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The problem of assessing the strength to wind actions of Gothic Cathedrals is addressed in this paper. A nonlinear approach, based upon a large-strain, large displacements formulation and using a nonlinear constitutive law modeling the notension behavior of the material as a damage law is proposed. The method is applied to the study of the Cathedral Notre Dame of Paris.

Introduction

Gothic Cathedrals are one of the most important cultural heritages of Europe. They characterize the panorama of several European towns and prove the skill and boldness of the architects of the Middle Ages. Though unaware of the laws of physics, they conceived audacious buildings that defy the laws of mechanics since eight centuries.

As very imposing and articulated stone structures, Gothic Cathedrals have been the object of some studies, aiming at understanding, on one hand, the way these structures have been conceived and, on the other hand, how much safe they are, namely with respect to the self weight loads and the wind thrust.

Rather surprisingly, there are few studies on this last problem; without going back to old treatises, like [START_REF] Ungewitter | Lehrbuch der Gotischen Konstruktionen[END_REF], treating classically the problem of lateral forces using the method of the thrust line, a fundamental work has been that of R. Mark. In his book Experiments in Gothic Structure, he tackles the analysis of the lateral wind forces on a Gothic Cathedral using the experimental technique of photoelasticity, [START_REF] Mark | Experiments in gothic structure[END_REF].

It is interesting to notice that R. Mark investigated, with this technique, the response of Notre Dame of Paris as built before the structural modifications made after 1225. The motivation of his study is in his own words:

This relatively lightly constructed central vessel of the Cathedral Notre Dame is thirty-three meters from floor to vault keystone, a full eight meters taller than its highest Gothic predecessors, the Cathedrals of Laon and Sens, and the largest single-incremental height increase for a new church over an earlier building in the entire era. Since wind speeds are greater at higher elevations, and wind pressure is proportional to the square of the speed, earlier experience with lower-profiled, more heavily massed churches could not have fully prepared the builders to cope with the new environment. Because of massive reconstructions made to Notre Dame after 1225, just how the design problem was solved in the original Gothic construction remained unclear [START_REF] Mark | High gothic structure -A technological reinterpretation[END_REF].

His objective was hence to understand if the modifications made by the architects of the XIII-th century were motivated by some structural reasons, and not exclusively by architectural and stylistic ones. In particular, R. Mark has shown that the original structure, with a different arrangement of the flying buttresses, had some structural problems. Namely, he showed that under the wind action of heavy storms, tensile stresses exceeding three to five times the tensile admissible stresses for the mortars of the Middle Ages arose in some part of the structure, so certainly producing evident cracks. This can explain, in the opinion of R. Mark, why the structure was modified after 1225. The present structure of the Cathedral is shown in Fig. 1, while the original one is presented in Fig. 2; the structural differences, mainly concerning the flying buttresses, are evident. R. Mark made experiences with photoelasticity also on other Cathedrals, namely Amiens and Beauvais, [START_REF] Mark | Experiments in gothic structure[END_REF]. However, it is worth recalling that the underlying assumption of photoelasticity is the linearly elastic behavior of the structure, assumption that can be considered as correct only for analyses that are restrained to situations where there are not significative cracks arising in the structure. This exactly happens when the structure approaches its ultimate state under extreme winds. So, such an approach for the determination of the ultimate wind strength of a Cathedral can be questionable.

A more recent work is that of M. Como and his team, [START_REF] Como | Statics of historic masonry constructions[END_REF], [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF]. In a research concerning the Amiens Cathedral, the study of the lateral wind strength is done using the limit analysis method, i.e. calculating the ultimate load multiplier λ cr of the wind pressures over the lateral parts of the Cathedral. For λ = λ cr , the structure is transformed into a mechanism by the formation of a sufficient number of plastic hinges, rotation points formed by the cracking of the stone masonry under the action of tensile stresses. The theoretical framework is that defined by Heyman, [START_REF] Heyman | The stone skeleton[END_REF], i.e., the masonry has no tensile strength at all, the compressive strength can be considered as infinite and no sliding failures occur in the structure. Actually, in [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF] also local sliding mechanisms are anyway considered.

The study is conducted on a planar scheme, obtained considering a transversal portion of the Cathedral between two successive pillars of the main aisle. The two analyses make use of slightly different hypotheses for the calculation of the wind pressure, which finally results in two different values of the ultimate wind speed at 10 m above the ground, which passes from 146 km/h in the first study to 109 km/h in the second one.

Such wind speed values have been exceeded in France rather frequently, also during recent extreme events: a velocity of 220 km/h has been recorded at Cap Finistère, in Bretagne, on October 15, 1987. During the storms of December 26 and 28, 1999, a wind speed of 169 km/h has been measured at Parc Montsouris, inside the city of Paris, while during the storm Xynthia, February 28, 2010, the wind has reached the speed of 136 km/h at Metz, well far from the coasts. Very recently, on January 12, 2017, the storm Egon has produced wind gusts at 146 km/h at Dieppe and has destroyed the rose of the Cathedral of Soissons.

These few data show that extreme wind storms, potentially able to produce important structural damages and possibly the ruin of tall buildings, are rather frequent. Such events are to be considered with care today, because climate deregulation produced by global warming has rendered the occurrence of extreme meteorological events more frequent than in the past. So, the structural analyses of important historical buildings like Gothic Cathedrals, more sensitive to such events due to their dimensions and type of structure, are more and more important.

To this purpose, we have studied the response to a lateral wind of the Cathedral Notre Dame of Paris, with the intention of determining its ultimate strength: our goal was to give an assessment of the critical wind, the one able to produce the global failure of the structure. We have followed a different approach with respect to the studies cited above. In particular, we performed an incremental analysis in order to determine the response of the structure, in terms of horizontal displacements, to different wind velocities. When the displacements, increased by increasing wind loads, become unbounded, failure occurs.

This choice has been inspired by three considerations: on one hand, to perform a limit analysis on a five-aisles Cathedral with galleries is much more cumbersome than the same analysis on a Cathedral of the High Gothic period, like that of Amiens, with only three aisles and no galleries, [START_REF] Jantzen | Kunst der Gotik[END_REF], [START_REF] Simson | The Gothic Cathedral[END_REF], [START_REF] Frankl | Gothic architecture. Pelican History of Art[END_REF], [START_REF] Wilson | The Gothic Cathedral[END_REF]. To determine all the possible failure mechanisms for such a kind of structure is very delicate.

On the other hand, the incremental approach that we have used allows us to find, for each wind speed, the equilibrium configuration. In this way, the progressive damage of the structure appears automatically and the precise failure mechanism arises spontaneously from the nonlinear numerical simulation. Finally, unlike other previous studies, our approach makes use of a 3D structural scheme. Actually, the use of a 2D simplified structural scheme for the prediction of the wind strength of building as complex as a Gothic Cathedral remains questionable: the simplifications that are done in the passage from the 3D structure to a 2D scheme are numerous and strong and could affect the results. In our approach we make use of a 3D model representing a significative part of the Cathedral's structure, that we have called the structural unit, described below. Through this approach the structural failure mechanism is automatically detected as a result of the calculation, which is an advantage with respect to customary limit analysis 2D approaches, where strong simplifications on the geometry and a-priori assumptions on the failure mechanisms are done (see Sect. 6.2).

Finally, the deformation of the structure is determined for each incremental value of the wind action, so letting appear the time response of the Cathedral to wind. However, because we do a quasi-static analysis, where all dynamical effects are neglected, the time so considered is a synthetic one, a purely numerical quantity that cannot be transformed into a physical time. Nonetheless, by this procedure we can draw curves simulating the time response of the Cathedral.

As already mentioned, all the simulations have been done on a finite element model of a structural unit of the main aisle, specified below. The simulations are non-linear, because of the constitutive equation, a softening law representing the tensile damage of the material, used to model the no-tension behavior of stone masonry (material nonlinearity), and because we have performed the calculations considering large deformations and displacements (geometric nonlinearity), that occur when the structure is close to its ultimate state.

This paper is organized as follows: in Sect. 2 we introduce the structure of the Cathedral Notre Dame of Paris and its finite element model. In Sect. 3 we detail the constitutive law used to model the material and in Sect. 4 the representation of the wind loads. The details about the numerical procedure and simulations are given in Sects. 5 and 6.1, while some final considerations are presented in Sect. 7.

The structural model

The Cathedral Notre Dame of Paris, one of the principal examples of the Early Gothic period, was built from 1163 and during about one century. Its overall dimensions are: length 130 m, width 48 m, height of the vaults 32.5 m, total height, comprehending the timber roof, 45 m. The high vault of the main aisle is built with a sexpartite scheme, i.e. each vault is composed by six webs. The scheme of the structure is shown in Fig. 1. The Cathedral has five aisles plus the lateral chapels and wide galleries that, above the lateral aisles, run all along the principal aisle and round the choir.

The geometry of Notre Dame of Paris is hence particularly complex and articulated, much more than other Cathedrals of the High Gothic period, like Chartres, Reims or Amiens, where galleries are not present and the aisles are only three. Also the dimensions are different: though when it was built it was the highest Cathedral, for the race to height typical of Gothic architecture it soon was exceeded in height by other Cathedrals. So, because it is less high than other major Cathedrals, like Amiens or Beauvais, the transversal section of Notre Dame of Paris is stiffer and stronger compared to them. A sketch of the historical evolution of the height of French Gothic Cathedrals is given in Fig. 2.

For this study, we have considered a structural unit, which is the part of the Cathedral shadowed in Fig. 1. It comprehends a complete sexpartite vault, 12 m in length, and [START_REF] Tallon | La Cathédrale de Paris[END_REF].

Due to the complexity of the Gothic architecture, some geometrical simplifications, not affecting the overall structural response of the Cathedral, have been done. In particular, all the parts that are merely decorative are not taken into accounte.g., crockets, windows, traceries and pinnacles. The ribbed vaults are modeled carefully, together with the pointed arches and the flying buttresses, since the stability and integrity of the whole building depend on them. Also, the filling in the springing zone of the vaults have been modeled until an angle of 30 • on the horizontal, see Fig. 5.

In order to avoid a meaningless growth of the finite element model, the roof of the building has been modeled just to take on the wind actions. So, it is represented by two rigid inclined plates whose top is 10 m above the guttering walls, like in the Cathedral. The roof, made of lead and wood, applies an estimated linear load of 2 × 10 4 N/m on the top of each one of the guttering walls. All the simulations have been done using the finite element code ABAQUS.

Taking advantage of its symmetry, calculations are made just on one half of the structural [START_REF] Mark | High gothic structure -A technological reinterpretation[END_REF]). 

The material model

Masonry composed by ashlars and mortar joints is often modeled as a no-tension material: its tensile strength is so small that in some cases it can be considered as practically null, while the compressive strength is so high, usually greater than 40 MPa, that it is never attained in the body of the structure (normally, the highest compression in monumental structures is of the order of 4 ÷ 6 MPa).

Hence, a suitable constitutive law must be used to model a continuum composed of ashlars and mortar-joints. Such a law should model the possibility of damage of the material, i.e. the formation of cracks due to tensile stresses. In our calculations, the following assumptions have been made to model the nonlinear behavior of stone structures:

• in compression, the material is described by an isotropic linearly elastic constitutive law with infinite strength. This is a strong assumption, [START_REF] Heyman | The stone skeleton[END_REF], [START_REF] Stefanou | Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain[END_REF]], but it is not expected to alter the results (as said above, compressions are always far below the admissible compressive stress);

• in tension, the material is assumed to be isotropic linearly elastic until the maximum principal stress does not exceed the tensile strength; a small, but not null, tensile strength f t is hence considered for the material;

• when the maximum principal stress exceeds the tensile strength f t , failure is modeled using a nonlinear constitutive law based on the softening model proposed by Hillerborg, Modéer and Petersson, [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF].

The Cathedral Notre Dame of Paris is built with ashlars of a limestone extracted from quarries of the Paris region. Not all the stones are from the same quarry, hence the mechanical characteristics of the material are not uniform throughout all the building. In addition, no certain data are available about the mechanical properties of the stone and of the mortar used by the constructors. Moreover, the cathedral has undergone several renovations over the centuries, the most important one being that of Viollet Le Duc during the XIXth century. That is why it is today completely impossible to know in detail the mechanical characteristics of all the materials composing the Cathedral, nor their distribution and an average value of the different mechanical characteristics has to be used. That is why data derived from the literature have been used for the simulations.

An equivalent homogenized Young's modulus E eq , assuming that both stone and mortarjoints have the same Poisson's ratio, is derived from classical homogenization theory, see e.g. [START_REF] Cecchi | A multi-parameter homogenization study for modeling elastic masonry[END_REF], [START_REF] Como | Statics of historic masonry constructions[END_REF], namely

E eq = E m (1 + s/h b ) E m /E b + s/h b , (1) 
where E b and E m are the Young's moduli respectively of masonry blocks and mortarjoints, while h b and s are the height of the blocks and thickness of the joints. Relying on the investigations made during a survey of the building, we can evaluate h b = 2.5 × 10 -1 m and s = 1.0 × 10 -2 m. For the mortar, a modulus E m = 2.5 GPa is chosen, while for the stone a modulus E b = 20 GPa is selected, which is a mean value for limestone (for more details, see again [START_REF] Como | Statics of historic masonry constructions[END_REF]). The resulting Young's modulus is E eq = 14.8 GPa, and finally a value E eq = 14 GPa is selected, for a matter of safety. The Poisson's ratio and the density are selected relying on typical values mentioned in the literature for limestone, namely:

ρ s = 2000 kg/m 3 , ν s = 0.25.
In the softening model that we have used to represent the formation of cracks, [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF], when f t , the maximum allowed tensile strength, is exceeded, damage occurs and the subsequent tensile softening is characterized in terms of the fracture energy G f , i.e., the energy dissipated during the opening of a unit area of crack in Mode I.

We introduce a bilinear approximation of the softening curve, represented in Fig. 8. Following this approximation, we can compute the fracture energy for normal tensile stresses as

G f = G 1 f + G 2 f = w k 0 σ dw + w f w k σ dw, (2) 
where σ is the maximum principal stress; w is the displacement normal to the crack surface; w k is the normal displacement relative to the kink point, with stress σ k , and w f the one corresponding to the complete loss of strength. Applying the bilinear approximation in terms of the following parameters,

Ψ = σ k f t , λ = w k w f , (3) 
the two integrals in eq. ( 2) become

G 1 f = w k 0 σ dw = f t 2 λ (1 + Ψ ) w f , G 2 f = w f w k σ dw = f t 2 Ψ (1 -λ) w f , (4) 
so that

G f = f t 2 (λ + Ψ ) w f . (5) 
This expression allows to compute w f if G f , f t , Ψ and λ are known:

w f = 2 Ψ + λ G f f t . (6) 
For masonry, relying on the experimental results from uniaxial tensile tests on specimens with a characteristic length h = 100 mm, [van der Pluijm, 1999], the following parameters have been chosen

f t = 0.5 MPa, G f = 11.3 N/m, Ψ = 1 3 , λ = 1 2 .
The value of w f is automatically calculated for each element by ABAQUS; for instance, for h = 100 mm we get w f = 5.4 × 10 -2 mm.

The wind model

As said in the Introduction, we are interested in assessing the highest wind speed that the Cathedral can withstand before a global structural failure. To this purpose, we need a model of the wind as close as possible to the real physical phenomenon, in order to reproduce, as finely as possible, a realistic situation.

The wind close to the Earth surface is just what happens in the boundary layer of the flow of air masses. As such, we need a law describing the wind profile, i.e. the variation of the wind speed v with the distance z from the ground, typical of what happens in a boundary layer: a null speed at z = 0 and a decreasing gradient dv(z)/dz.

Different models simulate the wind profile; typical ones are logarithmic or power laws, [START_REF] Sachs | Wind forces in engineering[END_REF]. Like in an analogous work on the wind strength of a Gothic Cathedral, [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF], we have used a power law in the form

η = ζ α , (7) 
where we have introduced the two dimensionless variables with z 0 the reference height, where the wind speed v 0 is known, and α an exponent, put equal to 0.35 in [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF], value suggested for urban areas.

η = v v 0 , ζ = z z 0 , (8) 
Actually, the wind speed is not exactly null at the ground level and, mainly for the ruggedness of the surface, it is practically constant until a certain height. Putting such a height equal to z 0 , the wind profile is modified accordingly: below z 0 , v = v 0 , above, v(z) is given by eq. ( 7). A similar scheme is used also in the norm Eurocode 1, [ECS, 2005], where however a logarithmic law is preferred. In Appendix B we give a comparison of the wind profile (7) with that proposed by Eurocode 1, showing that actually the differences between the two models are not substantial. Considering the skyline of Paris, we have chosen for z 0 the value of 10 m. The same value is suggested by Eurocode 1; finally, the wind profile is depicted in Fig. 9. The wind pressure p is obtained as a drag force per unit of exposed surface using the relation

p = 1 2 C D ρ v 2 , ( 9 
)
where ρ is the mass density of air, ρ = 1.225 kg/m 3 at an ambient temperature of 15 • C, and C D is the drag coefficient. Its value mainly depends upon the Reynolds number, the form and exposition of the surface impinged by wind, besides its ruggedness and other parameters, like the Mach and Froude numbers etc.

In the case of a so complex structure like the Cathedral Notre Dame, a global value for C D could be obtained uniquely by preliminary tests in a wind tunnel. Because this has not been possible, we have evaluated C D following some indications that can be found in the literature. In particular, cf. [START_REF] Sachs | Wind forces in engineering[END_REF], for an infinitely long rectangular plate set on the ground, C D ∼ 1.2; the global dimensions of the Cathedral of Paris are: height z 1 = 45 m at the roof top and overall length 130 m, so with a ratio length/height of ∼ 3.

In order to take into account for, on one hand, the macrosopic ruggedness of the surface, full of pinacles, statues, decorations, flying buttresses etc., and, on the other hand, of the finiteness of the side wall (for instance, for a plate into a 3D flow, C D = 1.28), we have prudently increased the value of C D and we have assumed C D = 1.5. To this purpose, we remark that in [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF] the evaluation given for the wind pressure corresponds to put, on the whole, C D = 1.5, and that C D = 1.5 is practically the global value suggested, in fine, also by Eurocode 1 (see Appendix B).

R. Mark proposed in [START_REF] Mark | Experiments in gothic structure[END_REF] the distribution of C D in Fig. 10. It has been derived by experimental measures in wind-tunnel tests conducted at the Universities of Iowa, [START_REF] Chien | Wind tunnel studies of pressure distribution on elementary building forms[END_REF], and of Toronto, [START_REF] Davenport | The treatment of wind loads on tall buildings[END_REF] Figure 10: Distribution of C D on a Gothic-Gathedral, according to [START_REF] Mark | Experiments in gothic structure[END_REF].

It is worth to give the pressure distribution (9) in a dimensionless form. To this end, let us introduce the pressure p 0 , corresponding to the value of the wind speed v 0 :

p 0 = 1 2 C D ρ v 2 0 . (10) 
Then, the dimensionless value π of the pressure is obtained as

π = p p 0 = 1 if ζ ≤ 1, η 2 = ζ 2α if ζ > 1. ( 11 
)
The function π(ζ) is represented in Fig. 11. It is apparent that for ζ > 1, i.e. for z > z 0 , π(ζ) is almost linear. The value of p corresponds to the overall wind thrust on the Cathedral, per unit of area. Nevertheless, this action is distributed partly on the windward side and partly on the leeward side. Considering the experimental diagram of C D in Fig. 10 and following what done in [START_REF] Como | Statics of historic masonry constructions[END_REF] and [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF], we consider a leeward side (suction) load which is half of the windward one, i.e.

p = p w + p , p w = 2p ⇒ p w = 2 3 p, p = 1 3 p, ( 12 
)
where p w indicates the windward pressure load and p the leeward one. In Fig. 12 we give the scheme of the wind loading on the Cathedral. 

The method for the calculation of the wind strength

The basic idea for the evaluation of the wind strength of the Cathedral is to control the horizontal displacement of the upper part of the Cathedral. For a given value of the wind pressure, such a displacement is calculated. The wind strength of the Cathedral is then identified with the wind speed that produces an unbounded displacement of the keystone of the high vault, indicated by point V in Fig. 6.

In fact, because the constitutive law is nonlinear and it describes also the damage produced by tensile stresses, the structure of the Cathedral will have a nonlinear response to wind and a damage will appear for a sufficiently great value of the wind pressure. Such a damage, cracks propagating into the structure, will increase with the wind pressure, until a point where it will be so extended throughout the structure that a ruin mechanism will be formed. At that point, the structure will not be anymore able to withstand the wind loads and the displacement of V will progress indefinitely with time, i.e. it will be unbounded.

To take into account for the stress distribution produced by the self weight of the Cathedral, an implicit static analysis is previously done. The resulting configuration is then used as the starting point for a subsequent nonlinear explicit analysis, in which the wind loads described in Sect. 4 are applied in a quasi-static manner. A fictitious mass proportional damping is assumed in order to reach equilibrium rapidly and to dissipate unwanted oscillations (quasi-static condition).

As mentioned above, the simulations are done applying the load smoothly in time. The value of the wind pressure p(z) is multiplied by a factor A(t) that varies from A 0 = 0, for t = t 0 , to A f = 1, for t ≥ t f . Different choices are possible to have a smooth variation of A(t), we have put

A(t n ) = A 0 + (A f -A 0 ) t 3 n 10 -15t n + 6t 2 n if 0 ≤ t n < 1, 1 if t n ≥ 1, (13) 
where

t n = t -t 0 t f -t 0 . (14) 
The diagram of A(t n ) is shown in Fig. 13. For t n ≥ 1, the load conserves indefinitely the same maximum value.

The incremental analysis allows to obtain the response curve of the structure, i.e. the curve displacement of V versus time, for any value of the wind speed. When the structure reaches an equilibrium configuration under the applied wind pressure, the response curve shows an horizontal asymptote, indicating that the horizontal displacement has come to a value that remains constant under the wind action. On the contrary, when the Cathedral reaches its ultimate state, the response curve diverges, due to the fact that the structure has failed: cracks have formed a collapse mechanism and the horizontal displacement becomes unbounded. 6 Structural analyses

Evaluation of the critical wind speed

We have executed structural analyses for different wind speeds. In all the cases, the wind speed taken as reference is v 0 , i.e. the speed at z 0 = 10 m above the ground level. In Tab. 1 we give, as functions of v 0 , the corresponding values of p 0 , p max and v max , where the maximum values are, of course, those corresponding at z = 45 m. For each wind speed, we have hence searched the non-linear response of the Cathedral, in terms of horizontal displacement of point V . Once the critical pressure p crit 0 found, i.e. the pressure p 0 leading to a global ruine of the cathedral, through eq. ( 10) we obtain v crit 0 , i.e. the critical wind speed, conventionally measured at z 0 = 10 m above the ground level, that the Cathedral can withstand.

The results of the calculations are shown in Figs. 14 to 16 and in Tab. 2. It is evident from these diagrams that v crit 0 = 222 km/h. In fact, for this wind speed the diagram of the displacement diverges with time: the displacement increases with the duration of the 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 15: Wind speed, v 0 , total horizontal wind thrust per unit length, H w , and wind pressure, p 0 , versus the horizontal displacement of point V , δV max . simulation. This is the sign that the structure has been transformed into a mechanism by the propagation of the cracks.

The maximum wind speed, at the roof top, corresponding to v crit 0 is of about 375 km/h, cf. Tab. 1. Such a meteorological event is very improbable: the highest wind speed ever recorded in France is just of 360 km/h, on November 1 st 1968, at the top of Mont Aigoual, at 1567 m above the sea level, much more than 45 m. This means that the structural collapse of Notre Dame of Paris as the consequence of a wind storm is a very unlikely event.

In Tab. 2, we show, for each wind speed, δV max , the maximum horizontal displacement of point V , along with the overall horizontal wind thrust per unit length, H w . We have indicated the ultimate displacement as ∞, because for the critical wind speed δV max is unbounded. 
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The mechanism of structural collapse

The numerical simulations described above allow to follow the diffusion of the damage in the structure, which leads to the formation, for the critical wind speed v crit 0 , of the collapse mechanism. At this stage, in fact, the damage is so extended to form a mechanism, leading to the failure of the structure, as already explained.

The phases of the structural collapse are shown in Fig. 17 and in Fig. 18, where, for the sake of comprehension, the magnitude of the lateral displacement is mapped onto the Cathedral structure through a color code. For different wind speeds v 0 , the deformation of the structure and the propagation of the cracks are clearly visible. For better understanding the sequence of damages leading to the Cathedral's failure, the formation of the critical zones, eventually leading to the global failure of the structure, is indicated in Fig. 19 on the curve relating the wind speed to the horizontal displacement of point V .

As it was to be expected, the failure occurs when the flying buttresses are severely damaged by the wind thrust; the clearstorey can then rotate after the formation of four plastic hinges, produced by the propagation of cracks, in the high vault and at the base of the same clearstorey. The cracks propagating, also the massive buttresses are damaged and collapse. Large cracks appear also in the vaults of the lateral aisles. It is worth noting that the final mechanism leading to the global failure comprehends some plastic hinges, i.e. zones where the rotation is highly concentrated, due to the formation of cracks, as well as some sliding zones, i.e. parts where the cracks that are formed become separation/sliding surfaces, namely in the buttresses, and also separation of parts under tension. This fact confirms the results found in [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF]: failure mechanisms not purely à la Heyman can exist.

It is interesting to highlight the collapse of the high sexpartite vault, depicted in Fig. 20. The plastic hinges on the vault deserve a particular consideration: they are more or less longitudinal, though they are not produced over a cylindrical surface, like a barrel vault, but on a sexpartite ribbed vault. So, the location of the plastic hinges in the vault is confirmed, by a 3D model, to be similar to that often used in a 2D scheme, see [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF] again. However, the results obtained by the 3D simulation show something more: the formation of a plastic hinge corresponds still to a restricted zone severely damaged by the formation of cracks, but we can see now that the propagation of the cracks happens not only through the thickness of the section, but it interests a complex structure, like a sexpartite vault, far from being a simple rectangular cross section. This produces, for instance, a propagation of the cracks not only through the thickness of the vault, but also along its longitudinal axis: cracks do not appear simultaneously all along the vault. This 3D approach allows hence to better understand the mechanics of the global collapse of the Cathedral than in the case of a 2D simplified scheme. In addition, we are able to follow step by step the extension of the damage throughout the structure.

Comparing the results in Fig. 18 with those in Sect. 8.4 of [START_REF] Como | Statics of historic masonry constructions[END_REF], we can see the difference between the failure mechanisms of the Cathedrals of Paris, with 5 naves, and that of Amiens, a typical 3-naves church. Unlike in the case of Amiens, where the collapse is supposed to interest the building from the foundations, in the case of the Cathedral of Paris the global collapse concerns mainly the upper part, tribunes and clearstorey, and the failure of the flying buttresses, much longer than those of Amiens, plays a fundamental role in the structural failure.

The total estimated weight of the Cathedral unit, highlighted in red in Fig. 1, is W tot ∼ 60300 kN; so the ratio with the horizontal wind thrust that causes the structural collapse is W tot H w = 60300 284.512 × 12 ∼ 17.66, a value which is not so far from the ratio, 18.7, calculated by R. Mark for Amiens, [START_REF] Mark | Experiments in gothic structure[END_REF]. This difference is, probably, mostly due to the height of the Amiens Cathedral, 54 m, greater than that of Paris, 45 m: a lesser wind thrust is likely to produce the structural failure in that case. Finally, it is worth noting that, though the wind speed v 0crit is highly improbable, since v 0 ∼ 148 km/h a damage appears in the structure, see Fig. 17, in the form of cracks. Hence, though the global structural failure of the Cathedral under the action of the wind is unlikely to happen, winds that can produce non negligible damages to the Cathedral are really possible. As said in the Introduction, in December 1999, a wind speed of 169 km/h has been recorded inside Paris.
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Conclusion

The numerical simulations have clearly shown that severe wind storms are able to damage the structure of the Cathedral Notre Dame of Paris, but that a global structural failure is highly improbable.

Of course, we have just considered in this study the global collapse of the Cathedral. However, partial, though important, local damages can be produced in different parts of the Cathedral, like the pinacles, the timber spire, the roses, the flying buttresses, the same timber roof. It is not excluded that local important effects can be produced by phenomena like vortex shedding, while the roof could be lifted up or overthrown by the wind.

All these phenomena, that could happen also for wind speeds v 0 < v crit 0 , should be studied apart and cannot be predicted with the approach followed in this paper, conceived to determine the overall strength to wind thrust and that has however different advantages. Namely, it allows to follow the progressive failure of the structure under increasing wind speed and also to determine its true collapse mechanism. There are some very small differences between the explicit and the implicit analyses, to be imputed to some differences in the finite element formulation between the ABAQUS Explicit and ABAQUS Standard (implicit) solvers. Such differences are meaningless for the purpose of this study.

In Fig. 22 we show the total CPU time needed for the standard analyses in function of the number of elements, while in Fig. 23 we have plotted the same CPU time in function of the relative errors for the four quantities already represented in Fig. 21. In both the figures, the total CPU time is normalized with the CPU time of the finest mesh.

Looking at Figs. 21, 22 and 23, the choice of an average mesh size of 0.20 m seems a good balance between accuracy and calculation time. This is the mesh fineness that we have used in the calculations; as mentioned above, it has 1.83 millions of elements. Anyway, it is interesting to compare our approach with the rules suggested by Eurocode 1 when adapted to the case of the Cathedral. This helps, on one hand, in shedding a new light on the use of such a code in cases like the present one and, on the other hand, in better evaluating the approach to the wind forces that we have followed in this work (largely inspired by the cited works [START_REF] Mark | Experiments in gothic structure[END_REF] and [START_REF] Coccia | Wind strength of Gothic Cathedrals[END_REF]).

For the case of Notre Dame of Paris, the wind profile according to Eurocode 1 is represented by a law of the type1 (18)

In order to compare this wind profile with the one used in the paper, eq. ( 7), we need to put

v(z 0 ) = v 0 → v b = v 0 0.234 ln z 0 = 1.856 v 0 , (19) 
so that, finally

v(z) = v 0 if z ≤ z 0 , 0.434 ln z v 0 if z > z 0 , (20) 
and in the dimensionless form

η(z) = 1 if ζ ≤ 1, 1 + 0.434 ln ζ if ζ > 1. ( 21 
)
The diagrams of eqs. ( 7) and ( 21) are plotted in Fig. 24; it is apparent that the two diagrams are so close that the differences are meaningless: the wind profile (7) gives an evaluation of the wind speed extremely similar to that proposed by Eurocode 1. Because eq. ( 7) tends toward zero for z → 0, while eq. ( 21) tends towards -∞, the power law is, in some sense, more physical than the logarithmic law proposed by Eurocode 1; anyway, this inconsistency of the norm if hidden by the assumed wind profile, constant from z = 0 to z = z 0 .

For what concerns the drag coefficient C D , Eurocode 1 specifies values that change from the windward to the leeward side and that vary with the height. Anyway, for the case of the Cathedral Notre Dame, the sum of the two drag coefficients is practically constant along the height, and equal to 1.5, the same value that we have used in the numerical simulations.
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 1 Figure 1: The Cathedral of Notre-Dame in Paris: section (top) and plan view (bottom), after the reconstruction started in 1225 and the restoration of Viollet-le-Duc, in the XIXth century.
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 2 Figure 2: Historical evolution of the Gothic Cathedrals height (from[START_REF] Mark | High gothic structure -A technological reinterpretation[END_REF]).
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 3 Figure 3: The numerical model of Notre Dame of Paris: overall view.
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 4 Figure 4: The numerical model of Notre Dame of Paris: transversal section.
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 5 Figure 5: The numerical model of Notre Dame of Paris: the sexpartite vault.
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 6 Figure 6: The part of the unit studied (highlighted in blue).
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 7 Figure 7: Details of the mesh used for the finite element analyses.
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 8 Figure 8: Traction-separation diagram and fracture energy.
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 9 Figure 9: Wind speed profile (α = 0.35).
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 11 Figure 11: Wind pressure profile.
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 12 Figure 12: Wind loading on the Cathedral.
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 13 Figure 13: The diagram of factor A(t n ).
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 14 Figure 14: Diagrams time-displacement for various wind speeds v 0 .

Figure 16 :

 16 Figure 16: Total horizontal wind thrust per unit length H w versus the horizontal displacement v 0 .

  Figure 17: Progressive damage of the structure and formation of the collapse mechanism.

  Figure 18: Progressive damage of the structure with color chart of the horizontal displacements.

Figure 19 :

 19 Figure 19: The failure sequence of the Cathedral; the dots on the Cathedral sections indicate the formation of a severe damage, leading to a plastic hinge or a sliding zone.
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 2021 Figure 20: Progressive failure of the high sexpartite vault
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 2223 Figure 22: Normalized CPU times of the standard analyses versus the number of elements.

  v(z) = c 0 (z 0 )c r (z 0 )v b if z ≤ z 0 , c 0 (z)c r (z)v b if z > z 0 ,(16)where in the present case the two coefficients c 0 (z) and c r (z) arec 0 (z) = 1, c r (z) = 0.234 ln z, v b if z ≤ z 0 , 0.234 ln z v b if z > z 0 .

Table 1 :

 1 Wind speeds at z 0 = 10 m, corresponding wind pressures min and max and wind speeds at z = 45 m.

	v 0	v max	p 0 p max
	[km/h]	[km/h] [kPa] [kPa]
	74	125.1 0.40	1.1
	92	156.4 0.62	1.8
	111	187.7 0.89	2.5
	129	219.0 1.21	3.5
	148	250.3 1.58	4.5
	166	281.6 2.00	5.7
	185	312.8 2.47	7.1
	203	344.1 2.99	8.6
	222	375.4 3.56 10.2

Table 2 :

 2 Horizontal displacements δV max of point V and total wind thrust per unit length H w versus v 0 .

	v 0	δV max	H w
	[km/h] [mm] [kN/m]
	74	0.76	31.612
	92	1.23	49.394
	111	1.72	71.128
	129	2.41	96.813
	148	3.21 126.450
	166	4.12 160.038
	185	6.16 197.578
	203	8.25 239.069
	222	∞	284.512

Table 4 :

 4 Comparison of the relative errors for the vertical displacement of point V , calculated for three meshes with the implicit and explicit procedures. m Number of ∆u m implicit ∆u m explicit Difference implicit-explicit

		elements	[%]	[%]	[%]
	2	3432785	0.64	0.28	0.36
	3	1830092	0.84	0.36	0.48
	11	25827	22.40	21.81	0.59

The finite element discretization used in the simulations consists of tetrahedral elements, supported by both the standard and explicit solvers of ABAQUS, with an average element size of 0.2 m, in which ad-hoc refinements are pursued in some parts, due to the complexity of the geometry. The fineness of the mesh has been chosen after an accurate convergence analysis, performed in order to obtain a reliable degree of accuracy with an acceptable length of the computing time. The details about the convergence analysis are given in Appendix A. In consideration of the convergence analysis results, we have selected a finite element model with ∼ 1.83 × 10 6 elements for a total size of the model of ∼ 1.25 × 10 6 degrees of freedom. Details of the mesh used in the simulations are shown in Fig.7.

Symbols used in this part are not necessarily those used by Eurocode 1, for having a more direct comparison with those used throughout the paper.

Appendix A: numerical model convergence analysis

As the simulations are planned to be done by a two-step approach, see Sect. 5, we have validated the model using first a standard (implicit) scheme and then an explicit one. The response in both the cases has been evaluated on the eigenfrequencies of the first twenty vibration modes of the structure and on the vertical displacement of the keystone of the high vault, point V in Fig. 6, under the action of gravity.

The standard analysis is divided into two parts, namely a modal analysis and a static one with the gravity load. Both of these analyses have been made for eleven different meshes m, whose characteristics are given in Tab. 3. The first twenty eigenfrequencies f j m , j = 1, 2, . . . , 20, and the vertical displacement of the point V of the sexpartite vault, u m , are calculated for each mesh m. The convergence of the mesh has been evaluated calculating ∀m the errors ∆f j m of the frequencies f j m and ∆u m of the displacements u m , relatively to the same quantities calculated for the reference mesh, the finest one, m = 1, having an average element size of 0.10 m:

In Fig. 21 we show the relative errors for the frequencies of the 1 st , 10 th and 20 th vibration modes of the structure along with that of the displacement of point V , in function of the number of elements of each mesh m.

A similar procedure was followed for investigating the mesh convergence for the explicit analysis. A mass proportional damping is applied in order to dissipate any oscillations due to the dynamic character of the analysis and to reach equilibrium faster. The convergence of the explicit analysis has been studied on the meshes m = 2, 3, 11, having an average element size of 0.15, 0.20 and 2.00 m respectively. The results are given in Tab. 4, where they are compared with the corresponding values of the standard (implicit) analysis. Also for the explicit analyses, the values of ∆u m have been normalized using eq. ( 15), i.e. using the value of u m=1 calculated with the implicit scheme.

Appendix B: comparison of the wind profile with Eurocode 1

The European norms known as Eurocode are today the reference technical norms for civil constructions, not only in Europe. In particular, Eurocode 1 concerns the loads to be applied to structures and [ECS, 2005] is specific to wind loads. Conceived to be readily applied to standard situations of modern buildings to be designed and implicitly tuned to give, eventually, precise levels of structural safety, Eurocode 1 is not easily applicable to the case of a structure like Notre Dame of Paris. In fact, its shape can be hardly reduced to one of those considered in the norm and we are not concerned with a design wind, but we are looking for the strongest wind that the Cathedral can withstand.

In fact, our scope was not to design a structure according to a given code which includes several coefficients and parameters explicitly used for obtaining a standard safety, but to evaluate, as precisely as possible, the ultimate state of an already existing structure before failure under the wind thrust, considered as a static action (this assumption is justified by the fact that for a structure like a Gothic Cathedral, so massive, dynamic effects engendered by gusts can be neglected in regard of the global failure, though they can concern minor slender parts, like pinacles). 21), in blue.