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Abstract
The problem of assessing the strength to wind actions of Gothic Cathedrals is
addressed in this paper. A nonlinear approach, based upon a large-strain, large
displacements formulation and using a nonlinear constitutive law modeling the no-
tension behavior of the material as a damage law is proposed. The method is applied
to the study of the Cathedral Notre Dame of Paris.
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1 Introduction

Gothic Cathedrals are one of the most important cultural heritages of Europe. They
characterize the panorama of several European towns and prove the skill and boldness of
the architects of the Middle Ages. Though unaware of the laws of physics, they conceived
audacious buildings that defy the laws of mechanics since eight centuries.

As very imposing and articulated stone structures, Gothic Cathedrals have been the object
of some studies, aiming at understanding, on one hand, the way these structures have been
conceived and, on the other hand, how much safe they are, namely with respect to the
self weight loads and the wind thrust.

∗Corresponding author: Paolo Vannucci. LMV, 45 Avenue des Etats-Unis. 78035 Versailles, France
E-mail: paolo.vannucci@uvsq.fr
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Rather surprisingly, there are few studies on this last problem; without going back to old
treatises, like [Ungewitter, 1890], treating classically the problem of lateral forces using
the method of the thrust line, a fundamental work has been that of R. Mark. In his book
Experiments in Gothic Structure, he tackles the analysis of the lateral wind forces on a
Gothic Cathedral using the experimental technique of photoelasticity, [Mark, 1982].

It is interesting to notice that R. Mark investigated, with this technique, the response of
Notre Dame of Paris as built before the structural modifications made after 1225. The
motivation of his study is in his own words:

This relatively lightly constructed central vessel of the Cathedral Notre Dame
is thirty-three meters from floor to vault keystone, a full eight meters taller
than its highest Gothic predecessors, the Cathedrals of Laon and Sens, and
the largest single-incremental height increase for a new church over an earlier
building in the entire era. Since wind speeds are greater at higher elevations,
and wind pressure is proportional to the square of the speed, earlier experience
with lower-profiled, more heavily massed churches could not have fully prepared
the builders to cope with the new environment. Because of massive reconstruc-
tions made to Notre Dame after 1225, just how the design problem was solved
in the original Gothic construction remained unclear [Mark, 1984].

His objective was hence to understand if the modifications made by the architects of
the XIII-th century were motivated by some structural reasons, and not exclusively by
architectural and stylistic ones. In particular, R. Mark has shown that the original struc-
ture, with a different arrangement of the flying buttresses, had some structural problems.
Namely, he showed that under the wind action of heavy storms, tensile stresses exceeding
three to five times the tensile admissible stresses for the mortars of the Middle Ages arose
in some part of the structure, so certainly producing evident cracks. This can explain, in
the opinion of R. Mark, why the structure was modified after 1225. The present structure
of the Cathedral is shown in Fig. 1, while the original one is presented in Fig. 2; the
structural differences, mainly concerning the flying buttresses, are evident.

R. Mark made experiences with photoelasticity also on other Cathedrals, namely Amiens
and Beauvais, [Mark, 1982]. However, it is worth recalling that the underlying assumption
of photoelasticity is the linearly elastic behavior of the structure, assumption that can be
considered as correct only for analyses that are restrained to situations where there are
not significative cracks arising in the structure. This exactly happens when the struc-
ture approaches its ultimate state under extreme winds. So, such an approach for the
determination of the ultimate wind strength of a Cathedral can be questionable.

A more recent work is that of M. Como and his team, [Como, 2013], [Coccia et al., 2015].
In a research concerning the Amiens Cathedral, the study of the lateral wind strength is
done using the limit analysis method, i.e. calculating the ultimate load multiplier λcr of
the wind pressures over the lateral parts of the Cathedral. For λ = λcr, the structure is
transformed into a mechanism by the formation of a sufficient number of plastic hinges,
rotation points formed by the cracking of the stone masonry under the action of tensile
stresses. The theoretical framework is that defined by Heyman, [Heyman, 1995], i.e., the
masonry has no tensile strength at all, the compressive strength can be considered as
infinite and no sliding failures occur in the structure. Actually, in [Coccia et al., 2015]
also local sliding mechanisms are anyway considered.
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The study is conducted on a planar scheme, obtained considering a transversal portion
of the Cathedral between two successive pillars of the main aisle. The two analyses make
use of slightly different hypotheses for the calculation of the wind pressure, which finally
results in two different values of the ultimate wind speed at 10 m above the ground, which
passes from 146 km/h in the first study to 109 km/h in the second one.

Such wind speed values have been exceeded in France rather frequently, also during recent
extreme events: a velocity of 220 km/h has been recorded at Cap Finistère, in Bretagne,
on October 15, 1987. During the storms of December 26 and 28, 1999, a wind speed of
169 km/h has been measured at Parc Montsouris, inside the city of Paris, while during
the storm Xynthia, February 28, 2010, the wind has reached the speed of 136 km/h at
Metz, well far from the coasts. Very recently, on January 12, 2017, the storm Egon has
produced wind gusts at 146 km/h at Dieppe and has destroyed the rose of the Cathedral
of Soissons.

These few data show that extreme wind storms, potentially able to produce important
structural damages and possibly the ruin of tall buildings, are rather frequent. Such events
are to be considered with care today, because climate deregulation produced by global
warming has rendered the occurrence of extreme meteorological events more frequent
than in the past. So, the structural analyses of important historical buildings like Gothic
Cathedrals, more sensitive to such events due to their dimensions and type of structure,
are more and more important.

To this purpose, we have studied the response to a lateral wind of the Cathedral Notre
Dame of Paris, with the intention of determining its ultimate strength: our goal was
to give an assessment of the critical wind, the one able to produce the global failure of
the structure. We have followed a different approach with respect to the studies cited
above. In particular, we performed an incremental analysis in order to determine the
response of the structure, in terms of horizontal displacements, to different wind velocities.
When the displacements, increased by increasing wind loads, become unbounded, failure
occurs.

This choice has been inspired by three considerations: on one hand, to perform a limit
analysis on a five-aisles Cathedral with galleries is much more cumbersome than the same
analysis on a Cathedral of the High Gothic period, like that of Amiens, with only three
aisles and no galleries, [Jantzen, 1957], [Simson, 1962], [Frankl, 1963], [Wilson, 1990].
To determine all the possible failure mechanisms for such a kind of structure is very
delicate.

On the other hand, the incremental approach that we have used allows us to find, for each
wind speed, the equilibrium configuration. In this way, the progressive damage of the
structure appears automatically and the precise failure mechanism arises spontaneously
from the nonlinear numerical simulation.

Finally, unlike other previous studies, our approach makes use of a 3D structural scheme.
Actually, the use of a 2D simplified structural scheme for the prediction of the wind
strength of building as complex as a Gothic Cathedral remains questionable: the simplifi-
cations that are done in the passage from the 3D structure to a 2D scheme are numerous
and strong and could affect the results. In our approach we make use of a 3D model
representing a significative part of the Cathedral’s structure, that we have called the
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structural unit, described below. Through this approach the structural failure mechanism
is automatically detected as a result of the calculation, which is an advantage with respect
to customary limit analysis 2D approaches, where strong simplifications on the geometry
and a-priori assumptions on the failure mechanisms are done (see Sect. 6.2).

Finally, the deformation of the structure is determined for each incremental value of the
wind action, so letting appear the time response of the Cathedral to wind. However,
because we do a quasi-static analysis, where all dynamical effects are neglected, the time
so considered is a synthetic one, a purely numerical quantity that cannot be transformed
into a physical time. Nonetheless, by this procedure we can draw curves simulating the
time response of the Cathedral.

As already mentioned, all the simulations have been done on a finite element model of a
structural unit of the main aisle, specified below. The simulations are non-linear, because
of the constitutive equation, a softening law representing the tensile damage of the ma-
terial, used to model the no-tension behavior of stone masonry (material nonlinearity),
and because we have performed the calculations considering large deformations and dis-
placements (geometric nonlinearity), that occur when the structure is close to its ultimate
state.

This paper is organized as follows: in Sect. 2 we introduce the structure of the Cathedral
Notre Dame of Paris and its finite element model. In Sect. 3 we detail the constitutive
law used to model the material and in Sect. 4 the representation of the wind loads. The
details about the numerical procedure and simulations are given in Sects. 5 and 6.1, while
some final considerations are presented in Sect. 7.

2 The structural model

The Cathedral Notre Dame of Paris, one of the principal examples of the Early Gothic
period, was built from 1163 and during about one century. Its overall dimensions are:
length 130 m, width 48 m, height of the vaults 32.5 m, total height, comprehending the
timber roof, 45 m. The high vault of the main aisle is built with a sexpartite scheme, i.e.
each vault is composed by six webs. The scheme of the structure is shown in Fig. 1. The
Cathedral has five aisles plus the lateral chapels and wide galleries that, above the lateral
aisles, run all along the principal aisle and round the choir.

The geometry of Notre Dame of Paris is hence particularly complex and articulated,
much more than other Cathedrals of the High Gothic period, like Chartres, Reims or
Amiens, where galleries are not present and the aisles are only three. Also the dimensions
are different: though when it was built it was the highest Cathedral, for the race to
height typical of Gothic architecture it soon was exceeded in height by other Cathedrals.
So, because it is less high than other major Cathedrals, like Amiens or Beauvais, the
transversal section of Notre Dame of Paris is stiffer and stronger compared to them. A
sketch of the historical evolution of the height of French Gothic Cathedrals is given in
Fig. 2.

For this study, we have considered a structural unit, which is the part of the Cathedral
shadowed in Fig. 1. It comprehends a complete sexpartite vault, 12 m in length, and
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structural unit

4
5
 m

48 m

130 m

Figure 1: The Cathedral of Notre-Dame in Paris: section (top) and plan view (bottom),
after the reconstruction started in 1225 and the restoration of Viollet-le-Duc, in the XIX-
th century.

the entire width of the Cathedral. A detailed numerical model has hence been done,
represented in Figs. 3 to 5, based upon a survey of the Cathedral and the laserscan
survey done by A. Tallon, of Vassar College, [Tallon, 2010].

Due to the complexity of the Gothic architecture, some geometrical simplifications, not
affecting the overall structural response of the Cathedral, have been done. In particular,
all the parts that are merely decorative are not taken into account − e.g., crockets,
windows, traceries and pinnacles. The ribbed vaults are modeled carefully, together with
the pointed arches and the flying buttresses, since the stability and integrity of the whole
building depend on them. Also, the filling in the springing zone of the vaults have been
modeled until an angle of 30◦ on the horizontal, see Fig. 5.

In order to avoid a meaningless growth of the finite element model, the roof of the building
has been modeled just to take on the wind actions. So, it is represented by two rigid
inclined plates whose top is 10 m above the guttering walls, like in the Cathedral. The
roof, made of lead and wood, applies an estimated linear load of 2× 104 N/m on the top
of each one of the guttering walls. All the simulations have been done using the finite
element code ABAQUS.

Taking advantage of its symmetry, calculations are made just on one half of the structural
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 Laon 1153   Paris 1163             Chartres 1194       Bourges 1194       Reims 1211          Amiens 1218      Beauvais 1225

     24 m               32.5 m                   35.7 m                  37.5 m                    38 m                   42.5 m                  48.5 m

Figure 2: Historical evolution of the Gothic Cathedrals height (from [Mark, 1984]).

Figure 3: The numerical model of Notre Dame of Paris: overall view.

unit, i.e., a portion of the Cathedral of 6 m in length, indicated in blue in Fig. 6. In
the same figure, we have indicated the boundary conditions: all the nodes at the base of
columns and walls, i.e. belonging to plane π1, are completely blocked: ux = uy = uz = 0,
with u= (ux, uy, uz) the displacement vector, while for the points in the two vertical planes
π2 and π3 only the longitudinal displacement is constrained, ux = 0.

The finite element discretization used in the simulations consists of tetrahedral elements,
supported by both the standard and explicit solvers of ABAQUS, with an average element
size of 0.2m, in which ad-hoc refinements are pursued in some parts, due to the complexity
of the geometry. The fineness of the mesh has been chosen after an accurate convergence
analysis, performed in order to obtain a reliable degree of accuracy with an acceptable
length of the computing time. The details about the convergence analysis are given in
Appendix A. In consideration of the convergence analysis results, we have selected a finite
element model with ∼ 1.83 × 106 elements for a total size of the model of ∼ 1.25 × 106

degrees of freedom. Details of the mesh used in the simulations are shown in Fig. 7.
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Figure 4: The numerical model of Notre Dame of Paris: transversal section.

3 The material model

Masonry composed by ashlars and mortar joints is often modeled as a no-tension material:
its tensile strength is so small that in some cases it can be considered as practically null,
while the compressive strength is so high, usually greater than 40 MPa, that it is never
attained in the body of the structure (normally, the highest compression in monumental
structures is of the order of 4÷ 6 MPa).

Hence, a suitable constitutive law must be used to model a continuum composed of ashlars
and mortar-joints. Such a law should model the possibility of damage of the material,
i.e. the formation of cracks due to tensile stresses. In our calculations, the following
assumptions have been made to model the nonlinear behavior of stone structures:

• in compression, the material is described by an isotropic linearly elastic constitutive
law with infinite strength. This is a strong assumption, [Heyman, 1995], [Stefanou
et al., 2015], but it is not expected to alter the results (as said above, compressions
are always far below the admissible compressive stress);

• in tension, the material is assumed to be isotropic linearly elastic until the maximum
principal stress does not exceed the tensile strength; a small, but not null, tensile
strength ft is hence considered for the material;

• when the maximum principal stress exceeds the tensile strength ft, failure is mod-
eled using a nonlinear constitutive law based on the softening model proposed by
Hillerborg, Modéer and Petersson, [Hillerborg et al., 1976].

The Cathedral Notre Dame of Paris is built with ashlars of a limestone extracted from
quarries of the Paris region. Not all the stones are from the same quarry, hence the
mechanical characteristics of the material are not uniform throughout all the building.
In addition, no certain data are available about the mechanical properties of the stone

7



Figure 5: The numerical model of Notre Dame of Paris: the sexpartite vault.

and of the mortar used by the constructors. Moreover, the cathedral has undergone
several renovations over the centuries, the most important one being that of Viollet Le
Duc during the XIXth century. That is why it is today completely impossible to know
in detail the mechanical characteristics of all the materials composing the Cathedral,
nor their distribution and an average value of the different mechanical characteristics
has to be used. That is why data derived from the literature have been used for the
simulations.

An equivalent homogenized Young’s modulus Eeq, assuming that both stone and mortar-
joints have the same Poisson’s ratio, is derived from classical homogenization theory, see
e.g. [Cecchi and Sab, 2002], [Como, 2013], namely

Eeq =
Em (1 + s/hb)

Em/Eb + s/hb
, (1)

where Eb and Em are the Young’s moduli respectively of masonry blocks and mortar-
joints, while hb and s are the height of the blocks and thickness of the joints. Relying on
the investigations made during a survey of the building, we can evaluate hb = 2.5× 10−1

m and s = 1.0 × 10−2 m. For the mortar, a modulus Em = 2.5 GPa is chosen, while
for the stone a modulus Eb = 20 GPa is selected, which is a mean value for limestone
(for more details, see again [Como, 2013]). The resulting Young’s modulus is Eeq = 14.8
GPa, and finally a value Eeq = 14 GPa is selected, for a matter of safety. The Poisson’s
ratio and the density are selected relying on typical values mentioned in the literature for
limestone, namely:

ρs = 2000 kg/m3, νs = 0.25.

In the softening model that we have used to represent the formation of cracks, [Hillerborg
et al., 1976], when ft, the maximum allowed tensile strength, is exceeded, damage occurs
and the subsequent tensile softening is characterized in terms of the fracture energy Gf ,
i.e., the energy dissipated during the opening of a unit area of crack in Mode I.

We introduce a bilinear approximation of the softening curve, represented in Fig. 8.
Following this approximation, we can compute the fracture energy for normal tensile
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Figure 6: The part of the unit studied (highlighted in blue).

stresses as
Gf = G1

f +G2
f =

∫ wk

0

σ dw +

∫ wf

wk

σ dw, (2)

where σ is the maximum principal stress; w is the displacement normal to the crack
surface; wk is the normal displacement relative to the kink point, with stress σk, and wf the
one corresponding to the complete loss of strength. Applying the bilinear approximation
in terms of the following parameters,

Ψ =
σk
ft
, λ =

wk
wf
, (3)

the two integrals in eq. (2) become

G1
f =

∫ wk

0

σ dw =
ft
2
λ (1 + Ψ)wf ,

G2
f =

∫ wf

wk

σ dw =
ft
2
Ψ (1− λ)wf ,

(4)

so that
Gf =

ft
2
(λ+ Ψ)wf . (5)

This expression allows to compute wf if Gf , ft, Ψ and λ are known:

wf =
2

Ψ + λ

Gf

ft
. (6)

For masonry, relying on the experimental results from uniaxial tensile tests on specimens
with a characteristic length h = 100 mm, [van der Pluijm, 1999], the following parameters
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Figure 7: Details of the mesh used for the finite element analyses.

have been chosen

ft = 0.5 MPa, Gf = 11.3 N/m, Ψ =
1

3
, λ =

1

2
.

The value of wf is automatically calculated for each element by ABAQUS; for instance,
for h = 100 mm we get wf = 5.4× 10−2 mm.

4 The wind model

As said in the Introduction, we are interested in assessing the highest wind speed that
the Cathedral can withstand before a global structural failure. To this purpose, we need
a model of the wind as close as possible to the real physical phenomenon, in order to
reproduce, as finely as possible, a realistic situation.

The wind close to the Earth surface is just what happens in the boundary layer of the
flow of air masses. As such, we need a law describing the wind profile, i.e. the variation
of the wind speed v with the distance z from the ground, typical of what happens in a
boundary layer: a null speed at z = 0 and a decreasing gradient dv(z)/dz.

Different models simulate the wind profile; typical ones are logarithmic or power laws,
[Sachs, 1978]. Like in an analogous work on the wind strength of a Gothic Cathedral,
[Coccia et al., 2015], we have used a power law in the form

η = ζα, (7)

where we have introduced the two dimensionless variables

η =
v

v0
, ζ =

z

z0
, (8)
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Figure 8: Traction-separation diagram and fracture energy.

with z0 the reference height, where the wind speed v0 is known, and α an exponent, put
equal to 0.35 in [Coccia et al., 2015], value suggested for urban areas.

Actually, the wind speed is not exactly null at the ground level and, mainly for the
ruggedness of the surface, it is practically constant until a certain height. Putting such a
height equal to z0, the wind profile is modified accordingly: below z0, v = v0, above, v(z)
is given by eq. (7). A similar scheme is used also in the norm Eurocode 1, [ECS, 2005],
where however a logarithmic law is preferred. In Appendix B we give a comparison of the
wind profile (7) with that proposed by Eurocode 1, showing that actually the differences
between the two models are not substantial. Considering the skyline of Paris, we have
chosen for z0 the value of 10 m. The same value is suggested by Eurocode 1; finally, the
wind profile is depicted in Fig. 9.
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Figure 9: Wind speed profile (α = 0.35).

The wind pressure p is obtained as a drag force per unit of exposed surface using the
relation

p =
1

2
CD ρ v2, (9)

where ρ is the mass density of air, ρ = 1.225 kg/m3 at an ambient temperature of 15◦C,
and CD is the drag coefficient. Its value mainly depends upon the Reynolds number, the
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form and exposition of the surface impinged by wind, besides its ruggedness and other
parameters, like the Mach and Froude numbers etc.

In the case of a so complex structure like the Cathedral Notre Dame, a global value for
CD could be obtained uniquely by preliminary tests in a wind tunnel. Because this has
not been possible, we have evaluated CD following some indications that can be found
in the literature. In particular, cf. [Sachs, 1978], for an infinitely long rectangular plate
set on the ground, CD ∼ 1.2; the global dimensions of the Cathedral of Paris are: height
z1 = 45 m at the roof top and overall length 130 m, so with a ratio length/height of ∼ 3.
In order to take into account for, on one hand, the macrosopic ruggedness of the surface,
full of pinacles, statues, decorations, flying buttresses etc., and, on the other hand, of
the finiteness of the side wall (for instance, for a plate into a 3D flow, CD = 1.28),
we have prudently increased the value of CD and we have assumed CD = 1.5. To this
purpose, we remark that in [Coccia et al., 2015] the evaluation given for the wind pressure
corresponds to put, on the whole, CD = 1.5, and that CD = 1.5 is practically the global
value suggested, in fine, also by Eurocode 1 (see Appendix B).

R. Mark proposed in [Mark, 1982] the distribution of CD in Fig. 10. It has been derived by
experimental measures in wind-tunnel tests conducted at the Universities of Iowa, [Chien
et al., 1951], and of Toronto, [Davenport, 1967], though not specifically on geometries like
those typical of a Gothic Cathedral. Such a distribution shows that the overall value of
CD can considerably vary, and it attains average values ranging from ∼ 1.2 to ∼ 1.8.
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Figure 10: Distribution of CD on a Gothic-Gathedral, according to [Mark, 1982].

It is worth to give the pressure distribution (9) in a dimensionless form. To this end, let
us introduce the pressure p0, corresponding to the value of the wind speed v0:

p0 =
1

2
CD ρ v20. (10)
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Then, the dimensionless value π of the pressure is obtained as

π =
p

p0
=

{
1 if ζ ≤ 1,

η2 = ζ2α if ζ > 1.
(11)

The function π(ζ) is represented in Fig. 11. It is apparent that for ζ > 1, i.e. for z > z0,
π(ζ) is almost linear.

0

1

2

3

4

5

0 1 2 3 4

Figure 11: Wind pressure profile.

The value of p corresponds to the overall wind thrust on the Cathedral, per unit of area.
Nevertheless, this action is distributed partly on the windward side and partly on the
leeward side. Considering the experimental diagram of CD in Fig. 10 and following what
done in [Como, 2013] and [Coccia et al., 2015], we consider a leeward side (suction) load
which is half of the windward one, i.e.

p = pw + p`, pw = 2p` ⇒ pw =
2

3
p, p` =

1

3
p, (12)

where pw indicates the windward pressure load and p` the leeward one. In Fig. 12 we
give the scheme of the wind loading on the Cathedral.
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Figure 12: Wind loading on the Cathedral.
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5 The method for the calculation of the wind strength

The basic idea for the evaluation of the wind strength of the Cathedral is to control the
horizontal displacement of the upper part of the Cathedral. For a given value of the wind
pressure, such a displacement is calculated. The wind strength of the Cathedral is then
identified with the wind speed that produces an unbounded displacement of the keystone
of the high vault, indicated by point V in Fig. 6.

In fact, because the constitutive law is nonlinear and it describes also the damage produced
by tensile stresses, the structure of the Cathedral will have a nonlinear response to wind
and a damage will appear for a sufficiently great value of the wind pressure. Such a
damage, cracks propagating into the structure, will increase with the wind pressure, until
a point where it will be so extended throughout the structure that a ruin mechanism
will be formed. At that point, the structure will not be anymore able to withstand the
wind loads and the displacement of V will progress indefinitely with time, i.e. it will be
unbounded.

To take into account for the stress distribution produced by the self weight of the Cathe-
dral, an implicit static analysis is previously done. The resulting configuration is then
used as the starting point for a subsequent nonlinear explicit analysis, in which the wind
loads described in Sect. 4 are applied in a quasi-static manner. A fictitious mass propor-
tional damping is assumed in order to reach equilibrium rapidly and to dissipate unwanted
oscillations (quasi-static condition).

As mentioned above, the simulations are done applying the load smoothly in time. The
value of the wind pressure p(z) is multiplied by a factor A(t) that varies from A0 = 0, for
t = t0, to Af = 1, for t ≥ tf . Different choices are possible to have a smooth variation of
A(t), we have put

A(tn) =

{
A0 + (Af − A0) t

3
n

(
10− 15tn + 6t2n

)
if 0 ≤ tn < 1,

1 if tn ≥ 1,
(13)

where
tn =

t− t0
tf − t0

. (14)

The diagram of A(tn) is shown in Fig. 13. For tn ≥ 1, the load conserves indefinitely the
same maximum value.

The incremental analysis allows to obtain the response curve of the structure, i.e. the
curve displacement of V versus time, for any value of the wind speed. When the structure
reaches an equilibrium configuration under the applied wind pressure, the response curve
shows an horizontal asymptote, indicating that the horizontal displacement has come to a
value that remains constant under the wind action. On the contrary, when the Cathedral
reaches its ultimate state, the response curve diverges, due to the fact that the structure
has failed: cracks have formed a collapse mechanism and the horizontal displacement
becomes unbounded.
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Figure 13: The diagram of factor A(tn).

6 Structural analyses

6.1 Evaluation of the critical wind speed

We have executed structural analyses for different wind speeds. In all the cases, the wind
speed taken as reference is v0, i.e. the speed at z0 = 10 m above the ground level. In Tab.
1 we give, as functions of v0, the corresponding values of p0, pmax and vmax, where the
maximum values are, of course, those corresponding at z = 45 m.

Table 1: Wind speeds at z0 = 10 m, corresponding wind pressures min and max and wind
speeds at z = 45 m.

v0 vmax p0 pmax
[km/h] [km/h] [kPa] [kPa]

74 125.1 0.40 1.1
92 156.4 0.62 1.8
111 187.7 0.89 2.5
129 219.0 1.21 3.5
148 250.3 1.58 4.5
166 281.6 2.00 5.7
185 312.8 2.47 7.1
203 344.1 2.99 8.6
222 375.4 3.56 10.2

For each wind speed, we have hence searched the non-linear response of the Cathedral,
in terms of horizontal displacement of point V . Once the critical pressure pcrit0 found, i.e.
the pressure p0 leading to a global ruine of the cathedral, through eq. (10) we obtain
vcrit0 , i.e. the critical wind speed, conventionally measured at z0 = 10 m above the ground
level, that the Cathedral can withstand.

The results of the calculations are shown in Figs. 14 to 16 and in Tab. 2. It is evident
from these diagrams that vcrit0 = 222 km/h. In fact, for this wind speed the diagram of
the displacement diverges with time: the displacement increases with the duration of the
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Figure 15: Wind speed, v0, total horizontal wind thrust per unit length, Hw, and wind
pressure, p0, versus the horizontal displacement of point V , δVmax.

simulation. This is the sign that the structure has been transformed into a mechanism
by the propagation of the cracks.

The maximum wind speed, at the roof top, corresponding to vcrit0 is of about 375 km/h,
cf. Tab. 1. Such a meteorological event is very improbable: the highest wind speed ever
recorded in France is just of 360 km/h, on November 1st 1968, at the top of Mont Aigoual,
at 1567 m above the sea level, much more than 45 m. This means that the structural
collapse of Notre Dame of Paris as the consequence of a wind storm is a very unlikely
event.

In Tab. 2, we show, for each wind speed, δVmax, the maximum horizontal displacement
of point V , along with the overall horizontal wind thrust per unit length, Hw. We have
indicated the ultimate displacement as ∞, because for the critical wind speed δVmax is
unbounded.

16



H
w
 [
k
N

/
m

]

vo [km/h]

Figure 16: Total horizontal wind thrust per unit length Hw versus the horizontal displace-
ment v0.

Table 2: Horizontal displacements δVmax of point V and total wind thrust per unit length
Hw versus v0.

v0 δVmax Hw

[km/h] [mm] [kN/m]

74 0.76 31.612
92 1.23 49.394
111 1.72 71.128
129 2.41 96.813
148 3.21 126.450
166 4.12 160.038
185 6.16 197.578
203 8.25 239.069
222 ∞ 284.512

6.2 The mechanism of structural collapse

The numerical simulations described above allow to follow the diffusion of the damage in
the structure, which leads to the formation, for the critical wind speed vcrit0 , of the collapse
mechanism. At this stage, in fact, the damage is so extended to form a mechanism, leading
to the failure of the structure, as already explained.

The phases of the structural collapse are shown in Fig. 17 and in Fig. 18, where, for
the sake of comprehension, the magnitude of the lateral displacement is mapped onto the
Cathedral structure through a color code. For different wind speeds v0, the deformation
of the structure and the propagation of the cracks are clearly visible. For better under-
standing the sequence of damages leading to the Cathedral’s failure, the formation of the
critical zones, eventually leading to the global failure of the structure, is indicated in Fig.
19 on the curve relating the wind speed to the horizontal displacement of point V .
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As it was to be expected, the failure occurs when the flying buttresses are severely dam-
aged by the wind thrust; the clearstorey can then rotate after the formation of four plastic
hinges, produced by the propagation of cracks, in the high vault and at the base of the
same clearstorey. The cracks propagating, also the massive buttresses are damaged and
collapse. Large cracks appear also in the vaults of the lateral aisles. It is worth noting that
the final mechanism leading to the global failure comprehends some plastic hinges, i.e.
zones where the rotation is highly concentrated, due to the formation of cracks, as well as
some sliding zones, i.e. parts where the cracks that are formed become separation/sliding
surfaces, namely in the buttresses, and also separation of parts under tension. This fact
confirms the results found in [Coccia et al., 2015]: failure mechanisms not purely à la
Heyman can exist.

It is interesting to highlight the collapse of the high sexpartite vault, depicted in Fig. 20.
The plastic hinges on the vault deserve a particular consideration: they are more or less
longitudinal, though they are not produced over a cylindrical surface, like a barrel vault,
but on a sexpartite ribbed vault. So, the location of the plastic hinges in the vault is
confirmed, by a 3D model, to be similar to that often used in a 2D scheme, see [Coccia
et al., 2015] again. However, the results obtained by the 3D simulation show something
more: the formation of a plastic hinge corresponds still to a restricted zone severely
damaged by the formation of cracks, but we can see now that the propagation of the
cracks happens not only through the thickness of the section, but it interests a complex
structure, like a sexpartite vault, far from being a simple rectangular cross section. This
produces, for instance, a propagation of the cracks not only through the thickness of the
vault, but also along its longitudinal axis: cracks do not appear simultaneously all along
the vault. This 3D approach allows hence to better understand the mechanics of the global
collapse of the Cathedral than in the case of a 2D simplified scheme. In addition, we are
able to follow step by step the extension of the damage throughout the structure.

Comparing the results in Fig. 18 with those in Sect. 8.4 of [Como, 2013], we can see the
difference between the failure mechanisms of the Cathedrals of Paris, with 5 naves, and
that of Amiens, a typical 3-naves church. Unlike in the case of Amiens, where the collapse
is supposed to interest the building from the foundations, in the case of the Cathedral of
Paris the global collapse concerns mainly the upper part, tribunes and clearstorey, and the
failure of the flying buttresses, much longer than those of Amiens, plays a fundamental
role in the structural failure.

The total estimated weight of the Cathedral unit, highlighted in red in Fig. 1, is Wtot ∼
60300 kN; so the ratio with the horizontal wind thrust that causes the structural collapse
is

Wtot

Hw

=
60300

284.512× 12
∼ 17.66,

a value which is not so far from the ratio, 18.7, calculated by R. Mark for Amiens, [Mark,
1982]. This difference is, probably, mostly due to the height of the Amiens Cathedral, 54
m, greater than that of Paris, 45 m: a lesser wind thrust is likely to produce the structural
failure in that case.
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Figure 17: Progressive damage of the structure and formation of the collapse mechanism.
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Finally, it is worth noting that, though the wind speed v0crit is highly improbable, since
v0 ∼ 148 km/h a damage appears in the structure, see Fig. 17, in the form of cracks.
Hence, though the global structural failure of the Cathedral under the action of the wind
is unlikely to happen, winds that can produce non negligible damages to the Cathedral
are really possible. As said in the Introduction, in December 1999, a wind speed of 169
km/h has been recorded inside Paris.
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Figure 19: The failure sequence of the Cathedral; the dots on the Cathedral sections
indicate the formation of a severe damage, leading to a plastic hinge or a sliding zone.

7 Conclusion

The numerical simulations have clearly shown that severe wind storms are able to damage
the structure of the Cathedral Notre Dame of Paris, but that a global structural failure
is highly improbable.

Of course, we have just considered in this study the global collapse of the Cathedral.
However, partial, though important, local damages can be produced in different parts
of the Cathedral, like the pinacles, the timber spire, the roses, the flying buttresses, the
same timber roof. It is not excluded that local important effects can be produced by
phenomena like vortex shedding, while the roof could be lifted up or overthrown by the
wind.

All these phenomena, that could happen also for wind speeds v0 < vcrit0 , should be studied
apart and cannot be predicted with the approach followed in this paper, conceived to
determine the overall strength to wind thrust and that has however different advantages.
Namely, it allows to follow the progressive failure of the structure under increasing wind
speed and also to determine its true collapse mechanism.
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Figure 20: Progressive failure of the high sexpartite vault
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Appendix A: numerical model convergence analysis
As the simulations are planned to be done by a two-step approach, see Sect. 5, we have
validated the model using first a standard (implicit) scheme and then an explicit one. The
response in both the cases has been evaluated on the eigenfrequencies of the first twenty
vibration modes of the structure and on the vertical displacement of the keystone of the
high vault, point V in Fig. 6, under the action of gravity.

The standard analysis is divided into two parts, namely a modal analysis and a static one
with the gravity load. Both of these analyses have been made for eleven different meshes
m, whose characteristics are given in Tab. 3.

Table 3: Characteristics of the studied meshes m.

m Average element Number of Number of
size [m] elements nodes

1 0.10 10616614 2101473
2 0.15 3432785 724257
3 0.20 1830092 406342
4 0.30 524967 130153
5 0.40 268222 70918
6 0.50 162751 45476
7 0.60 112388 32781
8 0.80 71952 21714
9 1.00 54474 16684
10 1.50 33396 10607
11 2.00 25827 8336

The first twenty eigenfrequencies f jm, j = 1, 2, . . . , 20, and the vertical displacement of
the point V of the sexpartite vault, um, are calculated for each mesh m. The convergence
of the mesh has been evaluated calculating ∀m the errors ∆f jm of the frequencies f jm and
∆um of the displacements um, relatively to the same quantities calculated for the reference
mesh, the finest one, m = 1, having an average element size of 0.10 m:

∆f jm =

∣∣∣∣∣f jm − f j1f j1

∣∣∣∣∣ , j = 1, 2, . . . , 20, ∆um =

∣∣∣∣um − u1u1

∣∣∣∣ . (15)

In Fig. 21 we show the relative errors for the frequencies of the 1st, 10th and 20th vibration
modes of the structure along with that of the displacement of point V , in function of the
number of elements of each mesh m.

A similar procedure was followed for investigating the mesh convergence for the explicit
analysis. A mass proportional damping is applied in order to dissipate any oscillations due
to the dynamic character of the analysis and to reach equilibrium faster. The convergence
of the explicit analysis has been studied on the meshes m = 2, 3, 11, having an average
element size of 0.15, 0.20 and 2.00 m respectively. The results are given in Tab. 4, where
they are compared with the corresponding values of the standard (implicit) analysis. Also
for the explicit analyses, the values of ∆um have been normalized using eq. (15), i.e. using
the value of um=1 calculated with the implicit scheme.
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Figure 21: Relative error for three eigenfrequencies and the vertical displacement of point
V as function of the elements number of each mesh m.

Table 4: Comparison of the relative errors for the vertical displacement of point V , cal-
culated for three meshes with the implicit and explicit procedures.

m Number of ∆um implicit ∆um explicit Difference implicit-explicit
elements [%] [%] [%]

2 3432785 0.64 0.28 0.36
3 1830092 0.84 0.36 0.48
11 25827 22.40 21.81 0.59

There are some very small differences between the explicit and the implicit analyses, to
be imputed to some differences in the finite element formulation between the ABAQUS
Explicit and ABAQUS Standard (implicit) solvers. Such differences are meaningless for
the purpose of this study.

In Fig. 22 we show the total CPU time needed for the standard analyses in function of
the number of elements, while in Fig. 23 we have plotted the same CPU time in function
of the relative errors for the four quantities already represented in Fig. 21. In both the
figures, the total CPU time is normalized with the CPU time of the finest mesh.

Looking at Figs. 21, 22 and 23, the choice of an average mesh size of 0.20 m seems a good
balance between accuracy and calculation time. This is the mesh fineness that we have
used in the calculations; as mentioned above, it has 1.83 millions of elements.
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Figure 22: Normalized CPU times of the standard analyses versus the number of elements.
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Figure 23: Normalized CPU times versus relative errors for three eigenfrequencies and
the vertical displacement of point V ; numbers 1 to 11 indicate the mesh m.

Appendix B: comparison of the wind profile with Eurocode 1
The European norms known as Eurocode are today the reference technical norms for civil
constructions, not only in Europe. In particular, Eurocode 1 concerns the loads to be
applied to structures and [ECS, 2005] is specific to wind loads. Conceived to be readily
applied to standard situations of modern buildings to be designed and implicitly tuned to
give, eventually, precise levels of structural safety, Eurocode 1 is not easily applicable to
the case of a structure like Notre Dame of Paris. In fact, its shape can be hardly reduced
to one of those considered in the norm and we are not concerned with a design wind, but
we are looking for the strongest wind that the Cathedral can withstand.

In fact, our scope was not to design a structure according to a given code which includes
several coefficients and parameters explicitly used for obtaining a standard safety, but
to evaluate, as precisely as possible, the ultimate state of an already existing structure
before failure under the wind thrust, considered as a static action (this assumption is
justified by the fact that for a structure like a Gothic Cathedral, so massive, dynamic
effects engendered by gusts can be neglected in regard of the global failure, though they
can concern minor slender parts, like pinacles).
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Anyway, it is interesting to compare our approach with the rules suggested by Eurocode
1 when adapted to the case of the Cathedral. This helps, on one hand, in shedding a
new light on the use of such a code in cases like the present one and, on the other hand,
in better evaluating the approach to the wind forces that we have followed in this work
(largely inspired by the cited works [Mark, 1982] and [Coccia et al., 2015]).

For the case of Notre Dame of Paris, the wind profile according to Eurocode 1 is repre-
sented by a law of the type1

v(z) =

{
c0(z0)cr(z0)vb if z ≤ z0,
c0(z)cr(z)vb if z > z0,

(16)

where in the present case the two coefficients c0(z) and cr(z) are

c0(z) = 1, cr(z) = 0.234 ln z, (17)

so finally

v(z) =

{
0.539 vb if z ≤ z0,

0.234 ln z vb if z > z0.
(18)

In order to compare this wind profile with the one used in the paper, eq. (7), we need to
put

v(z0) = v0 → vb =
v0

0.234 ln z0
= 1.856 v0, (19)

so that, finally

v(z) =

{
v0 if z ≤ z0,

0.434 ln z v0 if z > z0,
(20)

and in the dimensionless form

η(z) =

{
1 if ζ ≤ 1,

1 + 0.434 ln ζ if ζ > 1.
(21)

The diagrams of eqs. (7) and (21) are plotted in Fig. 24; it is apparent that the two
diagrams are so close that the differences are meaningless: the wind profile (7) gives an
evaluation of the wind speed extremely similar to that proposed by Eurocode 1. Because
eq. (7) tends toward zero for z → 0, while eq. (21) tends towards −∞, the power law is,
in some sense, more physical than the logarithmic law proposed by Eurocode 1; anyway,
this inconsistency of the norm if hidden by the assumed wind profile, constant from z = 0
to z = z0.

For what concerns the drag coefficient CD, Eurocode 1 specifies values that change from
the windward to the leeward side and that vary with the height. Anyway, for the case
of the Cathedral Notre Dame, the sum of the two drag coefficients is practically constant
along the height, and equal to 1.5, the same value that we have used in the numerical
simulations.

1Symbols used in this part are not necessarily those used by Eurocode 1, for having a more direct
comparison with those used throughout the paper.
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Figure 24: Comparison of the wind profiles given by power law (7), in red, and Eurocode
1, eq. (21), in blue.
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