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Abstract 

The determination of local components in human skin from in-vivo spectral reflectance 
measurements is crucial for medical applications, especially for aiding the diagnostic of 
skin diseases. Hyper-spectral imaging is a convenient technique since one spectrum is 
acquired in each pixel of the image, and by inverting a light scattering model, we can 
retrieve the concentrations of skin components in each pixel. The good performance of 
the method presented in this paper comes from both the imaging system and the model. 
The hyper-spectral camera that we conceived uses polarizing filters in order to remove 
gloss effects generated by the stratum corneum; it provides a high resolution image 
(1120 × 900 pixels), with a thin spectral sampling of 10 nm over the visible spectrum. 
The acquisition time of 2 seconds is short enough to prevent movement effects of the 
imaged area, which is usually the main issue in hyperspectral imaging. The model relies 
on a two-layer model for the skin, and the Kubelka-Munk theory with Saunderson 
correction for the light reflection. An optimization method enables computing, in less 
than one hour, several skin parameters in each of the million of pixels. These parameters 
(blood, melanin and bilirubin volume fractions, oxygen saturation…) are then displayed 
under the form of density images. Different skin structures, such as veins, blood 
capillaries, hematoma or pigmented spots, can be highlighted. The deviation between the 
measured spectrum and the one computed from the fitted parameters is evaluated in 
each pixel.  

1. Introduction 

Skin chromophores and their influence on skin color perception are a major concern in 
dermatology and cosmetics in order to evaluate pigmentation issues [1-3]. Non-invasive 
imaging systems of the skin are used in a wide range of clinical applications in the last 
decades, in particular in order to get information on pigmentation disorders: melanin 
index, port wine vein, vitiligo, erythema [4-5]… Since pigmentation determines the 
spectral reflectance of the skin, the best way to observe it is to make images in different 
spectral bands, either in three wide spectral bands as in classical RGB imaging [6-7], or 
in more than 10 short spectral bands as in multispectral imaging [8-9]. There already 
exist several multispectral imaging instruments for skin observation on the marketplace 
(e.g. SIAscope from Astron Clinica Limited, or MelaFind from Mela Sciences, …) 
generally dedicated to specific measurements. In the present study, we used the hyper-
spectral camera that we developed and presented in Section 2, SpectraCam®, whose 



 

spectral and spatial resolutions are higher than the aforementioned ones, thus 
permitting more accurate skin analysis.  

The concentration and localization of chromophores and photophores in the skin cannot 
be measured directly by optical device, but they can be deduced from light signal 
captured by the imaging system, by using a spectral reflectance model for the skin 
taking into account the spectral absorbance of the chromophores [10]. Two main 
approaches are usually followed in the literature: Monte-Carlo simulation, and 2-flux 
models. The Monte-Carlo method consists in a stochastic stimulation of light paths in 
the skin with multiple interactions with scatterers [1,12-15]. The drawback of this 
method is that it cannot be easily reversed in order to deduce skin parameters from 
measured spectra [16]: several minutes are needed for treating one spectrum, even with 
fastened methods such as the adaptive method proposed by Spanier [17]. The two-flux 
models rely on a physical model of light propagation which can be seen as a special 
solution of the radiative transfer equation, standing in case of strong scattering. The 
Kubelka-Munk model predicts the reflectance and transmittance of one homogeneous 
layer as a function of its thickness [18], and the Kubelka compositional model can predict 
the reflectance and transmittance of stacks of homogenous layers [19]. Two-flux models 
have been used in a wide range of applications, included skin analysis [3,20-22], most of 
the time without Saunderson correction [23], which means that the optical effect of the 
air-skin interface is not taken into account. More advanced models describe more thinly 
the scattering of light by the skin tissues, especially the angular distribution of the 
scattered light, thanks to methods based on the radiative transfer theory with a 
multilayer model [16,24-25]. This approach is physically more rigorous but difficult to 
use in practice due to the needed computation time for computing the parameters from 
bi-directional spectral reflectance measurements. The number of parameters should be 
also restricted in order to guarantee uniqueness of the solution in the optimization 
process [26].   

The method that we present in this paper relies on the Kubelka-Munk model with 
Saunderson correction (Section 3), by considering the simplified model for skin tissues 
presented in Section 4. The inversed model, fastened by an optimized algorithm, enables 
computing rather fast five skin parameters: epidermis depth, melanin volume fraction, 
blood volume fraction, oxygen saturation and bilirubin volume fraction. These 
parameters can be displayed under the form of density maps [3]. The estimation error 
between simulated and real spectrum is computed using least square and spectral angle 
similarity (SAS) [27]. In order to verify the performance of the method, acquisitions were 
made on ten Caucasian skins to correlate results reported by previous works [28- 29] and 
pigment maps were compared to literature [11] (Section 6).  

2. Hyperspectral imaging system 

The imaging system that we used is a modular device for hyperspectral imaging, 
SpectraCam®, developed by Newtone Technologies, France. In its standard mode, it can 
capture up to 31 images in different thin wavebands of the visible spectrum (400–700 
nm), every 10 nm. For specific clinical applications, it can also capture one image every 1 



 

nm through a spectral band of 10 nm. The surface is illuminated at approximately 8° 
from its normal by four large visible band power LEDs symmetrically disposed around 
optical axis (see Figure 1). The acquisition time for each waveband is selected in order to 
prevent saturation while ensuring good signal-to-noise ratio. The total acquisition time 
for the 31 images is 2.5 seconds, which is appreciable for measurements on alive 
surfaces: the risk of movement is rather low, and the images corresponding to the 
different wavelengths are most often perfectly registered with each other.  

 

Figure 1 – SpectraCam (left) and its schematic (right). Light emitted by LEDs is 
transmitted through the polarizers (P.) and reflected by the skin. A tunable filter (TF) 
let pass a specific wavelength and is used as analyzer. The resulting image is captured 
by a monochromatic camera. 

 

In order to avoid artifacts due to the specular reflection of light by the skin surface 
(gloss), the system integrates two polarization filters, one for polarizing the incident 
light, another one for the reflected light. This system uses the fact that when the 
incident light is polarized, the light reflected by the surface of a dielectric medium has 
similar polarization as the incident light, whereas the light scattering into the diffusing 
medium is unpolarized. Thus, when the second polarizing filter is parallel to the first one 
(Parallel-Polarization mode, hereinafter denoted as PP), it transmits both the specularly 
and diffusely reflected light components. When it is perpendicular to the first filter 
(Cross-Polarization mode, CP), it transmits only the diffused light, without the 
specularly reflected component (see Figure 2). 

For an analysis of the pigment composition of the skin, the CP mode is preferable since 
information is deduced from the spectral distribution of the diffusely reflected light. The 
PP mode is useful for an analysis of the skin surface structure, highlighted by the 
specular reflectance. Note that the specular reflected light can be computed by 
subtracting the CP-image to the-PP image.  

 



 

 

Figure 2 – Same skin area observed by the hyperspectral imaging system in cross-
polarization mode (left) or parallel-polarization mode (center); subtracting the two 
images yields the gloss image displayed on the right. Here, hyperspectral images are 
converted into RGB color images. 

The SpectraCam® device also enables analyzing fluorescence emission by photophores 
thanks to a UV-A lamp emitting around 365 nm. 31 images are captured corresponding 
to the same wavelengths as for the chromophores analysis. When the UV lamp is on and 
the white light off, the measured spectrum corresponds to the fluorescence emittance. 
This mode is not used in the present study.  

The repeatability of the spectral measurement system is similar to spectrophotometers 
used in color reproduction: the standard deviation over 10 measurements on a same 
white ceramic, expressed in CIELAB 1976 ΔE*ab, is 0.09 unit with our system, therefore 
comparable to the Konica Minolta CM-700d instrument (0.04 unit on the same sample) 
and the X-Rite SP62 instrument (0.05 unit).  

3. Kubelka-Munk model and Saunderson correction 

The Kubelka-Munk model describes the propagation of diffuse natural light within a 
layer of homogenous scattering and absorbing medium, characterized by its thickness h, 
its linear absorption coefficient K and its linear backscattering coefficient S [18]. The 
fluxes i and j propagating respectively forwards and backwards within the layer satisfy 
at every depth z the following system of differential equations 
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By integrating these differential equations [31], one obtains the following expressions for 
the reflectance R and the transmittance T of the layer: 
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As the layer thickness tends to infinity, the reflectance tends to the limit  
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and the transmittance obviously trends to 0.  

When the layer is on top of an opaque background with reflectance ρg, the reflectance 
becomes [31] 

 
( ) ( ) ( )

( ) ( ) ( )
− +

=
− +

1 ρ sinh ρ cosh

ρ sinh cosh
g g

g
g

a bSh b bSh
R

a bSh b bSh
 (6) 

Note that since absorption and scattering coefficients generally depend on wavelength, 
all reflectance and transmittance expressions also depend on wavelength.  

Most of the time, the refractive index of the layer is different from the one of the 
surrounding medium, e.g., air. The reflectance Rg of the layer with background, 
expressed by Eq. 6, is thus transformed into the following one 

 = +
−1

in out g
S s

i g

T T R
R r

r R
 (7) 

where the terms sr , inT  and outT  are derived from the Fresnel formulas according to the 
measuring geometry [32]. This expression generalizes the Saunderson correction for the 
Kubelka-Munk model for any measuring geometry (in his original paper, Saunderson 
considered illumination at 45° from the normal of the layer, and observation in the 
normal of the layer [23]). For the 8°:0°geometry, one has  
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Where n is the refractive index of the layer and the factor 21 / n  introduces the fact that 
the captured radiance has been spread into a larger cone when crossing the interface due 
to refraction [32]. Note that 0sr =  because the incident and reflection are different; it is 
also zero when the specular reflection is removed by polarization filtering. Moreover, it 
has been shown that inT , outT  and ir  are almost not modified by eventual roughness of 
the surface [33].  

4. Simplified skin model 

Human skin has a multilayer structure, each layer having specific optical properties. 
Depending on the optical model that is used, the considered number of layers is 2, 3, 5, 7, 
or even more (Refs. [34], to [38], respectively). Anderson [20] considers a two-layer 
system: epidermis, which contains melanin, and dermis, containing collagen fibers as 
scatterers, and blood and its derivatives as absorbers, among which hemoglobin (Hb), 
oxyhemoglobin (HbO2), bilirubin, as well as β-carotene. We adopted similar two-layer 



 

structure (see Figure 3). We considered the epidermis as a diffusing layer with refractive 
index n = 1.4, thickness h, absorption coefficient eK  and scattering coefficient eS , and 
the dermis as a diffusing layer with absorption coefficient dK  and scattering coefficient

dS . The dermis thickness is assumed infinite and its refractive index identical to the one 
of the epidermis. For this structure where a diffusing layer is on top of a background, Eq. 
7 applies. Surprisingly, the optical effect of the air-skin interface (here modeled by the 
Saunderson correction) is ignored in most works referred to in this paper, except in Ref. 
[25] where specific bounding conditions are used in the auxiliary function method for 
solving of the radiative transfer equation. Ignoring the reflections and refractions of light 
at the skin surface is in contradiction with the optical laws and introduces significant 
error in the skin reflectance model.  

For the spectral scattering coefficients of the epidermis and dermis, and the spectral 
absorption coefficients of the skin pigments used in our model, we referred to Ref. [28]. 
The absorption coefficients of the two layers depend on the pigments contained in them 
and their respective volume fraction: According to the Beer-Lambert-Bouguer law [39], 
the spectral absorption coefficient of the absorber mixture is a linear, additive 
combination of the spectral absorption coefficients of the individual absorbers, weighted 
by their respective concentration [40] 

The epidermis contains a baseline with absorption coefficient ( )λbK , and melanin with 
absorption coefficient ( )λmK  and volume fraction mc . The absorption coefficient of the 
epidermis is therefore  

 ( ) ( ) ( ) ( )= − +λ 1 λ λe m b m mK c K c K  (9) 

With this absorption coefficient ( )λeK  and the scattering coefficient ( )λeS , the 
reflectance Re and transmittance Te of the epidermis can be computed as a function of its 
thickness h by using Eqs.2  and 3.  

The dermis contains the same baseline as the epidermis [absorption coefficient ( )λbK ], 
deoxy-hemoglobin Hb (absorption coefficient ( )λHbK  and volume fraction Hbc ), oxy-
hemoglobin Hb02 ( ( )02 λHbK , 02Hbc ) and bilirubin ( ( )λbiK , bic ): 

 ( ) ( ) ( ) ( ) ( )02 02λ λ λ λ λd b b Hb Hb Hb Hb bi biK c K c K c K c K= + + +  (10) 

with ( )021b Hb Hb bic c c c= − + + . With this absorption coefficient dK  and the scattering 
coefficient dS , the reflectance Rd of the dermis can be computed using Eq. 5. 

 



 

Figure 3. Skin model with two layers. Epidermis is composed of baseline (b.) and melanin (m.) 

and has a thickness h. Dermis is composed of baseline (b.), deoxy-hemoglobin (Hb.), oxy-

hemoglobin (HbO2) and bilirubin (b.). Its thickness is assumed to be infinite. 

5. Model inversion for the computation of the skin parameters 

The spectral reflectance of the skin is given by Eq. 7, with ( )λgR  given by Eq. 6. In the 
expression for ( )λgR , the background reflectance ( )ρ λg  is replaced with the dermis 
reflectance ( )λdR  expressed by Eq. 5 as a function of ( )λdS  and ( )λdK  (Eq. 10); the 
reflectance R and transmittance T of the epidermis are respectively expressed by Eqs. 2 
and 3 as functions of ( )λeS  and ( )λeK  (Eq. 9). For each pixel of the hyperspectral 
image, one fits the pigment concentrations and the epidermis thickness as values for 
which the error between the spectrum ( )λpR  predicted by our reflectance model and the 
measured spectrum ( )λmR  is minimal. Two errors where implemented as cost function 
to optimize the model, a classical least square error (Eq. 11) and the Spectral Angle 
Similarity (SAS) (Eq. 12) [41]: ሼܿ௠, ܿு௕, ܿு௕ைଶ, ܿ௕௜, ℎሽ = 	 argmin௖೘,௖ಹ್,௖ಹ್ೀమ,௖್೔,௛ ∑ ቀܴ௣ሺߣሻ − ܴ௠ሺߣሻቁଶ  (11) 
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The optimization yielding the parameter values relies on the Nelder-Mead method [42]. 
The fact that the different pigments have different absorption bands insures a unique 
solution for this optimization process. In order to verify the stability of the obtained 
values of parameters, we introduced small variations in the hyperspectral image and 
observed that the variations of the parameter values were low. Moreover, we could verify 
that a bijective relationship exists between the parameter values and the reflectance 
spectra, which means that the model can be reversed. This enables attributing a unique 
set of parameters to every reflectance spectrum of skin. The five parameters are 
computed for each of the 1 008 000 pixels in less than one hour (3.4 ms per pixel). The 
computation speed optimization that has been achieved is an advantage for medical 



 

applications: it remains important for immediate clinical diagnosis but is acceptable for 
offline data evaluation in the context of clinical trials.  

From the obtained set of parameters, one may compute again the skin reflectance and 
compare it to the measured ones. This enables assessing the relevance of the parameter 
values and the accuracy of the model. The deviations may come from the presence of 
other pigments, non-modeled optical phenomena, or local variations of the optical 
properties of the skin which are not taken into account in our model. The SAS metric is 
computed for each pixel of the image and can be also displayed under the form of a 
density images.  

6. Experimental testing 

Clinical experiments were performed onto 10 Caucasian subjects with phototypes I (fair 
skin) to III (light brown skin) on the Fitzpatrick scale [43-44], 5 males and 5 females 
between 20 and 50 years old. Seven areas of interest were observed on each subject, 
located on the right and left inner forearms, on the right and left cheeks and on the 
forehead. This makes a set of 70 hyperspectral images. The size of each area is 5 cm x 4 
cm (1120 × 900 pixels). The SAS value has been shown to be less sensitive than least 
square error to irradiance variation across the image, especially visible on oxygen 
saturation maps (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Color images (a and d), and oxygen saturation images reconstructed using a least 
square cost function (b and e) and a SAS cost function (c and f) 

 

Computed over all pixels of the 70 hyperspectral images, the SAS value was 0.044, which 
is of the same order as the value 0.017 given in Ref. [3] where this value can 
theoretically vary from 0 to П/2. Average skin parameters and their standard deviation, 
obtained from the 70 hyperspectral images, are given in Table 1. Except from the 



 

epidermis thickness that is overestimated compared to literature, all parameters fit in 
the range detailed in previous works. An originality of our study is the estimation of the 
bilirubin volume fraction by hyperspectral imaging. 

Table 1. Skin parameters estimated from 7 areas on 10 Caucasian subjects  

Skin Parameter Estimated value*  Data from the literature 

Epidermis thickness 41 ± 8 µm 34 ± 4 µm [45] 
Melanin volume fraction 15 ± 5.7% 1.3 – 43% [28] 
Blood volume fraction 5.5 ± 3.7% 2 − 5% [28] 
Oxygen saturation 50 ± 15% 25−90% [46] 
Bilirubin volume fraction 0.35 ± 0.15% 0.3−1.2 mg/dL [47]** 

*Average over the 10 Caucasian subjects and standard deviation 
**This concentration of biliburin is measured in serum whereas our measurement is an effective volume 
fraction in the skin 
 
We compared our method with the method proposed by Stamatas et al., a reference work 
in the literature in which spectral data are used to estimated melanin, oxy-hemoglobin 
and deoxy-hemoglobin [11]. In both methods, we combined oxy- and deoxy-hemoglobin in 
order to obtain blood and oxygenation values. Blood map is defined as the sum of oxy- 
and desoxy-hemoglobin concentrations and oxygenation as the ratio between oxy-
hemoglobin and blood concentrations.  
 

Figure 5 – Color image (a) and blood (b), melanin (c) and oxygen (d) maps implemented using Stamatas & al. 
method [11] compared with blood (e), melanin (f) and oxygen (g) maps with the proposed method.  

 
 Blood capillaries network is roughly visible using Stamatas & al (Figure 5.b) whereas it 
is more clearly defined with the proposed method (Figure 5.e). Some pigmented spots, 
visible in the color image are not identifiable in the Stamatas & al melanin maps (Figure 
5.c) whereas they are well defined in the proposed method (Figure 5.f). Furthermore, 
with the proposed method, some of the spots can be differentiated between the ones 
visible only on the melanin image and the ones visible both in the melanin and blood 
images. Finally, with the proposed method, oxygenation map displays clearly veins 
network (Figure 5.g) whereas they generates artefacts in blood and melanin maps 
(Figure 5.b and Figure 5.a) and are not visible in oxygenation maps (Figure 5.d) using 
the method by Stamatas & al. 



 

 
Figure 6. Color image (a), and density images of blood volume fraction (b), oxygen 
saturation (c) and melanin volume fraction (d) issued from a hyperspectral image of 
female eye contour (courtesy of Clarins S.A). 

Figure 6 shows another example of observed skin area, with a color image and relevant 
grey-level images representing density images for three skin parameters: the whole 
eyelid and eye contour blood irrigation in well described in the blood image (Figure 6.b). 
The dark circle is well defined on the oxygen saturation image (Figure 6.d). The melanin 
image (Figure 6.a) shows no specific variations around the eye helping the diagnosis 
between dark circles due to oxygenation issues and eye contour hyper-pigmentation.  

7. Conclusions 

The method presented in this paper enables quantitative estimation of pigment 
concentrations in each point of a given area of human skin, and therefore display of their 
spatial distribution. The good performance of the method comes from the combination of 
a high-resolution hyper-spectral imaging system with polarizing filters, and an inverse 
model based on the two-flux theory (Kubelka-Munk model in a two-layer structure for 
the skin, with Saunderson correction in order to take into account the internal 
reflections of light at the skin-air interface). The use of cross-polarization enables 
removing light reflections of the stratum corneum, which may be an important error 
factor in chromophores quantification. The model allows retrieving six parameters of 
Caucasian skin: epidermis depth, melanin volume fraction, blood volume fraction, 
oxygen saturation and bilirubin volume fraction. The estimation of this latter parameter 
is an originality of our work compared to the existing works. Images of each of these 
parameters can be displayed to observe different structures such as veins, blood 
capillaries, hematoma or pigmented spots. A spectral deviation image is also displayed to 
highlight structures that do not fit well with the developed skin model. From the tests 
carried out in this study, we observed good agreement between estimated parameter 
values with our system and those available in the literature. In the future, we would like 



 

to validate the estimated parameters values with specific protocols in which their 
variations are under control.  
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