protocol. No energy is consumed by a terminated
agent. This mode is useful for saving energy of agents
that have terminated their protocol activities. Together
with that, the scheme can be adapted in such a way that
a terminated agent could be restored into sleep mode,
whenever it is required to restart a task. This can be
done, for example, by a global signal from BST, which,
at the same time, can also recharge the mobile agents,
to prepare them for the next task [28].3

4) We assume that when a sleeping agent x meets a
terminated agent y, x wakes up and thus, spends Ewkp.
This assumption makes sense in networks deploying
proximity sensors for sensing close agents. In this case,
the terminated agent y is detected by the proximity
sensor, and as x is not aware of y’s mode in this step, x
wakes up and only then detects that y is terminated.4

Evaluation Metrics. There are many different power-aware
metrics in the related literature on sensor networks. The term
lifetime of a network is generally used and can be evaluated,
e.g., as the maximum time until only one or all sensors have
no energy, or until there are more than a ratio β of surviving
nodes, or until “connectivity” is lost. Alternatively, to analyze
the lifetime, one can evaluate the maximum energy spent per
node for a given task (e.g., per data collection from all nodes
to BST, or per packet routing to the next node, or to the final
destination). Refer to the surveys on such metrics [29], [30].

In this work, we choose to evaluate and minimize the max-
imum energy spent per node across the network in each data
collection, thereby enhancing the lifetime performance. Given

3In this work, we do not consider this possibility, as we analyze energy
consumption for only one data collection.

4However, with a beacon based approach for agents’ detection (described
in the first point), neither x, nor y spend Ewkp in such an interaction.



a protocol P , we denote by Esmax(P) the maximum energy
spent by an agent in all executions of P . This metric is one
of the most popular metrics studied in power-aware routing
protocols for MANET [30]. Minimizing it can be also seen
as balancing the distribution of energy consumption among
agents. Moreover, as already mentioned in the introduction,
evaluation of this metric can allow, in advance, to adjust the
network both in terms of size and battery power allocated to
the agents.

III. ENERGY CONSUMPTION OF TTFM

In this section, we consider an existing protocol, which
was designed without energy consumption in mind, and we
perform its energy consumption analysis, using the proposed
energy model. TTFM (Transfer To the Faster Marked) is a
time-optimal protocol for data collection in PP [6]. The basic
strategy for data transfer, is that a mobile agent only transfers
its values either to BST, or to a faster agent that has never met
(yet) another mobile agent faster than itself. When two fastest
agents meet, there is no transfer of data. The idea of TTFM
is to make use of the fastest agents, which are more likely to
bring the values faster to BST.
For illustration of the usage of terminated mode, we adapt
TTFM such that a mobile agent turns into terminated mode
once it has transferred its values to a faster agent (excluding
BST). Indeed, according to TTFM , once this happens, the
slower agent does not receive any value till the end of the
execution. Therefore, turning into terminated mode saves
energy. For the fastest agents, as they never transfer values
to other agents except to BST, they stay non-terminated
until convergence. This adapted protocol, called E-TTFM ,
is presented below (Protocol 1).

Protocol 1 E-TTFM
(for a mobile agent i interacting with an agent j)

1: fastest marki ∈ {0, 1} (* initialized to 1 *)
2: if (j is not BST) then
3: if (cvj < cvi and fastest markj := 1) then
4: fastest marki := 0
5: if (fastest markj > fastest marki and there is a

free place in j’s memory) then
6: agent i transfers to j as many values as would fit in

the free part of j’s memory
7: if (agent i has no value in its memory) then
8: agent i turns into terminated mode
9: if (j is BST) then

10: agent i transfers all values to BST

E-TTFM has the same time complexity as TTFM , be-
cause the adaption we did does not influence the worst case
convergence time of data collection. Therefore, the longest
execution in E-TTFM is of length 2cvmind |NF |M |F |e − 1 (Th.
11 in [6]). The worst case on the maximum energy spent by
an agent is attained in the longest execution, in which one
fastest agent participates in a maximum number of interactions

(being in awake mode as long as possible). This implies the
following result:

Proposition 1: An upper bound on the maximum energy
spent by an agent in E-TTFM is (2cvmind |NF |M×|F |e−1)Ewkp.
This bound is reached when cvmin � O(n2).

Proof: The upper bound is easy to obtain, as the longest
execution in E-TTFM is of length (2cvmind |NF |M×|F |e − 1).

Thus, no agent can consume more than (2cvmind |NF |M×|F |e −
1)× Ewkp energy.
Next, we prove that this bound can be reached when cvmin �
O(n2). Consider the following schedule which repeats the
segment X1X2, where X1X2 is of length cvmin. We denote
by f to be one of the fastest agents.
X1 ≡ [ repeat as much as possible all interactions between f
and every agent in A\BST ],
X2 ≡ [ all the other necessary interactions to satisfy cvs ].
Consider the execution of E-TTFM for this schedule, de-
noted by e. This execution could be the worst case execution
in time presented in [6]. Let us choose such e and thus,
|e| = (2cvmind |NF |M×|F |e − 1).
In E-TTFM , a fastest agent never turns to terminated.
Therefore, in e, agent f consumes the most (Ewkp energy
in each interaction of X1). Thus, Esmax(e) = (|e| −
ε|X2|)Ewkp + ε|X2|Eslp where ε|X2| is a constant indicating
the number of necessary interactions in X2 not involving the
agent f in e.
Notice that |X2| ≤ n(n−1)

2 = O(n2) and as cvmin � O(n2),
the length of X2 is negligible. Therefore, when cvmin �
O(n2), Esmax(E-TTFM) = Esmax(e) = |e|Ewkp =

(2cvmind |NF |M×|F |e − 1)Ewkp.

IV. ENERGY-BALANCED PROTOCOL EB-TTFM

A first step towards a protocol balancing the distribution
of energy consumption would be to consider the following
strategy: When an agent notices that it becomes “low” in
energy, it tries to transfer its values to a higher energy level
agent and turns into terminated mode, as soon as possible.
The issue raised by this strategy is that the convergence time
for data collection could be possibly considerably augmented,
especially if some values are transferred to a slow agent. An
increased convergence time means more energy spent.
Therefore, the level of the amount of residual energy that
is considered to be “low” should be carefully set. Below,
we discuss the possible choices of such a level. We make
these choices depend on a parameter, λ, by defining the ”low”
level by E0

λ where λ ≥ 1. To conform with the finite state
population protocol model, we assume that E0

λ can only take
a finite number of values. Let eli be the residual energy of
the mobile agent i. In the same way as for cover times, we
assume that the agents do not know their residual energies
but can compare them when they interact. Adding the test of
the energy level to E-TTFM yields a protocol that we name
EB-TTFM (for Energy Balanced TTFM , Protocol 2).



Protocol 2 EB-TTFM(λ)
(for a mobile agent i interacting with an agent j)

1: if (j is not BST) then
2: if (eli < E0

λ and eli < elj and there is a free place in
j’s memory) then

3: agent i transfers to j as many values as would fit in
the free part of j’s memory

4: if (agent i has no value in its memory) then
5: agent i turns into terminated mode
6: else
7: execute E-TTFM
8: if (j is BST) then
9: agent i transfers all values to BST

A. Energy Consumption Analysis

Intuitively, by observing the code of EB-TTFM , it can
be seen that, if the threshold E0

λ is too high, an important
number of interactions will result in the execution of lines
3-5, since the condition in line 2 is satisfied easier. That
concerns especially the fastest agents, since they interact more
frequently. As a consequence, all the fastest agents will switch
quickly to terminated mode and the values will be carried to
BST by slower, even possibly slowest, agents. This will result
in a worst case convergence time and energy consumption
depending on cvmax instead of cvmin, which is worse than
for E-TTFM (Prop. 1).

On the other hand, if the threshold E0

λ is too small, EB-
TTFM will execute line 7 more often, i.e., behaves like
E-TTFM , since the condition in line 2 will be difficult to
satisfy. Thus, in the perspective of improving the performance
of E-TTFM , we first study the conditions excluding the two
previous (uninteresting) cases. More precisely, we study the
corresponding upper and lower bounds for E0 with respect
to λ (Lem. 1 and 2). Then, for E0 and λ given inside these
bounds, we study the worst-case performance of EB-TTFM
in terms of maximum energy spent by an agent (Th. 1). Next,
we try to figure out, for a given E0, the best choice for
λ (Sect. IV-B1), according to the results on the worst-case
performance.

As explained above, the number of fastest agents turning
into terminated mode during an execution plays an
important role in the energy performance of EB-TTFM .
Therefore, in the sequel, we classify the executions by the
number of fastest agents in terminated mode at the end
of the execution. Then, we study the length of the longest
execution in each classification set (Prop. 2, 3 and 4), use
these results to obtain the bounds for E0 (Lem. 1 and 2) and
determine the worst-case performance of EB-TTFM (Th. 1).

Definitions. We denote by Ξd the set of executions of EB-
TTFM with exactly d fastest agents in terminated mode
at their ends (d ∈ {0, 1, ..., |F |}). For a non-empty set Ξd, let
mni(d) be the minimum number of interactions until d fastest
agents are in terminated mode in the executions of Ξd. Let

mnv(d) be the minimum number of values that have been
delivered to BST at the mni(d)th interaction in the executions
of Ξd and let êd be the longest execution in Ξd. We denote
by θ the ratio between Eslp and Ewkp (θ = Eslp/Ewkp < 1).

One can see that, if ∪|F |i=1Ξi = ∅, no fastest agent ever
turns into terminated mode and fastest agents only execute
E-TTFM (in line 7). In this case, EB-TTFM has the same
performance as E-TTFM . On the contrary, if Ξ|F | 6= ∅,
there exists at least one execution, at the end of which all
fastest agents are in terminated mode. Then, some values
could be delivered to BST by a slow agent, increasing the
convergence time of EB-TTFM (to be dependent on cvmax).
The case ∪|F |i=1Ξi = ∅ is uninteresting and the case Ξ|F | 6= ∅
is undesirable. Therefore, having Ξd in mind, we need to find
sufficient conditions on E0 and λ ensuring that ∪|F |i=1Ξi 6= ∅
and Ξ|F | = ∅.
To ensure ∪|F |i=1Ξi 6= ∅, mni(1) must be smaller than or
equal to the length of the longest execution in E-TTFM
(see proof of Lem. 1). To ensure Ξ|F | = ∅, mni(|F |) must
be greater than the length of the longest execution in the
set ∪|F |−1i=0 Ξi, i.e., the set of executions converging before
all the fastest agents are in terminated mode (see proof of
Lem. 2). Thus, we study the values of mni(d) (Prop. 2). In
addition, in order to obtain the upper bound on the length of
the longest execution in Prop. 4, we compute the values of
mnv(d) (Prop. 3).

Proposition 2: [mni(d)].
A lower bound on the minimum number of interactions
before d fastest agents are in terminated mode, taken over
all executions in a non-empty set Ξd of EB-TTFM , is⌈
(E0 − E0

λ )[1 − (1− θ)d
d
2 e]/Eslp

⌉
. This bound is reached

when cvmin � O(n2).
Proof: Consider an execution and a fastest agent i. In

EB-TTFM , fastest agent i can only turn into terminated
mode when the condition (in line 3) is satisfied, which means
its residual energy is less than E0

λ . During each interaction,
agent i cannot spend more energy than Ewkp, corresponding
to the cost of the awake mode. Then the minimum number
of interactions until agent i turns into terminated mode, is
at least dE0−E0

λ

Ewkp
e.

As both participants to one interaction consume energy,
mni(2) = mni(1),mni(4) = mni(3), ..., and more gen-
erally mni(d) = mni(d − 1) when d is even. In addition,
we have the following recursive equations when d > 2:
(mni(d)−mni(d− 2))× (Ewkp−Eslp) +mni(d)×Eslp ≥
E0− E0

λ . Recursively, we obtain the following relationship of
mni(d):

mni(d) ≥
⌈E0 − E0

λ

Eslp
[1− (1− θ)d

d
2 e]
⌉
. (1)

For the same reason in the proof of Prop. 1, when cvmin �
O(n2), the number of necessary interactions involving non-
fastest agents is negligible in every cvmin interactions. In this



case, the lower bound on mni(d) is reached.

Proposition 3: [mnv(d)].
When cvmin � O(n2), the minimum number of values that
have been delivered to BST at the mni(d)th interaction, taken
over all executions in a non-empty set Ξd of EB-TTFM , is

mnv(d) =M(|F | − 2β)× bmni(d)
2cvmin

c+

2M × bmni(1)
2cvmin

c × [1 +
β

θ
− 1− θ

θ2
(1− (1− θ)β)],

where β = b(d− 1)/2c.

Proof: It has been shown that in any segment of 2cvmin
consecutive interactions of an execution in TTFM , at least
M |F | values (tight bound) are transferred to the fastest agents
(Th. 11 of [6]). Similarly, it is easy to see that every 2cvmin
interactions, at least M |F | values (tight bound) are delivered
to BST. However, in EB-TTFM , since the fastest agents
can turn into terminated mode (in line 3), this property is
no longer true. But it still holds for the segments of 2cvmin
consecutive interactions where all fastest agents are non-
terminated. According to the definition of mni(d), before
the mni(1)th interaction, all fastest agents are surely non-
terminated in any execution of EB-TTFM . So, we obtain
at first the minimum number of of values that have been
collected at the mni(1)th interaction in EB-TTFM , which
is: mnv(1) = M |F |×bmni(1)2cvmin

c. As mni(1) = mni(2) (Prop.
2), we have mnv(1) = mnv(2).
Then, we consider the interval [mni(1),mni(3)) of an execu-
tion. It is certain that there are at least |F | − 2 fastest agents
which are non-terminated in this interval. So we know that
at least M(|F |−2)×

(
bmni(3)2cvmin

c − bmni(1)2cvmin
c
)

values have been
delivered to BST during this interval. Recursively, we obtain
the following relation between mnv(d) and mnv(d− 2) :

mnv(3) = mnv(4)

= mnv(1) +M(|F | − 2)

(
bmni(3)
2cvmin

c − bmni(1)
2cvmin

c
)

= M(|F | − 2)× bmni(3)
2cvmin

c+ 2M × bmni(1)
2cvmin

c ;

mnv(5) = mnv(6)

= mnv(3) +M(|F | − 4)

(
bmni(5)
2cvmin

c − bmni(3)
2cvmin

c
)

= M(|F | − 4)× bmni(5)
2cvmin

c

+2M × (bmni(1)
2cvmin

c+ bmni(3)
2cvmin

c) ;

...

mnv(d) = mnv(d− 2) +M(|F | − 2bd− 1

2
c)

×
(
bmni(d)
2cvmin

c − bmni(d− 2)

2cvmin
c
)

= M(|F | − 2bd− 1

2
c)× bmni(d)

2cvmin
c

+2M

b d−1
2
c∑

j=1

bmni(2j − 1)

2cvmin
c .

Let β = bd−12 c, by Prop. 2, we have, when cvmin � O(n2):

mnv(d) = M(|F | − 2β)× bmni(d)

2cvmin
c

+ 2M × bmni(1)

2cvmin
c × [1 +

β

θ
− 1− θ

θ2
(1− (1− θ)β)].

Proposition 4: [|êd|].
When cvmin � O(n2) and d < |F |, the length of the longest
execution êd in a non-empty set Ξd, is at most ρ(d) =

d
|NF | − 2Mbmni(1)

2cvmin
c[1 + 1

θ
d d
2
e − 1−θ

θ2
(1− (1− θ)dd/2e)]

M(|F | − d)
e×2cvmin.

(2)

Proof: The longest execution êd in Ξd is the one in
which d fastest agents are in terminated mode as fast as
possible, i.e., at the mni(d)th interaction. Moreover, the data
is delivered to BST in the slowest way. It means that there are
|NF | −mnv(d) values that have not been delivered to BST
at the mni(d)th interaction of êd. And from the mni(d)th

interaction until the termination of êd, only M(|F | − d)
values are delivered to BST during every 2cvmin consecutive
interactions. Thus, the longest execution is of length:

|êd| = mni(d) + d |NF | −mnv(d)

M × (|F | − d)
e × 2cvmin.

Therefore, when cvmin � O(n2), according to Prop. 2 and
Prop. 3, we have:

|êd| ≤ d
|NF |−2Mb mni(1)2cvmin

c[1+ 1
θ d

d
2 e−

1−θ
θ2

(1−(1−θ)dd/2e)]
M(|F |−d) e × 2cvmin.

We denote the upper bound of |êd| (the right hand side in
the above inequality) by a function ρ. We can see that ρ is an
increasing function of θ and d. As θ =

Eslp
Ewkp

, when the energy
spent in sleep mode increases, less interactions are needed for
an agent to terminate (1). Since agents turn to terminated
mode more quickly, the convergence time of EB-TTFM is
longer. On the other hand, the longest execution in ∪|F |−1i=0 Ξi
is at most ρ(|F | − 1).

Using the results above, to exclude the two previously
described uninteresting cases, we compute the corresponding
lower and upper bounds on the initial energy E0 (with respect
to λ).

Lemma 1: [Upper Bound on E0 (∪|F |i=1Ξi 6= ∅)].
When E0 ≤

(
2cvmind |NF |M |F |e − 1

)
λ
λ−1Ewkp and cvmin �

O(n2), there exists at least one execution of EB-TTFM , in
which a fastest agent turns into terminated mode.

Proof: We know that the time complexity of E-TTFM
is 2cvmind |NF |M |F |e − 1, when cvmin � O(n2) (Prop. 1).

To ensure that ∪|F |i=1Ξi 6= ∅, i.e., there exists at least one
execution of EB-TTFM in which a fastest agent i turns
into terminated mode, mni(1) must be less than or equal



to 2cvmind |NF |M |F |e− 1. Elsewhere, EB-TTFM would behave
as E-TTFM . Thus, we have

mni(1) ≤
(

2cvmind
|NF |
M |F |

e − 1

)
Prop.2−−−−−−−−−→

cvmin�O(n2)

E0 ≤
(

2cvmind
|NF |
M |F |

e − 1

)
λ

λ− 1
Ewkp .

Lemma 2: [Lower Bound on E0 (Ξ|F | = ∅)].
When cvmin � O(n2), θ ≤ 1/2 and E0 ≥
d |NF |M×|F |e

λ
λ−1cvminEwkp, in any execution of EB-TTFM ,

there is at least one fastest agent, which is not in terminated
mode at the end of the execution. 5

Proof: We know from Prop. 4 that when cvmin � O(n2)

and d < |F |, the longest execution in ∪|F |−1i=0 Ξi is of length
ρ(|F | − 1).
According to the definition of mni(d), the configuration,
where all fastest agents are in terminated mode can happen
only at or after the mni(|F |)th interaction in an execution.
Then, if all executions in ∪|F |−1i=0 Ξi are of length less than
mni(|F |), no execution would ever reach such a configuration,
i.e., there is no execution e such that all fastest agents are
in terminated mode at the end of e. Thus, ρ(|F | − 1) <
mni(|F |) implies Ξ|F | = ∅.
When cvmin � O(n2), substituting (1) and (2) in ρ(|F |−1) <
mni(|F |), we obtain the lower bound of E0, which is:

E0 > d
|NF |
M

× θ2

θ2 + (d |F |+1
2
e+ 1/2)θ − 1

e λ

λ− 1
cvminEwkp

(3)
This lower bound can be seen as a function of θ, denoted by
lb(θ).
Since lb(θ) is an increasing function of θ and θ ≤ 1

2 , we
have lb(θ) ≤ lb( 1

2 ) < d |NF |M × 1
|F |e

λ
λ−1cvminEwkp. So, we

have a sufficient condition for Ξ|F | = ∅, which is: E0 ≥
d |NF |M×|F |e

λ
λ−1cvminEwkp .

Next, we consider the worst-case performance of EB-
TTFM with a fixed λ, supposing that every agent has an
initial energy E0 inside the bounds established above. Then
from the analysis of the worst-case performance on energy
consumption, we will determine the best choice for λ in EB-
TTFM .
Notice that if there is only one fastest agent (|F | = 1), the
conditions of Lem. 1 and 2 are incompatible. This case is
not considered by Th. 1. However, with the conditions of
Lem. 2, this fastest agent stays non-terminated during all
the executions and executes only E-TTFM . In this case,
the upper bound in Prop. 1 (depending on cvmin) holds.
Otherwise, the bound is worse, as it depends on a cover time
greater than cvmin.

Theorem 1: [Worst Case Energy Analysis].
When d |NF |M×|F |e

λ
λ−1cvminEwkp ≤ E0 ≤ (2cvmind |NF |M |F |e −

1)λEwkp/(λ− 1), cvmin � O(n2), and |F | > 1,

Esmax(EB-TTFM) ≤
λ− 1

λ
E0+(ρ(|F | − 1)−mni(1))Ewkp, (4)

5Recall that Ewkp > Eslp. For simplicity and following the study in [27],
we choose θ ≤ 1/2.

where ρ(d) is the function defined in (2).
Proof: Consider an execution e of EB-TTFM . As E0 ≥

d |NF |M×|F |e
λ
λ−1cvminEwkp, Ξ|F | = ∅ (Lem. 2). Moreover, for a

non-empty set Ξd, |êd| ≤ ρ(d) when cvmin � O(n2) (Prop.
4). Therefore, since ρ(d) is an increasing function of d, we
have |e| ≤ maxd<|F | |êd| ≤ ρ(|F |−1). Let i ∈ F be the agent
which consumes the most in e. There are two possibilities at
the end of e:

1) The energy spent by agent i is smaller or equal to E0−
E0

λ . Thus, the maximum energy spent by one agent in e
is smaller or equal to λ−1

λ E0.
2) The energy spent by agent i is greater than E0 − E0

λ .
Let ti be the number of past interactions when the
residual energy of agent i reaches E0

λ . As mni(1) is
the minimum number of interactions when a fastest
agent turns into terminated mode (Prop. 2), we have
ti ≥ mni(1). Thus, the length of the interval [ti, |e|] is
|e|−ti ≤ |e|−mni(1). Consequently, the maximum en-
ergy spent by one agent in e is smaller or equal to E0−
E0

λ + (|e| − ti)Ewkp ≤ λ−1
λ E0 + (|e| −mni(1))Ewkp.

In conclusion, the maximum energy spent by one agent in
the worst case of EB-TTFM , Esmax(EB-TTFM), is at
most λ−1

λ E0 + (ρ(|F | − 1)−mni(1))Ewkp.

A natural issue is to determine the best value for λ, that
is the value that maximizes the upper bound (4) in Th. 1.
This determination is not easy because of the ceiling and floor
functions appearing in (4). Thus, in order to get an exploitable
expression, we drop, in the next subsection, the assumption of
bounded memory and we consider that an agent can hold an
arbitrary number of values. Then we obtain a better upper
bound using such a λ.

B. Special Case of Non-Bounded Memory (M ≥ n− 1)

The following improved bound for E0 (with respect to
Lem. 2) is obtained when the lower bound of mni(|F |) is
larger or equal to cvmin. This condition ensures that at least
one fastest agent is not terminated during the first cvmin
interactions (and not until convergence as in Lem. 2). During
this period, the fastest agents meet all the non-fastest ones,
collect all their values (as M is large enough), and turn
them into terminated mode, as it is stated by Lem. 3. This
certainly ensures that Ξ|F | = ∅.

Lemma 3: [Lower Bound on E0 when M ≥ n−1 (Ξ|F | =
∅)]. When E0 ≥ λ

λ−1 ( θ

1−(1−θ)d
|F |
2
e
)cvminEwkp and M ≥

n−1, in any execution of EB-TTFM , all non-fastest agents
are in terminated mode after the first cvmin interactions.

Proof: We know that the state where all fastest agents
are in terminated mode can happen only at or after the
mni(|F |)th interaction. Thus, if mni(|F |) ≥ cvmin, in
any execution of EB-TTFM , there is at least one non-
terminated fastest agent at the end of the first cvmin.
Moreover, all the non-fastest mobile agents are in terminated
mode, since every non-fastest mobile agent interacts with a



non-terminated fastest agent during the first cvmin and has
transferred all of its value (as the memory is unbounded) in
this interval.
Substituting mni(|F |) by the lower bound in (1) and express-
ing the formula in function of E0 yields the formula appearing
in Lemma 3.

Then, similarly to the bounded case in the previous section,
we compute Esmax(EB-TTFM) for E0 satisfying the
bounds of Lemmas 1 and 3.

Theorem 2: [Worst Case Energy Analysis when
M ≥ n− 1]. When λ

λ−1
( θ

1−(1−θ)d
|F |
2
e
)cvminEwkp ≤ E0 ≤

(2cvmin − 1) λ
λ−1

Ewkp, Esmax(EB-TTFM) ≤ λ−1
λ E0+

(1 + 1
2−θ )cvminEwkp = Θ(cvminEwkp).

Proof: Assume that for an execution e, the energy of agent
i decreases to E0

λ at time ti. Then, there are two possible states
for agent i after ti + cvmin:

• Agent i is in terminated mode: It means that agent i
has already transferred its value. Therefore, in this case,
the residual energy of agent i at the end of execution,
eli(|e|) = eli(ti + cvmin) ≥ E0

λ − cvminEwkp.
• Agent i is not in terminated mode:

If agent i is still alive after ti+cvmin, for any interaction
(i, j) at time t ∈ [ti, ti+cvmin] with an agent j still non-
terminated, elj(t) < eli(t) ≤ E0

λ . Thus, after ti+cvmin,
agent i is the only non-terminated agent. And agent i is
the agent that transfers the last value to the base station.
Let agent j be the last agent turning into terminated
mode during [ti, ti + cvmin] and let tj be the time where
its energy decreases to E0

λ . Let tij ∈ [ti, ti+cvmin] be the
time when non-terminated j interacts with i. We know
that tij > tj since elj(tij) < elj(tj) = E0

λ . Denoting by
xi the number of interactions of agent i during [ti, tij ]
and by xj the number of interactions of agent j during
[tj , tij ]:

1) First, according to the definition of xi and xj , we
have xi ≤ tij − ti, xj ≤ tij − tj .

2) As elj(tij) < eli(tij), E0

λ −xj(Ewkp−Eslp)−(tij−
tj)Eslp <

E0

λ − xi(Ewkp − Eslp) − (tij − ti)Eslp.
Thus, we have xi < xj + (ti − tj) θ

1−θ where θ =
Eslp
Ewkp

.
3) There is no interaction between i and j dur-

ing the interval [min(ti, tj), tij). Indeed, suppose
that there is one at time t′ ∈ [min(ti, tj), tij) ,
k1 = arg min

x∈{i,j}
tx and k2 = {i, j}\k1. We know

that elk1(t′) ≤ elk1(tk1) = E0

λ . If elk1(t′) <
elk2(t′), agent k1 transfers its values to agent k2.
If elk1(t′) > elk2(t′), as elk2(t′) < elk1(t′) ≤ E0

λ ,
agent k2 transfers its values to agent k1. Then, after
the interaction at time t′, either agent k1 or agent
k2 is in terminated mode which contradicts the
interaction of (i, j) at time tij where both agents

are non-terminated.
Since there is no interaction between agent i and j
during the interval [min{ti, tj}, tij) and since there
is at least one interaction between i and j for each
cvmin time interval, according to the definition of
a cover time, we have tij ≤ min{ti, tj} + cvmin.
Thus, xi + xj ≤ cvmin.

Taken all the inequalities obtained above into consider-
ation, xi reaches its maximum value 1

2−θ cvmin when
tij − tj = cvmin, tij − ti = 1

2−θ cvmin, xj = 1−θ
2−θ cvmin.

Figure 1 gives an illustration of this case. As the ex-

⏟titj
⏞⏞

cvmin

x i=
cvmin

2−θ

x j=
1−θ

2−θ
⋅cvmin

tij

Fig. 1. Illustration of the case where xi has the maximum value.

ecution ends before tij + cvmin, agent i interacts at
most cvmin times after tij . Thus, from ti to the end of
execution, agent i interacts at most xi + cvmin = 3−θ

2−θ
times. Therefore, in the worst case, agent i will consume
3−θ
2−θ cvminEwkp energy at the end of execution e.

In conclusion, for any agent i ∈ F whose energy decreases
to E0

λ before the end of an execution e, we have proved
that agent i should consume at most 3−θ

2−θ cvminEwkp energy.
Therefore, we have Esmax(EB-TTFM) ≤ λ−1

λ E0 + (1 +
1

2−θ )cvminEwkp .

1) Best Choice for λ: Now, given E0 (large enough
for accomplishing the task), we study the best choice for
λ for minimizing Esmax(EB-TTFM). We can see from
Th. 2 that Esmax(EB-TTFM) decreases when λ decreases.
But λ should satisfy the condition E0 ≥ λ

λ−1
(θ/(1 − (1 −

θ)d
|F |
2
e))cvminEwkp. Therefore, the smallest value of λ is

obtained when λ
λ−1

( θ

1−(1−θ)d
|F |
2
e
)cvminEwkp = E0 , which is

λ̃ = E0/(E0 − ( θ

1−(1−θ)d
|F |
2
e
)cvminEwkp).

2) Interpretation of Results: Comparison of Energy Per-
formance between EB-TTFM and E-TTFM : We give a
meaningful example of the interest to have analytical functions
for describing the energy consumption performance. This
example considers the unbounded memory case and illustrates
conditions under which EB-TTFM outperforms E-TTFM .
When the memory is not bounded and cvmin � O(n2),
by Prop. 1, Esmax(E-TTFM) = (2cvmin − 1)Ewkp, and
by Th. 2, when λ is set to λ̃, Esmax(EB-TTFM(λ̃)) ≤
(1 + θ/(1 − (1 − θ)d

|F |
2 e) + 1

2−θ )cvminEwkp. Then, we
obtain that for |F | ≥ 10 and θ ≤ (3 −

√
5)/2 ≈ 0.38,

Esmax(EB-TTFM(λ̃)) ≤ Esmax(E-TTFM), i.e., EB-
TTFM(λ̃) outperforms E-TTFM .
The figure below represents the comparison of Esmax be-
tween EB-TTFM(λ̃) and E-TTFM with different |F | and
θ. The red (lighter) plane shows Esmax(E-TTFM) and



the blue (darker) one represents Esmax(EB-TTFM(λ̃)).
We can see that EB-TTFM(λ̃) is more energy balanced
when θ is small, i.e., when the energy spent in sleep
mode is much less than the energy spent in awake mode.

3) Interpretation of Results: Relationship between λ, E0

and Esmax in EB-TTFM .: In the Section IV-B1, we
discussed the best choice for λ in EB-TTFM . But what
if the value of λ is not set to λ̃ (Eq. IV-B1) and what is
the performance of EB-TTFM in this case? In this section,
we use 3D plots to show the relation among λ, E0 and
Esmax(EB-TTFM).
Firstly, from Lemma 3, we have a lower bound for E0

depending on λ. Then, 3D plots of λ, E0 and Esmax can be
constructed following Th. 2. Figure 2 shows the performance
of EB-TTFM where |F | = 10, θ = 0.2. x axis presents λ,
y axis shows E0 and z axis shows Esmax(EB-TTFM).
The blue polygon in Figure 2a presents the possible values
of λ and E0 for which EB-TTFM does not behave like
E-TTFM . As we can see, λ should be carefully chosen to a
small value for EB-TTFM to perform better than E-TTFM
in the worst case. The green border on the blue polygon
represents the best choice for λ (Sect. IV-B1). The red polygon
in Figure 2a shows the region of values for λ and E0 where
EB-TTFM behaves like E-TTFM .
Figure 2b gives a view of x, y axis which shows the feasible
values of λ and E0 (blue and red area).

(a):

(b):

Fig. 2. 3D plot on the relationship of λ, E0 and Esmax

V. LOWER BOUND ON Esmax

In this section, we present a lower bound (Th. 3) on the
maximum energy spent by an agent (Esmax) for achieving

data collection. The protocols considered here, like in the
whole study, are those that can compare (but not use in
any other way) the cover times and the residual energies of
interacting agents. Let us denote this class of protocols by
Pcv∪e. Following the intuition above for strategies of energy-
balanced data collection protocols, we study the lower bound
for different sub-classes of protocols in Pcv∪e, distinct in their
strategies of turning agents into terminated mode.
Hence, we decompose Pcv∪e into subsets Pi, defined below.
For that, we order the agents according to their cover times
and denote by ns the number of different cover times and by
Fi the set of mobile agents with the the ith smallest cover
time. Thus the set of fastest agents is F1. We also denote by
cvi the value of the ith smallest cover time. Then, we define
Pi as the class of protocols for which, there is at least one
non-terminated agent in ∪ij=1Fj at the end of any execution
(or turning into terminated mode during the last interaction
of the execution). Moreover, in Pi, when i > 1, there exists
at least one execution in which all agents in ∪i−1j=1Fj are
terminated before the end of execution, i.e.,

Pi = {P ∈ Pcv∪e|
∀ e ∈ e(P), ∃f ∈ ∪ij=1Fj ,Mode(f, e) 6= terminated ∧
if (i > 1) :

∃ e ∈ e(P), ∀f ∈ ∪i−1
j=1Fj ,Mode(f, e) = terminated},

where e(P) is the set of all executions in protocol P and
Mode(f, e) ∈ {awake, sleep, terminated} indicates the
energy consumption mode of agent f just before the last
interaction in execution e.
By definition, the Pi’s are disjoint and ∪nsi=1Pi = Pcv∪e.
Moreover, E-TTFM belongs to P1. Note that EB-TTFM
can belong to different subsets depending on the value of E0

λ .
Under the conditions of Lem. 2, EB-TTFM is in P1.

We obtain the lower bound on energy using in particular
the lower bound on time (the length of an execution) of [6].
This bound holds for any data collection protocol using only
cover time comparisons. Let Pcv be this class of protocols.
The proof of the lower bound on time for Pcv in [6] holds
also for Pcv∪e, because only constraints related to the data
collection problem are invoked. For example, it is necessary
that every mobile agent either meets BST by itself, or meets
at least one other agent that meets BST, before convergence.
Then comparisons of the residual energies of two interacting
agents cannot produce a shorter execution. This is expressed
in the following observation.

Observation: The lower bound on time for any data
collection in Pcv [6] is also correct for any protocol in Pcv∪e.

Recall that this bound is tight and equal to the upper bound
on time of the protocol TTFM , also presented in [6]. Hence,
we denote this bound here by |emax(TTFM)|.
The lower bound on energy presented below holds for the
large and natural family of cover time vectors for which
cvmin � O(n2) (see justifications in Sect. II-A).



Lemma 4: [Lower Bound on Esmax for Protocols in Pi]
If cvmin � O(n2), for any protocol P in Pi, the en-
ergy spent by an agent in the worst case, is at least
Esmax(E-TTFM)/d |∪

i
j=1Fj |
2 e.

Proof: First, consider the following schedule which re-
peats the segment X1X2, where X1X2 is of length cvmin.
X1 ≡ [ repeat as much as possible all the possible interactions
between agents in ∪ij=1Fj ],
X2 ≡ [ all the other necessary interactions to satisfy cvs ].
Consider now the execution of P ∈ Pi for this schedule,
denoted by e. Since no agent consumes more than Esmax(P)
amount of energy in any execution of P , when an agent con-
sumes Esmax(P) in e, either it turns into terminated mode
or e reaches the final configuration. And as P ∈ Pi, there is
at least one agent in ∪ij=1Fj which is non-terminated at the
end of e. Moreover, notice that |X2| ≤ n(n−1)

2 = O(n2) and
as cvmin � O(n2), the length of X2 is negligible. Thus, fol-
lowing the above schedule, at time t = Esmax(P)

Ewkp
×d |∪

i
j=1Fj |
2 e,

all agents in ∪ij=1Fj consume Esmax(P) amount of energy.
However, the length of e must be smaller than or equal to t.
Because otherwise, either there would be a non-terminated
agent consuming more than Esmax, or all agents would be
terminated, which contradicts the fact that P ∈ Pi. Thus,
we have t ≥ |e|, i.e., Esmax(P)Ewkp

× d |∪
i
j=1Fj |
2 e ≥ |e|.

By the observation above, execution e satisfies the
lower bound on time of [6]. Thus, we obtain |e| ≥
|emax(TTFM)| = |emax(E-TTFM)|, as E-TTFM has the
same time performance as TTFM (Sect. III). Moreover, by
Prop. 1, when cvmin � O(n2), |emax(E-TTFM)|Ewkp =
Esmax(E-TTFM). Then we have

Esmax(P) ≥ |e| × Ewkp
d |∪

i
j=1Fj |
2 e

≥ |emax(E-TTFM)|Ewkp
d |∪

i
j=1Fj |
2 e

= Esmax(E-TTFM)/d
| ∪ij=1 Fj |

2
e.

Lemma 5: [Lower Bound on Esmax for Protocols in Pi]
If cvmin � O(n2), for any protocol P in Pi, the energy spent
by an agent in the worst case, is at least cviEwkp.

Proof: When i > 1, as P ∈ Pi, there exists at least one
execution e in which all agents in ∪i−1j=1Fj are terminated
before the end of the execution. Let t indicate the time when
all agents in ∪i−1j=1Fj are terminated in e and let f 6∈ ∪i−1j=1Fj
be a non-terminated agent (with cover time cvf ≥ cvi),
holding one of the values not yet collected by BST at time
t + 1. We prove the existence of another execution e′ such
that Esmax(e′) ≥ cviEwkp. The execution e′ begins with the
same prefix of t events as e and continues by meetings between
agent f and the terminated agents until f meets BST at time
t+ cvf . In our energy consumption scheme, when a sleeping
agent meets a terminated agent, it consumes Ewkp and does
not change its mode (See Sect. II-B). Therefore and because
cvf > cvmin � O(n2), during the interval [t, t+cvf ], agent f
consumes cvfEwkp (the necessary interactions involving other

agents than f during cvf are negligible, as in the proof of Lem.
4). So, when i > 1, we have Esmax(P) ≥ Esmax(e′) ≥
cvfEwkp ≥ cviEwkp.

Next, we consider the case where i = 1. We prove that
Esmax(P) ≥ cvminEwkp by contradiction. Suppose that
there exists a protocol P ∈ P1 such that Esmax(P) <
cvminEwkp. To contradict this, we construct an execution e of
P with Esmax(e) ≥ cvminEwkp. Consider again the schedule
X1X2 in the proof of Lem. 4. It is possible that at time
t = Esmax(P)/Ewkp < cvmin, an agent j ∈ F1 consumes
Esmax(P) and turns into terminated. For the same reason
as above, we can construct e in which a non-terminated
agent f meets the terminated agent j repetitively until it
meets others at time t + cvf . Thus, when i = 1, we have
Esmax(P) ≥ cvminEwkp.

Theorem 3: [Lower Bound on Esmax for Protocols in
Pcv∪e] If cvmin � O(n2), for any protocol in Pcv∪e,
the energy spent by an agent in the worst case is at least
max{Esmax(E-TTFM)/d |F |2 e, cvminEwkp}.

Proof: The result comes directly from Lem. 4 and 5, since
∪iPi = Pcv∪e and

min
i

max{Esmax(E-TTFM)/d
| ∪ij=1 Fj |

2
e, cviEwkp}

= max{Esmax(E-TTFM)/d |F |
2
e, cvminEwkp}.

Next, we identify the cases where this bound is reached by
the presented protocols (Cor. 1), and where it differs only by
a constant multiplicative factor from the energy complexity
of EB-TTFM , for the case of non-bounded memory and
with a good choice of λ (Cor. 2).

Corollary 1: When |F | ≤ 2 and cvmin � O(n2), E-
TTFM is energy-optimal in Pcv∪e, with respect to the
energy spent by an agent in the worst case.

Proof: From Th. 3, if |F | ≤ 2, ∀P ∈
Pcv∪e, Esmax(P) ≥ Esmax(E-TTFM). As E-
TTFM ∈ Pcv∪e, E-TTFM is energy optimal in Pcv∪e.

Corollary 2: When |F | > 2 and cvmin � O(n2), for any
protocol in Pcv∪e, the energy spent by an agent in the worst
case is at least cvminEwkp. For the case where M ≥ n−1 and
λ satisfies the conditions of Th. 2, EB-TTFM(λ) reaches
this bound asymptotically.

Proof: This result comes directly from Th. 3 and Th. 2.

VI. CONCLUSION

This paper presents a formal model for power-aware dis-
tributed algorithms. Designing a good model is difficult. If
the model is too abstract (or general), it won’t easily apply to
reality, if it is too low level and considers too many parameters,
it won’t allow formal treatments. We believe that the model we
introduced is a good compromise between the two approaches.



On the one hand, it is based on practical information on how
real resource-limited mobile sensor networks are functioning,
and on the other hand, as shown in the paper, it allows to
obtain analytically precise formulas, which are obviously not
directly intuitive.

Moreover, the proposed model is adaptable to other types of
mobile sensor networks and their applications (e.g., to the case
where the transmitted data does not always fit into one packet).
As already noticed, the assumption on the cover times does
not particularize the model, since almost all real mobile sensor
networks either operate in a bounded area (town, factory,
security zone, etc.) or satisfy the home coming tendency
(networks related to human or animal mobility). Nevertheless,
other kinds of “periodic” conditions on the interactions (e.g.,
probabilistic interactions) can be considered to study energy
consumption using the proposed framework. Finally, other
important communication problems (as broadcast, all-to-all
communication, routing, etc.) have many points in common
with data collection (excepted that unique identifiers may
be needed, like in community protocols [31]). Hence, the
techniques developed here can be useful in future studies of
these problems.

The second contribution of the paper consists in establishing
analytical formulas related to the energy consumption of two
data collection algorithms. We want to emphasize that having
analytical formulas allows obtaining information that could not
be obtained by the sole intuition, and that would be difficult
to obtain by simulations. On one hand, the study of the curves
and plots allows to get easily the conditions on the parameters
(e.g., think of the value of 3−

√
5

2 for θ in Sect. IV-B2). On the
other hand, the analytical approach allows obtaining general
upper and (always difficult to establish) lower bounds.

To conclude, we summarize the main technical results of
the paper. In Sect. IV-A, we obtain formulas for the worst-
case performance of energy in EB-TTFM . Then, for the
case of non-bounded memory, we compute the best value for
λ with respect to E0, |F |, Ewkp, Eslp and cvmin (Sect. IV-B).
Further analysis with the best λ shows that no matter how
much initial energy an agent has, once it consumes more
than some calculated amount Efix, the best strategy is to
switch to terminated mode, when interacting with a more
powerful agent. We interpret the formulas graphically, and
show that EB-TTFM is more energy efficient in the case
where the number of fastest agents are more than 10 and the
ratio between Eslp and Ewkp is less then 3−

√
5

2 (Sect. IV-B2).
At the end (Sect. V), we give a uniform lower bound for
energy consumption for all possible data collection protocols.
We identify the cases where this bound is reached by the
presented protocols (Cor. 1), and where it differs only by a
constant multiplicative factor from the energy upper bound of
EB-TTFM (Cor. 2).
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