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Abstract
The problem of assessing the strength to wind actions of Gothic Cathedrals is
addressed in this paper. A nonlinear approach, based upon a large-strain, large
displacements formulation and using a nonlinear constitutive law modeling the no-
tension behavior of the material as a damage law is proposed. The method is applied
to the study of the Cathedral Notre Dame of Paris.
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1 Introduction

Gothic Cathedrals are one of the most important cultural heritages of Europe. They
characterize the panorama of several European towns and prove the skill and boldness of
the architects of the Middle Ages. Though unaware of the laws of physics, they dared,
simply using their experience and flair, to conceive audacious buildings that defy the laws
of mechanics since eight centuries. Designing such structures with the same materials, just
stone and mortar, should be also today a real challenge and maybe a nightmare for any
modern engineer, supplied by the most up to date computing means and methods.

As very imposing and articulated stone structures, Gothic Cathedrals are the object of
different studies, aiming at understanding, on one hand, the way these structures have
been conceived and, on the other hand, how much safe they are, namely with respect to
the self weight loads and the wind thrust.
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E-mail: paolo.vannucci@uvsq.fr
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Rather surprisingly, there are few studies on this last problem; without going back to old
treatises, like [Ungewitter, 1890], treating classically the problem of lateral forces using
the method of the thrust line, a fundamental work has been that of R. Mark. In his book
Experiments in Gothic Structure, he tackles the analysis of the lateral wind forces on a
Gothic Cathedral using the experimental technique of photoelasticity, [Mark, 1982].

It is interesting to notice that R. Mark investigated, with this technique, the response of
Notre Dame of Paris as built before the structural modifications made after 1225. The
motivation of his study is in his own words:

This relatively lightly constructed central vessel of the Cathedral Notre Dame
is thirty-three meters from floor to vault keystone, a full eight meters taller
than its highest Gothic predecessors, the Cathedrals of Laon and Sens, and
the largest single-incremental height increase for a new church over an earlier
building in the entire era. Since wind speeds are greater at higher elevations,
and wind pressure is proportional to the square of the speed, earlier experience
with lower-profiled, more heavily massed churches could not have fully prepared
the builders to cope with the new environment. Because of massive reconstruc-
tions made to Notre Dame after 1225, just how the design problem was solved
in the original Gothic construction remained unclear [Mark, 1984].

His objective was hence to understand if the modifications made by the architects of
the XIII-th century were motivated by some structural reasons, and not exclusively by
architectural and stylistic ones. In particular, R. Mark has shown that the original struc-
ture, with a different arrangement of the flying buttresses, had some structural problems.
Namely, he showed that under the wind action of heavy storms, tensile stresses exceeding
three to five times the tensile admissible stresses for the mortars of the Middle Ages arose
in some part of the structure, so certainly producing evident cracks. This can explain, in
the opinion of R. Mark, why the structure was modified after 1225. The present structure
of the Cathedral is shown in Fig. 2, while the original one is presented in Fig. 3; the
structural differences, mainly concerning the flying buttresses, are evident.

R. Mark made experiences with photoelasticity also on other Cathedrals, namely Amiens
and Beauvais, [Mark, 1982]. However, it is worth recalling that the underlying assumption
of photoelasticity is the linearly elastic overall behavior of the structure, assumption that
can be considered as correct only for analyses that are restrained to situations where
there are not significative cracks arising in the structure. This exactly happens when
the structure approaches its ultimate state under extreme winds. So, such an approach
cannot be used to determine the ultimate wind strength of a Cathedral.

A more recent work is that of M. Como and his team, [Como, 2013], [Coccia et al., 2015].
In a research concerning the Amiens Cathedral, the study of the lateral wind strength is
done using the limit analysis method, i.e. calculating the ultimate load multiplier λcr of
the wind pressures over the lateral parts of the Cathedral. For λ = λcr, the structure is
transformed into a mechanism by the formation of a sufficient number of plastic hinges,
i.e. rotation points formed by the cracking of the stone masonry under the action of
tensile stresses. The theoretical framework is that defined by Heyman, [Heyman, 1995],
i.e. the masonry has no tensile strength at all, the compressive strength can be considered
as infinite and no sliding failures occur in the structure. Actually, in [Coccia et al., 2015]
also local sliding mechanisms are anyway considered.

2



DRAFT

The study is conducted on a planar scheme, obtained considering a transversal portion
of the Cathedral between two successive pillars of the main aisle. The two analyses make
use of slightly different hypotheses for the calculation of the wind pressure, which finally
results in two different values of the ultimate wind speed at 10 m above the ground, which
passes from 146 km/h in the first study to 109 km/h in the second one.

Such wind speed values have been exceeded in France rather frequently, also during recent
extreme events: a velocity of 220 km/h has been recorded at Cap Finistère, in Bretagne,
on October 15, 1987. During the storms of December 26 and 28, 1999, a wind speed of
169 km/h has been measured at Parc Montsouris, inside the city of Paris, while during
the storm Xynthia, February 28, 2010, the wind has reached the speed of 136 km/h at
Metz, well far from the coasts. Very recently, on January 12, 2017, the storm Egon has
produced wind gusts at 146 km/h at Dieppe and has destroyed the rose of the Cathedral
of Soissons.

These few data show that extreme wind storms, potentially able to produce important
structural damages and possibly the ruin of tall buildings, are rather frequent. Such
events are hence to be taken into consideration carefully. This is even more needed
today, for climate deregulation produced by global warming has rendered meteorological
phenomena statistically non stationary. The result is that the forecast of extreme events,
and in particular the evaluation of the return period of such an occurrence, is today really
uncertain. Nevertheless, the recent historic records of wind storms clearly show that the
structural analyses of important historical buildings like Gothic Cathedrals, more sensitive
to such events due to their dimensions and type of structure, are today necessary.

To this purpose, we have studied the response to a lateral wind of the Cathedral Notre
Dame of Paris, with the intention of determining its ultimate strength: our goal was
to bound the critical wind, the one able to produce the global failure of the structure
and, possibly, to give a reliable assessment of its value. We have followed a different
approach with respect to the studies cited above. In particular, we performed an incre-
mental analysis in order to determine the response of the structure, in terms of horizontal
displacements, to different wind velocities. When the equilibrium of the structure is no
more reached, the failure occurs.

This choice has been inspired by three considerations: on one hand, to perform a limit
analysis on a five-aisles Cathedral with galleries is much more cumbersome than the
same analysis on a Cathedral of the High Gothic period, like that of Amiens, with only
three aisles and no galleries, [Jantzen, 1957], [Simson, 1962], [Frankl, 1963], [Wilson,
1990], because to determine all the possible failure mechanisms, global and local, is very
delicate.

On the other hand, the incremental approach that we have used allows to find, for each
wind speed considered, the equilibrium configuration. It lets appear the progressive dam-
age of the structure and eventually the failure wind and mechanism. It is interesting to
notice that we find a precise failure mechanism, well identified on a 3D structure.

Finally, the deformation of the structure is determined for each incremental value of the
wind action, so letting appear the time response of the Cathedral to wind. However,
because we do a quasi-static analysis, where all dynamical effects are neglected, the time
is a synthetic one, a purely numerical quantity that cannot be transformed into a physical
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time. Nonetheless, by this procedure we can draw curves simulating the time response of
the Cathedral.

All the simulations have been done on a finite element model of a unit element of the
main aisle, specified below. The simulations are non-linear, because of the constitutive
equation, a softening law representing the tensile damage of the material, used to model
the no-tension behavior of stone masonry (material nonlinearity), and because we have
done them considering large deformations and displacements (geometric nonlinearity),
that occur when the structure is close to its ultimate state.

This paper is organized as follows: in Sect. 2 we introduce the structure of the Cathedral
Notre Dame of Paris and its finite element model. In Sect. 3 we detail the constitutive
law used to model the material and in Sect. 4 the representation of the wind loads. The
details about the numerical procedure and simulations are given in Sects. 5 and 6, while
some final considerations are presented in Sect. 7.

2 The structural model

The Cathedral Notre Dame of Paris, one of the principal examples of the Early Gothic
period, has been built from 1163 and during about one century. Its overall dimensions
are: length 130 m, width 48 m, height of the vaults 32.5 m, total height, comprehending
the timber roof, 45 m. The high vault of the main aisle is built with a sexpartite scheme,
i.e. each vault is composed by six webs. The scheme of the structure is shown in Figs. 1
and 2. The Cathedral has five aisles plus the lateral chapels and wide galleries that run
all along the principal aisle and round the choir.

Figure 1: Plan of Notre Dame of Paris

The geometry of Notre Dame of Paris is hence particularly complex and articulated, much
more than other Cathedrals of the High Gothic period, like Chartres, Reims or Amiens,
where galleries are not present and the aisles are only three. Also the dimensions are
different: though when it was built it was the highest Cathedral, for the race to height
typical of Gothic architecture it soon was exceeded in height by other Cathedrals. A
sketch of the historical evolution of the height of French Gothic Cathedrals is given in
Fig. 3.
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DRAFTFigure 2: Transversal section of Notre Dame of Paris (as it is at present, after the modi-
fications started in 1225 and the restoration of Viollet-le-Duc, XIXth century).
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 Laon 1153   Paris 1163             Chartres 1194       Bourges 1194       Reims 1211          Amiens 1218      Beauvais 1225

     24 m               32.5 m                   35.7 m                  37.5 m                    38 m                   42.5 m                  48.5 m

Figure 3: Historical evolution of the Gothic Cathedrals height (from [Mark, 1984]).

This point is important for two reasons: first, the transversal section is very stiff and
strong and, second, its height is less than that of other major Cathedrals, like Amiens
or Beauvais. For these reasons, the Cathedral of Paris is probably less sensitive to wind
actions than other Gothic Cathedrals. Nevertheless, it is interesting to analyze its strength
to lateral wind actions and compare it with the results found by Como and co-workers
for the Cathedral of Amiens.

For this study, we have considered a structural unit, i.e. the part of the Cathedral shad-
owed in Fig. 1. It comprehends a complete sexpartite vault, 12 m in length, and the entire
width of the Cathedral. A detailed numerical model has hence been done, represented in
Figs. 4 to 6, based upon a survey of the Cathedral and the laserscan done by A. Tallon,
of Vassar College, available on the web, [Tallon, 2010].

Due to the complexity of the Gothic architecture, some geometrical simplifications, not
affecting the overall structural response of the Cathedral, have been done. In particular,
all the parts that are merely decorative are not taken into account−i.e. crockets, windows,
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traceries and pinnacles. The ribbed vaults are modeled carefully, together with the pointed
arches and the flying buttresses, since the stability and integrity of the whole building
depend on them. Also, the filling in the springing zone of the vaults have been modeled
until an angle of 30◦ on the horizontal, see Fig. 6.

In order to avoid a meaningless growth of the finite element model, and as a consequence
of the computational effort, the roof of the building has been modeled just to take on
the wind actions. So, it is modeled by two rigid inclined plates whose top is 10 m above
the guttering walls, like in the Cathedral. The roof, made of lead and wood, applies an
estimated linear load of 2 × 104 N/m on the top of each one of the guttering walls. All
the simulations have been done using the commercial code ABAQUS.

Figure 4: The numerical model of Notre Dame of Paris: overall view.

Taking advantage of its symmetry, calculations have been made just using one half of
the structural unit, i.e. a portion of the Cathedral of 6 m in length, indicated in blue in
Fig. 7. This allows to reduce the degrees of freedom and hence the run duration of the
simulations.

The finite element discretization used in the simulations consists of tetrahedral elements,
supported by both the standard and explicit solvers of ABAQUS, with an average ele-
ment size of 0.2 m, in which ad-hoc refinements are pursued in some parts, due to the
complexity of the geometry. The fineness of the mesh has been chosen after a convergence
analysis, presented below, performed in order to obtain a reliable degree of accuracy with
an acceptable length of the computing time. This gives, in the end, a finite element
model with 1.83 millions of elements for a total size of the model of 1.25 millions degrees
of freedom. Details of the final mesh, used in the simulations, are shown in Fig. 8.

As the simulations are planned to be done by a two-step approach, see Sect. 5, we have
validated the model using first a standard (implicit) scheme and then an explicit one. The
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DRAFTFigure 5: The numerical model of Notre Dame of Paris: transversal section.

response in both the cases has been evaluated on the eigenfrequencies of the first twenty
vibration modes of the structure and on the vertical displacement of the boss of the high
vault, the point indicated as V in Fig. 7, under the action of gravity.

The standard analysis is divided into two parts, namely a modal analysis and a static one
with the gravity load. Both of these analyses have been made for eleven different meshes
m, whose characteristics are given in Tab. 1.

Table 1: Characteristics of the studied meshes m.

m Average element Number of Number of
size [m] elements nodes

1 0.10 10616614 2101473
2 0.15 3432785 724257
3 0.20 1830092 406342
4 0.30 524967 130153
5 0.40 268222 70918
6 0.50 162751 45476
7 0.60 112388 32781
8 0.80 71952 21714
9 1.00 54474 16684
10 1.50 33396 10607
11 2.00 25827 8336

The first twenty eigenfrequencies f jm, j = 1, 2, . . . , 20, and the vertical displacement of
the point V of the sexpartite vault, um, are calculated for each mesh m. The convergence
of the mesh has been evaluated calculating ∀m the errors ∆f jm of the frequencies f jm and
∆um of the displacements um, relatively to the same quantities calculated for the reference
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Figure 6: The numerical model of Notre Dame of Paris: the sexpartite vault.

mesh, the finest one, m = 1, having an average element size of 0.10 m:

∆f jm =

∣∣∣∣∣f jm − f j1f j1

∣∣∣∣∣ , j = 1, 2, . . . , 20, ∆um =

∣∣∣∣um − u1u1

∣∣∣∣ . (1)

In Fig. 9 we show the relative errors for the frequencies of the 1st, 10th and 20th vibration
modes of the structure along with that of the displacement of point V, in function of the
number of elements of each mesh m.

A similar procedure was followed for investigating the mesh convergence for the explicit
analysis. A mass proportional damping is applied in order to dissipate any oscillations due
to the dynamic character of the analysis and to reach equilibrium faster. The convergence
of the explicit analysis has been studied on the meshes m = 2, 3, 11, having an average
element size of 0.15, 0.20 and 2.00 m respectively. The results are given in Tab. 2, where
they are compared with the corresponding values of the standard (implicit) analysis. Also
for the explicit analyses, the values of ∆um have been normalized using eq. (1), i.e. using
the value of um=1 calculated with the implicit scheme.

Table 2: Comparison of the relative errors for the vertical displacement of point V, cal-
culated for three meshes with the implicit and explicit procedures.

m Number of ∆um implicit ∆um explicit Difference implicit-explicit
elements [%] [%] [%]

2 3432785 0.64 0.28 0.36
3 1830092 0.84 0.36 0.48
11 25827 22.40 21.81 0.59

There are some very small differences between the explicit and the implicit analyses, to
be imputed to some differences in the finite element formulation between the ABAQUS
Explicit and ABAQUS Standard (implicit) solvers. Such differences are meaningless for
the purpose of this study.
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PLANE OF SYMMETRY

V

Figure 7: The part of the unit studied (highlighted in blue).

In Fig. 10 we show the total CPU time needed for the standard analyses in function of
the number of elements, while in Fig. 11 we have plotted the same CPU time in function
of the relative errors for the four quantities already represented in Fig. 9. In both the
figures, the total CPU time is normalized with the CPU time of the finest mesh.

Looking at Figs. 9, 10 and 11, the choice of an average mesh size of 0.20 m seems a good
balance between accuracy and calculation time. This is the mesh fineness that we have
used in the calculations; as mentioned above, it has 1.83 millions of elements.

Parallel computing is used to decrease significantly the length of the analyses. All the
simulations have been performed using a 24-cores workstation. The entire model is,
thus, divided into 24 geometric domains, taking advantage of the 24 processors of the
machine.

3 The material model

Masonry composed by ashlars and mortar joints can be modeled as a no-tension material:
its tensile strength is so small that it can be considered as practically null, while the
compressive strength is so high, usually greater than 40 MPa, that it is never attained in
the body of the structure (normally, the highest compression in monumental structures
is of the order of 4÷ 6 MPa).

Hence, a suitable constitutive law must be used to model a continuum composed of
ashlars and mortar-joints. Such a law should model the possibility of damage of the

9



DRAFTFigure 8: Details of the mesh used for the finite element analyses.

material, i.e. the formation of cracks due to tensile stresses. In our calculations, the
following assumptions have been made to model the nonlinear behavior of stone structures,
schematically represented in Fig. 12:

• in compression, the material is described by an isotropic linearly elastic constitutive
law with infinite strength. This is a strong assumption, [Heyman, 1995], [Stefanou
et al., 2015], but it is not expected to alter the results (as said above, compressions
are always far below the admissible compressive stress);

• in tension, the material is assumed to be isotropic linearly elastic until the maximum
principal stress does not exceed the tensile strength; a small, but not null, tensile
strength σmax is hence considered for the material;

• when the maximum principal stress exceeds the tensile strength σmax, failure is
modeled using a nonlinear constitutive law based on the softening model proposed
by Hillerborg, Modéer and Petersson, [Hillerborg et al., 1976].

The Cathedral Notre Dame of Paris is built with ashlars of a limestone extracted from
quarries of the Paris region. Not all the stones are from the same quarry, hence the
mechanical characteristics of the material are not uniform throughout all the building. In
addition, no certain data are available about the mechanical properties of the stone and
of the mortar used by the constructors. That is why data derived from the literature have
been used for the simulations.

An equivalent homogenized Young’s modulus Es, assuming that both stone and mortar-
joints have the same Poisson’s ratio, is derived from classical homogenization theory, see

10
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Figure 9: Relative error for three eigenfrequencies and the vertical displacement of point
V as function of the elements number of each mesh m.
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Figure 10: Normalized CPU times of the standard analyses versus the number of elements.

e.g. [Cecchi and Sab, 2002], [Como, 2013], namely

Eeq =
Em (1 + s/hb)

Em/Eb + s/hb
, (2)

where Eb and Em are the Young’s moduli respectively of masonry blocks and mortar-
joints, while hb and s are the height of the blocks and thickness of the joints. Relying on
the investigations made during a survey of the building, we can evaluate hb = 2.5× 10−1

m and s = 1.0× 10−2 m. For mortar, a modulus Em = 2.5 GPa is chosen, evaluated from
modern hydraulic mortars, while for stone a modulus Eb = 20 GPa is selected, which is a
mean value for limestone−for more details, see again [Como, 2013]. The resulting Young’s
modulus is Eeq = 14.8 GPa, thus a value Es = 14 GPa is selected, for a matter of safety.
The Poisson’s ratio and the density are selected relying on typical values mentioned in
the literature for limestone, namely:

ρs = 2000 kg/m3, νs = 0.25.
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Figure 12: Constitutive law used for modeling the stone behavior

Damage, i.e. fracture produced by tensile stresses, is taken into account through the
brittle cracking model of [Hillerborg et al., 1976]. In this model, a crack appears when the
maximum principal stress over an element exceeds its tensile strength σmax. The crack
forms in the plane orthogonal to the direction of the principal stress exceeding the tensile
limit, see also [Dassault Systèmes, 2016].

As far it concerns the propagation of the cracks, an energy criterion is used. This allows to
minimize mesh dependency due to the softening behavior of the material and to dissipate
adequately the energy. We have used a simplified law, shown in Fig. 13 to represent the
behavior in Fig. 12: in tension, the elastic phase is followed by a piecewise linear softening
one, representing the damage of the material.

The fracture energy for normal tensile stresses is defined as, see Fig. 13 a):

Gf = G1
f +G2

f +G3
f =

∫ w0

0

σ dw +

∫ wk

w0

σ dw +

∫ wf

wk

σ dw, (3)

where σ is the maximum principal stress; w is the displacement normal to the crack
surface, defined as the product of the normal strain ε and a characteristic length h, i.e.

12



DRAFT

  

Gel Gc

u

!

uel

uf 

ucrf 

Gf1

w

!

w0 wk wf

!max

a)

Gf2

Gf3

!k

Figure 13: Representation of the tensile softening law used in the calculations.

w = εh; w0 is the normal displacement corresponding to σmax, wk that relative to the
kink point and wf the one corresponding to the complete loss of strength.

Because the assumed constitutive law is piecewise linear, putting

Ψ =
σk
σmax

, ζ =
wk
wf
, (4)

the three integrals in eq. (3) become

G1
f =

∫ w0

0

σ dw =
σmaxw0

2
=
σ2
max

2Es
h,

G2
f =

∫ wk

w0

σ dw =
σmax
2

(1 + Ψ)(ζwf −
σmax
Es

h),

G3
f =

∫ wf

wk

σ dw =
σmax
2

Ψ(1− ζ)wf ,

(5)

so that
Gf =

σmax
2

[
(Ψ + ζ)wf − Ψh

σmax
Es

]
. (6)

For masonry, relying on the experimental results from uniaxial tensile tests on specimens
with a characteristic length h = 100 mm, [van der Pluijm, 1999], the following parameters
have been chosen

σmax = 0.73 MPa, Gf = 11.3 N/m.

Using these values, we get the value of wf (Ψ and ζ must be fixed; in the simulations, we
have put Ψ = 1/3 and ζ = 1/2):

wf =
1

Ψ + ζ

(
2Gf

σmax
+ Ψh

σmax
Es

)
, (7)

whose value is automatically calculated for each element by ABAQUS; for instance, for
h = 100 mm we get wf = 5.2× 10−2 mm.
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4 The wind model

We are concerned here with the determination of the critical wind speed that the Cathedral
can withstand, i.e. we are not interested in calculating the response to wind of the
Cathedral as a civil structure to be designed. To this purpose, we need a model of the
wind phenomenon as close as possible to the real physical phenomenon. That is why
we can completely discard norms and in particular the somewhat troubling and rather
confusing Eurocode 1.

The wind close to the Earth surface is just what happens in the boundary layer of the
flow of air masses. As such, we need a law describing the variation of the wind speed v
with the distance z from the ground typical of what happens in a boundary layer: a null
speed at z = 0 and a decreasing gradient dv(z)/dz.

Actually, the wind speed is not exactly null at the ground level and, mainly for the
ruggedness of the surface, it is practically constant until a certain height z0. Above z0,
v(z) increases more and more slowly.

There are two types of laws commonly used for modeling the wind vertical profile: a
power law and a logarithmic law, [Sachs, 1978]. For instance, in [Coccia et al., 2015] a
power law is used in the form (p stands for power law)

ηp = ζα, (8)

where we have introduced the two dimensionless variables

η =
v

v0
, ζ =

z

z0
, (9)

with z0 the reference height, where the wind speed v0 is known, and α an exponent, put
equal to 0.35 in [Coccia et al., 2015], value suggested for urban areas. Taking into account
the skyline of Paris, we have chosen for z0 the value of 10 m.

The logarithmic velocity distribution is based on reasonable physical considerations of
uniform shear stress within the first few meters of elevation and a mixing length that
increases linearly above the mean free surface. To the equation of a logarithmic profile
different forms can be given, but if we want that v = 0 for z = 0 and v = v0 for z = z0,
like the power law, a suitable expression is (` stands for logarithmic law)

η` = ln [1 + (e− 1)ζ] . (10)

The converse equations of eqs. (8) and (10) are respectively

ζ = η
1
α
p (11)

and
ζ =

eη` − 1

e− 1
; (12)

they are traced in Fig. 14, with α = 0.35 for the power law, where the wind profile is
constant until the height z0 (i.e. ζ = 1) for the assumption of uniform wind speed for
z ≤ z0 introduced above.
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As it is apparent, the power law underestimates the logarithmic law; nevertheless, it is
important to point out that the power law strongly depends upon the coefficient α. For
instance, for α = 0.5 eqs. (8) and (10) give practically the same diagram of η(ζ). The
advantage of eq. (10) is that it is not sensitive to coefficients like α, that are delicate to
be determined for each case.
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Figure 14: Wind speed profiles.

The wind pressure p is obtained as a drag force per unit of exposed surface using the
relation

p =
1

2
CD ρ v2, (13)

where ρ is the mass density of air, ρ = 1.225 kg/m3 at an ambient temperature of 15◦C,
and CD is the drag coefficient. Its value mainly depends upon the Reynolds number, the
form and exposition of the surface impinged by wind, besides its ruggedness and other
parameters, like the Mach and Froude numbers etc.

In the case of a surface like the side of the Cathedral Notre Dame, it is impossible to have
a global value of CD without preliminary tests in a wind tunnel. Because this has not
been possible, we have evaluated CD in the following way: we have considered the side of
Notre Dame as a vertical rectangular plate, whose total height is z1 = 45 m, the height
of the roof top. Though the height between 35 and 45 m, the zone occupied by the roof,
is actually an inclined plate, we have considered it, conservatively, as vertical. The effect
of decorations, pinnacles, flying buttresses and so on, cannot be evaluated, but they are
likely to increase the value of CD.

Then, the values given in the literature for a rectangular plate perpendicular to the flow
are:

• CD = 1.28 for a rectangular plate in a 3D flow;

• CD = 1.98 ÷ 2.05 for a rectangular plate in a 2D flow, i.e. for an infinitely long
plate.

Because of the uncertainties affecting the evaluation of CD, we have considered two values
for CD:
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• a lower value Cmin
D = 1.28, as if the lateral surface of the unit in Fig. 1 were an

isolated rectangular plate;

• an upper value Cmax
D = 2, because the Cathedral is very long, 130 m, with respect

to the width of half the lateral unit in Fig. 1, 6 m, so that it can be approximatively
considered that the flow impinging the unit is close to a 2D flow.

R. Mark, [Mark, 1982], gives the distribution of CD in Fig. 15. It has been derived by
experimental measures in wind-tunnel tests conducted at the Universities of Iowa, [Chien
et al., 1951], and of Toronto, [Davenport, 1967], though not specifically on geometries like
those typical of a Gothic Cathedral. Such a distribution shows that CD can considerably
vary, and it attains average values ranging from ∼ 1 to ∼ 1.8. Nevertheless, it is worth
recalling that Mark uses the formula

p =
1

2
ρCD G v2 (14)

to determine the wind pressure, where G is a coefficient called gust factor, to account for
the dynamic effects of the wind pressure. In his calculation of the wind effects on the
Cathedral of Amiens, Mark takes the value G = 2.3, which gives a product CDG varying
from ∼ 2.3 to ∼ 4.14. Finally, we remark that in [Coccia et al., 2015] the evaluation given
for the wind pressure corresponds to put, on the whole, CD = 1.5.
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Figure 15: Distribution of CD on a Gothic-Gathedral, according to [Mark, 1982].

Because of the uncertainties intrinsically linked to the determination of the wind and
of CD, our approach has been that of beginning by bounding the critical wind speed
between lower and upper bounds. We have hence considered, for each wind speed v used
for calculations, two wind pressures:

• a lower bound pressure, determined using the power law (8) for the wind profile and
CD = Cmin

D :

pmin =
1

2
ρ Cmin

D v20η
2
p; (15)
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• an upper bound pressure, found using the logarithmic law (10) for the wind profile
and CD = Cmax

D :

pmax =
1

2
ρ Cmax

D v20η
2
` . (16)

This approach allows to obtain a reasonable estimation of the wind pressure bounds for
any wind speed.

It is worth to give the pressure distribution (13) in a dimensionless form. To this end, let
us introduce the pressure p0, corresponding to the value of the wind speed v0:

p0 =
1

2
CD ρ v20. (17)

Then, the dimensionless value π of the pressure is obtained as

π =
p

p0
= η2, (18)

which gives the dimensionless form of eqs. (15) and (16):

πmin(ζ) = ζ2α,

πmax(ζ) = ln2 [1 + (e− 1)ζ] .
(19)

The converse of functions (19),

ζ(πmin) = π
1
2α
min,

ζ(πmax) =
e
√
πmax − 1

e− 1
,

(20)

are represented in Fig. 16. It is apparent that for ζ > 1, i.e. for z > z0, π(ζ) is almost
linear in both the cases.

In order to simplify the calculations, without altering the overall wind action, we have
adopted a load profile constant piecewise, indicated in Fig. 16:

• π(ζ) = π0 = 1 for ζ ≤ 1, i.e. p = p0 for z ≤ z0;

• π(ζ) = πmin1 or π(ζ) = πmax1 for ζ0 < ζ ≤ ζ1, i.e. p = pmin1 or p = pmax1 for
z0 < z ≤ z1,

where
ζ1 =

z1
z0

= 4.5, (21)

πmin1 =
1

ζ1 − 1

∫ ζ1

1

ζ2αdζ =
1

1 + 2α

ζ1+2α
1 − 1

ζ1 − 1
' 2, (22)

πmax1 =
1

ζ1 − 1

∫ ζ1

1

ln2 [1 + (e− 1)ζ] dζ =

[1 + (e− 1)ζ1] {[ln(1 + (e− 1)ζ1)− 1]2 + 1} − e
(e− 1)(ζ1 − 1)

' 2.98,

(23)
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Figure 16: Wind pressure profiles.

and hence

pmin1 = πmin1 pmin0 =
1

2
πmin1 Cmin

D ρ v20,

pmax1 = πmax1 pmax0 =
1

2
πmax1 Cmax

D ρ v20.
(24)

To remark that the value of π1 depends exclusively upon the ratio ζ1. Such a wind pressure
profile, less strong in the upper part, allows to take into account, indirectly, for the slope
of the roof, that is likely to reduce the value of CD.

The values of p0 and p1 are the overall wind action on the Cathedral. Nevertheless,
this action is distributed partly on the windward side and partly on the leeward side.
Considering the experimental diagram of CD in Fig. 15 and following what done in
[Como, 2013] and [Coccia et al., 2015], we consider a leeward side (suction) load half of
the windward one, i.e.

p = pw + p`, pw = 2p` ⇒ pw =
2

3
p, p` =

1

3
p, (25)

where pw indicates the windward pressure load and p` the leeward one. In Fig. 17 we
show a scheme of the wind loading on the Cathedral.

5 The numerical method

The basic idea for the evaluation of the wind strength of the Cathedral is to control the
horizontal displacement of the upper part of the Cathedral, identified conventionally with
that of point V. For a given value of the wind pressure, such a displacement is calculated.
The wind strength of the Cathedral is then identified with the wind speed that produces
an unbounded displacement of point V.

In fact, because the constitutive law is nonlinear and it describes also the damage produced
by tensile stresses, the structure of the Cathedral will have a nonlinear response to wind
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Figure 17: Wind loading on the Cathedral.

and a damage will appear for a sufficiently great value of the wind pressure. Such a
damage, cracks propagating into the structure, will increase with the wind pressure, until
a point where it will be so extended throughout the structure that a ruin mechanism
will be formed. At that point, the structure will not be anymore able to withstand the
wind loads and the displacement of V will progress indefinitely with time, i.e. it will be
unbounded.

To take into account for the stress distribution produced by the own weight of the Cathe-
dral, an implicit static analysis is previously done. The resulting configuration is then used
as the starting point for a subsequent nonlinear explicit analysis, in which the wind loads
described in Sect. 4 are applied in a quasi-static manner. A mass proportional damping
is assumed in order to reach equilibrium rapidly and to dissipate unwanted oscillations
(quasi-static condition).

As mentioned above, the simulations are done applying the load smoothly in time. The
values of the wind pressures p0 and p1, are multiplied by a factor A(t) that varies from
A0 = 0, for t = 0, to Af = 1, for t ≥ tf ; different choices are possible to have a smooth
variation of A(t), we have put

A(t) =

{
A0 + (Af − A0) ξ

3
(
10− 15ξ + 6ξ2

)
if 0 ≤ t < tf ,

1 if t ≥ tf ,
(26)

where
ξ =

t− t0
tf − t0

. (27)

The diagram of A(t) is shown in Fig. 18. After tf , the load conserves indefinitely the
same maximum value.

The incremental analysis allows to obtain the response curve of the structure, i.e. the
curve displacement of V versus time, for any value of the wind speed. If the structure
reaches an equilibrium configuration under the applied wind pressure, the response curve
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Figure 18: The diagram of factor A(t).

reaches an horizontal asymptote, indicating that the horizontal displacement has come to
a value that remains constant under the wind action.

On the contrary, when the Cathedral reaches its ultimate state, the response curve di-
verges, due to the fact that the structure has failed: cracks have formed a collapse mech-
anism.

6 Structural calculations

6.1 Bounding the critical wind speed

We have executed wind analyses for different wind speeds. The wind speed taken as
reference is v0, i.e. the speed at 10 m above the ground level. In Tab. 3 we give, as
functions of v0, the corresponding values of pmin0 , pmin1 , pmax0 and pmax1 , along with the
wind speed at 45 m according to the power law, vp45, and to the logarithmic one, v`45.

Table 3: Wind speeds at z = 10 m, corresponding wind pressures min and max and wind
speeds at z = 45 m.

Cmin
D , η = ηp Cmax

D , η = η`

v0 pmin0 pmin1 vp45 pmax0 pmax1 v`45
[km/h] [kPa] [kPa] [km/h] [kPa] [kPa] [km/h]

80 0.387 0.774 135.4 0.605 1.801 173.4
100 0.605 1.209 169.3 0.945 2.814 216.7
120 0.871 1.742 203.1 1.361 4.052 260.0
140 1.186 2.371 237.0 1.853 5.515 303.4
160 1.549 3.096 270.9 2.420 7.204 346.7
170 1.748 3.495 287.8 2.732 8.132 368.4
180 1.960 3.919 304.7 3.063 9.117 390.0
200 2.420 4.838 338.6 3.781 11.256 433.4
220 2.928 5.854 372.4 4.575 13.619 476.7
240 3.484 6.967 406.3 5.444 16.208 520.1
250 3.781 7.559 423.2 5.908 17.587 541.7
260 4.089 8.176 440.1 6.390 19.022 563.4
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For each wind speed, we have hence done two calculations: one for the couple (pmin0 , pmin1 )
and the other one for the couple (pmax0 , pmax1 ), and we have searched the non-linear re-
sponse of the Cathedral, in terms of horizontal displacement of point V. For the two series
of wind loads, the minimum and the maximum, we find a critical wind pressure couple,
(pmin0 , pmin1 )crit and (pmax0 , pmax1 )crit. From them, through eq. (17) we obtain respectively
vmax0crit and vmin0crit, i.e. the upper and lower bound for the critical wind speed, conventionally
measured at 10 m above the ground level, that the Cathedral can withstand.
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Figure 19: Diagrams time-displacement: Cmin
D and η = ηp.
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Figure 20: Diagrams time-displacement: Cmax
D and η = η`.

The results of the calculations are shown in Figs. 19 to 21 and in Tab. 4. It is evident
that for the case Cmin

D and the power law for the wind speed profile, the critical velocity
is v0 = 260 km/h. In fact, the diagram of the displacement diverges with time: the
displacement increases with the duration of the simulation. This is the sign that the
structure has been transformed into a mechanism by the propagation of the cracks. For
the same reasons, in the case of Cmax

D and the logarithmic law, the critical speed is v0 = 180

21



DRAFT
Figure 21: Diagrams displacement-wind speed.

km/h. Hence, the lower bound for the critical wind speed is vmin0crit = 180 km/h and the
upper one is vmax0crit = 260 km/h.

In Tab. 4, we show, for each wind speed, δVmax, i.e. the maximum horizontal displacement
of point V. We have indicated the ultimate displacement as ∞, because for the critical
wind speed δVmax is unbounded. However, to trace the diagrams in Fig. 21, the ultimate
displacements have been taken conventionally equal to 50 mm.

Table 4: Wind speeds at z = 10 m and corresponding horizontal displacements of point
V for the two cases Cmin

D , η = ηp and Cmax
D , η = η`.

v0 δVmax
[km/h] [mm]

Cmin
D , η = ηp Cmax

D , η = η`

80 0.6 1.3
100 0.9 2.1
120 1.3 3.0
140 1.8 4.4
160 2.3 5.8
170 2.6 8.0
180 2.9 ∞
200 3.8 -
220 4.6 -
240 5.6 -
250 6.7 -
260 ∞ -
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Figure 22: Diagrams of the total wind thrust.

6.2 Evaluation of the critical wind speed

The critical interval for the wind speed has an amplitude of 80 km/h. For better ap-
proaching the true value of the critical wind speed, we can consider the diagrams in Fig.
22. Here, we have plotted the total wind thrust as a function of the wind speed. The
upper and lower curves correspond to the cases presented in Tab. 3, and are denoted in
Fig. 22 as curves A and B, respectively.

The intermediate curves have been traced considering the power law with Cmax
D , curve C,

and the logarithmic law with the value Cmin
D , curve D. These two curves are very close,

and located practically in the middle of the zone delimited by the bounding curves A and
B: curve C corresponds to the 97% of the mean of A and B, i.e. C = 0.97(A + B)/2,
while curve D to the 88%, i.e. D = 0.88(A + B)/2. The values of the total wind thrust
Hw for the four curves above are given in Tab. 5.

The true value of CD is likely to be closer to Cmax
D than to Cmin

D , so the best estimation
of a representative real value of the wind thrust is given by curve C: CD = Cmax

D = 2 and
a wind profile described by a power law, η = ηp.

Through eq. (13), we see easily that the diagram displacement-wind speed for this case,
CD = 2 and η = ηp, can be obtained, without any additional computation, simply scaling
the wind speed:

vC0 = vB0

√
CB
D

CC
D

= vB0

√
1.28

2
= 0.8 vB0 , (28)

where vB0 denotes the wind speed for the case of curve B in Fig. 22, i.e. for CD = 1.28
and η = ηp, while vC0 is the wind speed for the case of curve C in Fig. 22, i.e. for CD = 2
and η = ηp. Of course, this result has been obtained keeping constant the value of the
wind pressure for the same wind profile, the power law. By consequence, for each value
of the wind pressure the only thing that changes is just the wind speed, to be rescaled
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Table 5: Overall wind thrusts Hw on the Cathedral.

v0 Overall wind thrust Hw

[km/h] [kN]

Curve A Curve B Curve C Curve D
Cmax
D , η = η` Cmin

D , η = ηp Cmax
D , η = ηp Cmin

D , η = η`

80 829 372 581 531
100 1295 581 907 829
120 1865 836 1306 1194
140 2539 1138 1778 1625
160 3316 1486 2322 2122
170 3743 1678 2622 2396
180 4197 1881 2939 2686
200 5181 2322 3629 3316
220 6269 2810 4391 4012
240 7461 3344 5225 4775
250 8095 3629 5670 5181
260 8756 3925 6132 5604
280 10155 4552 7112 6499

through eq. (28). The complete set of results for CD = 2 and η = ηp is reported in Tab.
6 while the corresponding curve displacement-wind speed is still traced in Fig. 21.

Considering these results, it appears that the collapse of the Cathedral is likely to happen
for a wind speed

v0crit ∼ 208 km/h.

For such a value of v0, we get, see Tab. 6, a velocity of the wind at the height of 45 m
above the ground level, i.e. at the top of the Cathedral,

vp45 ∼ 352 km/h

for the profile η = ηp of the wind velocity (power law).

Such a meteorological event is very improbable: the highest wind speed ever recorded in
France is just of 360 km/h, on November 1st 1968, at the top of Mont Aigoual, i.e. at 1567
m above the sea level, much more than 45 m. This means that the structural collapse of
Notre Dame of Paris as the consequence of a wind storm is a very unlikely event.

6.3 The mechanism of structural collapse

The numerical simulations described above allows to follow the diffusion of the damage
in the structure, which leads to the formation, for the critical wind speed v0crit, of the
collapse mechanism. At this stage, in fact, the damage has reached such a diffusion that
a mechanism is formed, leading to the failure of the structure, as already explained.

The phases of the structural collapse are shown in Fig. 23; for different wind speeds v0,
the deformation of the structure and the propagation of the cracks is shown.
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Table 6: Data for CD = 2 and η = ηp.

v0 p0 p1 vp45 Hw δVmax
[km/h] [kPa] [kPa] [km/h] [kN] [mm]

64 0.605 1.209 108.3 581 0.6
80 0.945 1.890 135.4 907 0.9
96 1.361 2.721 162.5 1306 1.3
112 1.853 3.704 189.6 1778 1.8
128 2.420 4.838 216.7 2322 2.3
144 3.063 6.123 243.8 2939 2.9
160 3.781 7.559 270.9 3629 3.8
176 4.575 9.147 297.9 4391 4.6
192 5.444 10.885 325.0 5225 5.6
200 5.908 11.811 338.6 5670 6.7
208 6.390 12.775 352.1 6132 ∞

As it was to be expected, the failure occurs when the flying buttresses are severely dam-
aged by the wind thrust; the clearstorey can then rotate after the formation of four plastic
hinges, produced by the propagation of cracks, in the high vault and at the base of the
same clearstorey. The cracks propagating, also the massive buttresses are damaged and
collapse. Large cracks appear also in the vaults of the lateral aisles.

It is interesting to highlight the collapse of the high sexpartite vault, depicted in Fig. 24.
The plastic hinges on the vault deserve a particular consideration: they are more or less
longitudinal, though they are not produced over a cylindrical surface, like a barrel vault,
but on a sexpartite ribbed vault. So, the location of the plastic hinges in the vault is
confirmed, by a 3D model, to be similar to that often used in a 2D scheme.

The total estimated weight of the Cathedral unit, highlighted in red in Fig. 1, is Wtot =
60300 kN; so the ratio with the horizontal wind thrust that causes the structural collapse
is

Wtot

Hw

= 60300/6132 ∼ 9.8.

For comparison, the ratio calculated by R. Mark for Amiens is almost the double: 18.7,
[Mark, 1982]. This is due to two main reasons: the evaluation made by R. Mark cannot be
considered as that corresponding to the structural collapse and the height of the Amiens
Cathedral, 54 m, is greater than that of Paris, 45 m, so a lesser wind thrust is sufficient
for causing the structural failure.

However, it is worth noting that, though the wind speed v0crit is highly improbable, since
v0 = 160 km/h a damage appears in the structure, see Fig. 23, in the form of cracks.
Hence, though the global failure of the Cathedral under the action of the wind is really
unlikely, winds that can actually produce non negligible damages to the structure of the
Cathedral are really possible. As said in the Introduction, in December 1999, a wind
speed of 169 km/h has been recorded inside Paris.
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64 km/h 128 km/h

176 km/h

192 km/h 200 km/h

208 km/h   208 km/h

160 km/h

Figure 23: Progressive damage of the structure and formation of the collapse mechanism;
the two last plots are for the same wind speed, but taken at two successive instants
(CD = 2, η = ηp).
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Figure 24: Progressive failure of the high sexpartite vault

7 Conclusion

The numerical simulations have clearly shown that severe wind storms are able to damage
the structure of the Cathedral Notre Dame of Paris, but that a global structural failure
is highly improbable.

Of course, we have just considered in this study the global collapse of the Cathedral.
However, partial, though important, local damages can be produced in different parts
of the Cathedral, like the pinacles, the timber spire, the roses, the flying buttresses, the
same timber roof. It is not excluded that local important effects can be produced by
phenomena like vortex shedding, while the roof could be lifted up or overthrown by the
wind.

All these phenomena, that could happen also for wind speeds v0 < v0crit, should be studied
apart and cannot be predicted with the approach followed in this paper, conceived to
determine the overall strength to wind thrust and that has however different advantages.
Namely, it allows to follow the progressive failure of the structure under increasing wind
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speed and also to determine its true collapse mechanism, which should really difficult to
be done on a Cathedral like Notre Dame, composed by five aisles and galleries, using a
classical approach of limit analysis à la Heyman, like in [Coccia et al., 2015].
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